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ABSTRACT: Photofermentative hydrogen production with non-sulfur purple bacteria like Cereibacter sphaeroides (formerly 
Rhodobacter sphaeroides) is a promising and sustainable process to convert organic waste into the energy carrier hydrogen gas. 
However, this conversion is inhibited by elevated organic nitrogen concentrations in the substrate, which limits its applicability to 
nitrogen-poor organic waste. We present genomic and transcriptomic insights into a substrain of Cereibacter sphaeroides strain 
2.4.1 that shows unexpected high levels of photofermentative hydrogen evolution when fed with glutamate. Genome sequencing 
revealed 222 single nucleotide variances (SNVs) between the reference genome of C. sphaeroides strain 2.4.1 and the analyzed 
substrain H2. These affect 61 protein coding genes. A leucine-proline exchange is present in the σ54 factor (rpoN2 gene), a global 
hydrogen and nitrogen metabolism regulator. We propose a model how this mutation alters DNA-binding properties that explain 
the unexpected organic nitrogen tolerance of hydrogen production. Transcriptomic analyses under varying glutamate concentrations 
support this finding. Thus, we present the first thorough genomic and transcriptomic analysis of a Cereibacter strain that shows 
promising metabolic characteristics for biotechnological hydrogen gas production from organic waste. These results suggest a 
potential target for strain optimization. Possibly, our key finding can be transferred to other hydrogen producing microorganisms. 
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1. Introduction 

Currently, about 80% of the worldwide energy demand is covered by non-renewable fossil fuels. This results in 
the emission of pollutants and causes global warming. Hydrogen gas (H2) is an ideal future energy carrier with a has a 
high energy density per unit mass [1]. In the presence of oxygen, it can be converted to either electricity by fuel cells 
[2] or mechanical work by combustion engines, water being the sole by-product. This makes hydrogen gas a clean 
energy carrier. Currently, dominant technologies for hydrogen production use fossil fuels. These include natural gas 
steam reforming (50% world’s production), oil reforming (30%), and coal gasification (18%) [1,3]. Besides electrolytic 
hydrogen generation from renewable energy sources, biologically produced hydrogen gas may contribute to a green 
economy. A particular field of interest is wastewater treatment, since it is worldwide established with a very long 
technological history [4]. Over 50% of lost waste resources are contained in wastewater. Therefore, major drivers are 
pushing to recover and regain these substances. The European Union is currently investing substantial resources into 
bioeconomy funded by the European Commission under the Horizon 2020 framework. 

Anaerobic phototrophs, such as the purple non-sulfur bacterium Cereibacter sphaeroides (formerly Rhodobacter 
sphaeroides [5,6]), are promising candidates for the photobiotechnological production of hydrogen gas from organic 
waste and waste water [7–9]. Rhodobacteraceae belong to the metabolically versatile group of alpha- or beta-
proteobacteria and primarily grow photoheterotrophically under anaerobic conditions [10]. They are able to fix nitrogen 
and grow (photo-)heterotrophic via fermentation or via aerobic or anaerobic respiration on a number of organic 
substrates. Hydrogen production is catalyzed by nitrogenase activity during nitrogen-limited cultivation conditions. The 
specificity of purple bacteria is their ability to form the metabolic energy carrier ATP by anoxygenic photosynthesis 
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using cyclic photosynthesis. The electrons can be derived from organic acids, e.g., from biowaste [11], tofu [12], whey 
[13], congee [14], apple pomace [15], and wheat starch [16]. The amount of H2 produced is depended on the substrate 
and mediated by various metabolic pathways [17]. 

The metabolism in general [18] and photofermentative hydrogen production capabilities of Cereibacter 
sphaeroides in particular [19–21] have been analyzed in great detail. Usually, purple non-sulfur bacteria evolve 
molecular hydrogen as a by-product from ammonia synthesis catalyzed by the nitrogenase. However, ammonia 
synthesis takes only place under nitrogen-deficient conditions [21]. Hence, hydrogen evolution is inhibited by high 
concentrations of nitrogenous substrates. This repression of the hydrogen evolving nitrogenase by fixed nitrogen is a 
major issue when using waste water as a substrate [22–24]. 

Here we characterize Cereibacter sphaeroides strain 2.4.1 substrain H2 that produces hydrogen gas in the presence 
of relatively high substrate organic nitrogen concentrations. Recently, we presented a first draft of its genome structure 
[25]. Here, we present our results on genomic mutations, probably acquired during lab cultivation, that cause 
transcriptomic changes which help to explain decoupling of the cellular organic nitrogen status and hydrogen evolution. 
Thus, we present a deeper genomic and the first transcriptomic characterization of this substrain. 

