Review Open Access

Recent Progress in Modification and Preparations of the Promising Biodegradable Plastics: Polylactide and Poly(butylene adipate-co-terephthalate)

Sustainable Polymer & Energy. 2023, 1(1), 10006; https://doi.org/10.35534/spe.2023.10006
Mei Meng 1    Shuanjin Wang 1    Min Xiao 1 *    Yuezhong Meng 1,2,3 *   
1
Research Center of Green Catalysts, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
2
Institute of Chemistry, Henan Academy of Sciences, Zhengzhou 450000, China
3
The Key Laboratory of Low-carbon Chemistry & Energy Conservation of Guangdong Province/State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
*
Authors to whom correspondence should be addressed.

Received: 15 Dec 2022    Accepted: 27 Feb 2023    Published: 12 Apr 2023   

Abstract

The acquisition of high-performance biodegradable plastics is of great significance in addressing the problem of environmental pollution of plastics. Polylactide (PLA) and poly(butylene adipate-co-terephthalate) (PBAT) are the most promising biodegradable polymers and have excellent functional properties. However, low elongation at break and impact strength of PLA and low tensile modulus and flexural strength of PBAT hinder their application. A large number of studies focus on improving the performance of PLA and PBAT and broadening their applications. In terms of polymer modification, this paper summarized recent progresses in both chemical and physical modification methods for PLA and PBAT, respectively. The properties of PLA can be improved by co-polymerization, grafting, cross-linking and blending. The properties of PBAT can be improved mainly through blending with other degradable polymers, natural macromolecules and inorganic materials. This review can provide the reference and ideas for the modification of biomass-based biodegradable plastics like PLA and fossil-based biodegradable plastics like PBAT.

References

1.
Jiang J, Shi K, Zhang XN, Yu K, Zhang H, He J, et al. From plastic waste to wealth using chemical recycling: A review. J. Environ. Chem. Eng. 2022, 10, 106867. [Google Scholar]
2.
Singh N, Ogunseitan OA, Wong MH, Tang YY. Sustainable materials alternative to petrochemical plastics pollution: A review analysis. Sustain. Horiz. 2022, 2, 100016. [Google Scholar]
3.
Li H, Aguirre-