2. Materials and Methods 

2.1. Bacterial Growth and Harvest 

Cereibacter sphaeroides strain 2.4.1 substrain H2 was kindly provided by the research group of Jost Weber from 
the Technical University Dresden, Germany. It was originally bought from the Leibniz Institute DSMZ-German 
Collection of Microorganisms and Cell Cultures (Braunschweig, Germany) as Rhodobacter sphaeroides DSM-No. 158. 
However, after years of cultivation in Weber’s group it accumulated the SNVs detailed in this work. The substrain was 
cultivated in a stirred tank reactor with a working volume of one liter in continuous mode with a dilution rate D = 0.1 
h−1 under conditions outlined in [20]. Samples for both, DNA and RNA analysis, were harvested after about 20 h of 
steady state conditions, as determined by hydrogen production rate and biomass concentration.  

2.2. Nucleic Acid Preparation 

Cells were separated from the culture medium by centrifugation (13,000× g) and frozen at −80 °C. Cells for 
transcriptome analyses were resuspended in 1:5 RNAlater (life technologies, Darmstadt, Germany). Nucleic acids were 
extracted and isolated using the MasterPure™ Complete DNA and RNA Purification Kit (epicentre, Hessisch 
Oldendorf, Germany) as described by the manufacturer. The nucleic acid pellet was resuspended in 50 µL TE-buffer, 
incubated for 15 min at 65 °C and subsequently prepared for sequencing. 

2.3. DNA Sequencing 

The isolated DNA was exempted from RNA contamination with RNase CocktailTM Enzyme Mix (Life 
Technologies). 2 µL were added to the tube followed by an incubation at 37 °C for 30 min. Sequencing was performed 
with Illumina MiSeq (1 × 150 nt) by Eurofins Genomics GmbH (Ebersberg, Germany). All sequence data are available 
at the NCBI sequence read archive (SRA) under BioProject ID PRJNA392388. 

2.4. RNA Sequencing 

DNA was degraded by TURBO DNA-freeTM Kit (life technologies) following the standard protocol. Ribosomal 
RNA was depleted with mRNA-ONLY™ Prokaryotic mRNA Isolation Kit (epicentre, Hessisch Oldendorf, Germany), 
using the standard protocol. Sequencing was performed with Illumina MiSeq (1 × 150 nt) by Eurofins Genomics GmbH. 
All sequence data are available at the NCBI sequence read archive (SRA) under BioProject ID PRJNA392388. 

2.5. Data Processing and Analysis 

After a first assessment of sequence quality by FastQC (Version 0.11.2) we trimmed and clipped the sequence files using 
the FastX-Toolkit (Version 0.0.13). Indexing and mapping to the reference genome from NCBI (NZ_AKVW01000001.1) was 
performed with Bowtie2 (Version 2.1.0; [26]). Samtools (Version 0.1.19; [27]) converted the incurred SAM- to a BAM-
file, which was sorted and indexed afterwards. 
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2.6. Genomic Characterization 

From the resulting FastA file of the re-sequencing data, a consensus sequence was created with BLAST (Version 2.2.29), 
which delivers a text file with SNVs. The resulting sequences were compared with the reference genome (http://www.ncbi. 
nlm.nih.gov/nuccore/484336764). A multiple genome sequence alignment of all available C. sphaeroides strains from the 
NCBI nucleotide database (ATCC 17025: CP000661.1; ATCC 17029: NC_009049.1, CP000579.1, CP000578.1; KD131: 
CP001152.1, NC_011963.1, CP001153.1, CP001151.1; WS8N: NZ_CM001161.1, NZ_CM001164.1, NZ_CM001163.1, 
NZ_CM001162.1; and 2.4.1: NZ_AKVW01000001.1, NZ_AKVW01000002.1, NZ_AKVW01000003.1, NZ_AKVW01000004.1, 
NZ_AKVW01000005.1, NZ_AKVW01000006.1, NC_009008.1) was performed with Mauve (Version 2.3.1; [28]). For 
a better overview of evolutionary relationships between all six strains a phylogenetic tree from the Mauve output was 
generated using MegAlign (Version 11). The SIFT BLink tool (Version 1.03; [29]) was used to predict potential effects 
of SNVs on enzyme functionality.  

2.7. Transcriptomic Characterization 

A read count analysis from the transcriptome data was carried out with Artemis [30]. After normalization of the data 
by the R-package DESeq [31], we analyzed the expression values in terms of different expression and genes of interest. 

2.8. Homology Modelling 

As a template to map the SNV affecting the σ54 protein as part of the RNA polymerase holoenzyme, the X-ray 
structure from PDB was used 5NSR [32]. Tertiary protein structures were rendered using JMOL (Version 1.3; [33]). 

3. Results and Discussion 

3.1. Genomic Characterization 

The reference strain Cereibacter sphaeroides strain 2.4.1 has two circular chromosomes (3,188,524 and 943,018 
bp) and five plasmids (A–E with 114,179, 105,284, 100,827, 37,100 bp, respectively) and a GC-content of 66% [10]. 
The complete genome encodes for 4,280 proteins and 67 RNAs. It was sequenced for the first time by the University of Texas 
in 2001 [34]. To our knowledge, eight commonly used strains, namely 2.4.1 (two genome sequences: NCBI BioProjects 
PRJNA57653, PRJNA40077; [10,35]), MBTLJ-13 (PRJNA316780, unpublished), MBTLJ-8 (PRJNA293258, 
unpublished), WS8N (PRJNA63267; [36]), ATCC 17025 (PRJNA15755; [35]), ATCC 17029 (PRJNA15754; [35]) and 
KD131 (PRJNA31111; [37]), have been sequenced. They are characterized by a wide genomic divergence. While the 
size of chromosome 1 is relatively constant among all strains, the size of chromosome 2 varies [35]. 

We sequenced the genome of a Cereibacter sphaeroides strain 2.4.1 substrain H2 (named C.s. substrain H2 
throughout this publication; BioProject ID PRJNA392388) that is a promising candidate for photofermentative 
hydrogen production from organic waste [25].  

Figure 1 shows the comparative genome structure and evolutionary diversity for all eight genome sequences. No 
genetic rearrangements between strain 2.4.1 and substrain H2 can be observed, which proofs the close genetic 
relatedness albeit phenotypic differences. 

Choudhary et al. [35] postulated that the divergence between Cereibacter strains, in particular of chromosome II 
sequences, is based on inclusion of genetic material, horizontal DNA transfer and rearrangements of genetic loci, 
respectively. They focused their analysis on strains 2.4.1, ATCC 17029 and ATCC 17025 and postulated a closer 
relationship of the former two. The variations can be explained by adaptions to different ecological niches, which results 
in formation of variable metabolic pathways [35]. Our results support this finding. Most importantly, the genome 
sequence comparison shows no obvious structural difference between the reference strain C.s. strain 2.4.1 and the 
substrain H2 (Figure 1).  
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Figure 1. Multiple genome alignment and bootstrap consensus genomic distance tree of available Cereibacter sphaeroides genome 
assemblies. Each color block identifies a region that aligns to part of another genome. Parts of the alignment which are colored mauve 
are conserved among all genomes, while portions colored differently are segments conserved only among individual strains. If drawn 
below the horizontal line, it aligns to the reverse complement. The consensus distance tree of this genomic alignment tree is inferred 
by neighbor-joining from 100 replicates based on the genomic alignment from. The bootstrap values are indicated at the branch points. 

3.2. Single Nucleotide Variance Analysis 

Since C.s. substrain H2 shows no obvious genome-structure deviation from the reference strain, we analyzed the 
occurrences and distribution of genomic single nucleotide variances (SNVs). Therefore, we established a next generation 
sequencing data processing pipeline and identified 222 SNVs. The distribution of the SNVs is summarized in Figure 2. 
Intergenic SNVs can either be neutral or have an influence on gene-expression if they are located, e.g., in a promotor 
region. Intragenic SNVs can be either neutral too, or lead to the substitution of amino acids that may affect enzyme 
functionality. However, since intragenic SNVs can lead to trans-acting mutations, which can then potentially be transferred 
to other microorganisms, this study focuses on them. Of course, it cannot be ruled out that an intragenic SNV acts in cis. 
Since we are focusing on intragenic SNVs that lead to amino acid exchanges, this would mean that the causative SNV has 
two functions. We consider this to be very unlikely. 

Of all 222 SNVs 61 are within genomic open reading frames and protein coding sequences (Table 1).  

 

Figure 2. Allocation and classification of SNVs detected in the C.s. substrain H2 described in this work. Green numbers indicate SNVs 

that affect protein coding nucleotides. Of the 20 intragenic SNVs, 14 cause an amino acid exchange. See Tables 1 and 2 for details. 
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Table 1. Overview about identified genomic SNVs in open reading frames (ORFs) and protein coding sequences in C.s. strain 2.4.1 
substrain H2. The latter is further specified in Table 2. 

Locus Genes SNVs SNVs in ORFs SNV in Enzymes 
Chr. 1 6022 128 48 18 
Chr. 2 1708   0 0 0 
pA 217   5 0 0 
pB 209   0 0 0 
pC 177   2 0 0 
pD 200  83 12 2 
pE 68   4 1 0 
total 8601 222 61 20 

Thereof, 41 SNVs are located within non-enzymatic proteins that are not obviously connected to metabolism. Of the 
remaining 20 enzyme coding sequence affecting SNVs, 15 cause amino acid exchanges within 14 enzymes (see Table 2 
for details). A bioinformatic prediction of the effect on enzyme functionality or protein function is positive for 5 enzymes. 

Table 2. SNV-based amino acid substitutions within enzymes in C.s. strain 2.4.1 substrain H2. SNVs that are predicted to affect 
enzyme functionality are printed in bold. Genes expressed under the conditions examined are underlined. The effect on enzyme 
functionality was predicted using SIFT BLink Tool as described in material and methods. 

Locus 
Gene-ID 
COC_... 

Enzyme EC-Number AA-Exchange 
Effect on 
Functionality 

chr. 1 RS0100455 uroporphyrinogen-III synthase 4.2.1.75 P28L no 
chr. 1 RS0101150 peptidase S49 3.4.21.- T266I no 
chr. 1 RS0102200 pyruvate kinase 2.7.1.40 P100R no 
chr. 1 RS0102425 inositol monophosphatase 3.1.3.25 – – 
chr. 1 RS0103215 DNA methyltransferase 2.1.1.72 S225X not defined 
chr. 1 RS0105170 ATP-dependent DNA ligase 6.5.1.1 R46C yes 
chr. 1 RS0105350 malto-oligosyltrehalose trehalohydrolase 3.2.1.141 T326A yes 
chr. 1 RS0105690 NADH dehydrogenase subunit D 1.6.5.3 – – 
chr. 1 RS0106065 ATPase 3.6.1.3 S317T no 
chr. 1 RS0106630 tRNA Δ2-isopentenyl-PP-transferase 2.5.1.75 – – 
chr. 1 RS0106805 sulfurtransferase 2.8.1.1. – – 
chr. 1 RS0106985 exopolyphosphatase 3.6.1.11 H309Y no 
chr. 1 RS0107295 cobalt-precorrin-6x reductase 1.3.1.54 – – 
chr. 1 RS0108540 RNA polymerase subunit sigma-54 2.7.7.6 L420P yes 
chr. 1 RS0109915 cellulose synthase 2.4.1.12 H249R yes 
chr. 1 RS0110470 hydrolase 3.-.-.- T187C yes 
chr. 1 RS0110710 carbamoyltransferase 2.1.3.3. M1L, G300R no 
chr. 1 RS0114895 ATPase 3.6.1.3 T599P no 
pD RS0121750 diguanylate cyclase 2.7.7.65 V249I no 
pD RS0121870 transposase 2.7.7.- – – 

3.3. Transcriptome Analysis 

With the genomic SNV analysis, we detected no obvious evidence, e.g., mutations in enzymes that are known to 
be involved in either hydrogen or nitrogen metabolism, that could explain elevated hydrogen evolutions rates in the 
presence of high nitrogen concentration. However, the genome-wide differential gene expression at three different 
substrate glutamate concentrations revealed global effects (Figure 3). 

In order to concentrate on the effect of the genotype on the phenotypic observations, we checked which of the 
proteins from Table 2 are expressed at all at high organic nitrogen concentrations (Figure 4). Only the sigma-54 (σ54) 
subunit of RNA-polymerase is both expressed under the conditions examined and the SNV exhibits a potential 
functional effect (Table 2). 
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Figure 3. Heatmap of clustered gene expression data from chromosomes I and II under three different glutamate concentrations 
and anaerobic phototrophic growth. Red corresponds to high, white to low expression values. Expression data were elucidated from 
RNA-Seq read counts. 

 

Figure 4. Result of combined genomic SNV, transcriptomic and predicted SNV effect analyses. Only the σ54 subunit of the RNA-
polymerase holoenzymes matches all criteria. 

3.4. Sequence Analyses of σ54 

In bacteria, the RNA polymerase core enzyme requires sigma factors for promoter recognition and to initiate 
transcription [38,39]. Sigma factors can be classified into two major families, the σ70 and σ54 family. Most sigma factors 
belong to the extensive σ70 family, including housekeeping sigma factor σ70 (RpoD) and alternative sigma factors (σ38 
(RpoS), σ32 (RpoH) and σ24 (RpoE)). They direct the binding of the RNA polymerase to the promoter consensus -10 
(TATAAT) and -35 (TTGACA) sequences for transcription initiation [39,40]. The σ54 family contains only one single 
member, RpoN (σ54), which is structurally and functionally distinct from all other sigma factors. It directs binding of 
the RNA polymerase to the conserved -12 (TGC) and -24 (GG) promoter elements [40].  

The σ54 factor (RpoN) is highly conserved in a large number of bacterial species. While it is not essential for 
growth, it is required for the expression of a wide variety of genes involved in many diverse functions including 
dicarboxylic acid transport, hydrogenase biosynthesis, and nitrogen fixation [41]. In C. sphaeroides at least the nitrogen 
fixation genes and the flagellar genes are transcribed from σ54-dependent promoters. Most bacteria have a single σ54 
factor (encoded by rpoN) that interacts with multiple bacterial enhancer-binding proteins which recognize specific 
binding sites to achieve the transcription of a specific set of genes [42]. In contrast, it was previously shown that C. 
sphaeroides encodes four σ54 copies, RpoN1 to RpoN4, respectively [43]. The similarity among these four copies is 
around 50% at the protein level. The σ54 identified in our analyses (Figure 4) shows 100 % sequence identity (except 
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the L420P amino acid exchange) to the RpoN2 protein (σ54-2) of C.s. strain WS8N (ID EGJ21523.1; [36]) and high 
similarity with RpoN proteins of other strains (Figure 5). Strikingly, the L420P (leucine to proline) amino acid exchange 
is specific to C.s. 2.4.1 substrain H2 analyzed in this work.  

 

Figure 5. Excerpt of aligned Cereibacter RpoN protein sequences. Amino acids identical to the top sequence are represented by a dot. 
The L420P amino acid exchange is specific to C.s. 2.4.1 substrain H2 analyzed in this work. To the right, database IDs are shown. 

3.5. Structural Analysis of σ54 

The before mentioned unique L420P mutation in the RpoN2 protein prompted us to analyze how this amino acid 
might affect σ54 function. Glyde et al. were able to analyze the structure of the Escherichia coli K12 RNA polymerase 
associated with the of Klebsiella pneumoniae σ54 factor bound to the DNA promoter sequence [32]. Part of the protein 
sequence of this sigma factor is shown in the alignment in Figure 5. The identity and similarity of the K. pneumoniae and 
C.s. 2.4.1 H2 sequences are 32 % and 50 %, respectively. The 3D-molecule structure, shown in Figure 6, clearly shows 
the binding of the helix-turn-helix motif of σ54 to the DNA. Strikingly, the leucine at position 465, that is homologous to 
the leucine at position 420 in C.s. 2.4.1 H2, is in close proximity to the DNA-binding helix-turn-helix motif (Figure 6, red 
arrow). Under the assumption that the C.s. 2.4.1 H2 RpoN protein resembles the structure of the K. pneumoniae σ54 protein 
and binds in a similar way to DNA, the exchange of leucine with proline will most likely affect the binding properties. 

 

Figure 6. Structural model of the RNA polymerase holoenzyme bound to DNA based on PDB 5NSR [32]. Only the protein backbone 
with colored subunits is shown. The σ54 protein is colored entirely in dark green. The leucine at position 465 in close proximity to the 
DNA-binding helix-turn-helix motif is shown as red wireframe (marked by the red arrow). 
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3.6. A Regulatory Model 

The σ54-RNA polymerase holoenzyme complex forms a closed, transcriptionally silent loop that requires bacterial 
enhancer-binding proteins to start transcription [44,45]. Although initially identified for its role in nitrogen assimilation, 
σ54 has been found to control many other physiological processes through different enhancer-binding proteins [46]. 
Among those are the nitrogen regulatory protein C (NtrC) and the nitrogen fixation regulatory protein (NifA).  

As already mentioned, C. sphaeroides encodes four σ54 copies. The L420P SNV is located in the rpoN2 gene 
encoding the σ54-2 protein. The factor σ54-1 was found to be activated by the specific enhancer-binding protein NifA 
[43,47,48]. NifA is an important nitrogenase activator under nitrogen limiting conditions and a lesion in σ54-1 was 
shown to impair growth on nitrogen free medium [43]. The same study revealed that intact σ54-2 is needed for the 
expression of flagellar genes. In contrary, Meijer and Tabita found no deviation from the wildtype with respect to 
nitrogen assimilation in a σ54-1 disruption mutant [49] under photofermentative growth in the presence of glutamate 
(the condition used in our experiments). This shows the strong dependence of sigma-factor and enhancer-binding 
protein effects on the metabolic state. Our findings point to an involvement of σ54-2 in the regulation of the nitrogenase, 
as summarized in Figure 7. 

At high glutamate concentrations, this nitrogenous substrate can be converted by the glutamate synthetase to 
ammonium (NH4

+) and α-ketoglutarate. Compared to the glutamate synthetase, we measured a higher expression level of 
the glutamine synthetase that forms glutamine from glutamate and ammonium. In accordance with the elevated hydrogen 
evolution rate at high glutamate concentration we propose that the ammonia is derived from nitrogenase activity. Usually, 
the nitrogenase and uptake hydrogenase are co-regulated. This way, the cell is able to recycle the energy from hydrogen 
that was otherwise lost. Nitrogenases deviate at least one third of all electrons to hydrogen formation. The observed 
hydrogen evolution rates can only be explained by an impaired activity of the uptake hydrogenase in addition to sustained 
nitrogenase activity. Indeed, for the close relative R. capsulatus it was shown that the uptake hydrogenase is independently 
regulated via a σ70-RNA polymerase and a hydrogenase specific two-component signal transduction system (HupT/HupR) 
(Figure 7) [50]. HupR is an important member of the NtrC family of σ54 enhancer-binding proteins. Both, HupR and HupT 
are encoded and expressed in the substrain H2. 

As shown above, the L420P mutation most likely affects σ54-2–DNA binding properties. From our observations, we 
conclude that this in turn uncouples nitrogenase expression from the nitrogen state of the cell. In contrast, regulation of the 
hydrogenase remains unchanged, which ultimately leads to the observed nitrogen resistance of hydrogen production. 

 

Figure 7. Effect of the L420P SNV in σ54 on hydrogen evolution. We propose that the down regulation of nitrogenase expression at 
elevated glutamate concentrations is impaired by the SNV. In contrast, expression of the hydrogen consuming uptake hydrogenase, 
usually regulated in concert with the nitrogenase holoenzyme, is down regulated. In total, this leads to a net yield of hydrogen gas that 
is released into the environment. Our data show a high expression level of glutamine synthase. The conserved (bold) binding site 
motifs (underlined) for the nitrogen fixation regulatory protein NifA, the integration host factor (IHF) and σ54 (RpoN) are shown. 
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4. Conclusions 

We present the first genomic and transcriptomic characterization of the non-sulfur purple bacterium Cereibacter 
sphaeroides strain 2.4.1 substrain H2. It is closely related to C. sphaeroides strains MBTLJ-8, MBTLJ-13, and the type 
strain 2.4.1 DSM 158. From the latter it only distinguishable by 222 genomic SNVs at chromosome 1 and plasmids A, 
C, D, and E as well as by hydrogen gas evolution at high organic bound nitrogen in the substrate. This makes this 
substrain a promising candidate for wastewater treatment and prompted us to scout for affecting SNVs. A leucine-
proline exchange at position 420 in the σ54-2 factor encoding rpoN2 gene is most likely responsible for the phenotypic 
behavior. Our proposed regulatory model based on genome sequence and expression data reveal an uncoupling of the 
otherwise co-expressed hydrogen producing nitrogenase and hydrogen consuming uptake hydrogenase that leads to a 
net release of hydrogen gas.  

Our data (BioProject ID PRJNA392388) and findings may help to engineer improved Cereibacter derivatives that 
digest nitrogen loaded organic wastewater and simultaneously produce hydrogen gas by anaerobic photofermentation 
[9,51,52]. Unfortunately, CRISPR/Cas-based gene editing is not as straight-forward with Cereibacter as expected 
[53,54]. Thus, we are currently evaluating different molecular genetic techniques to edit σ54. 

Data Availability 

The datasets analyzed during the current study are available in the NCBI sequence read archive (SRA) under 
BioProject ID PRJNA392388 repository, http://www.ncbi.nlm.nih.gov/bioproject/PRJNA392388/. 
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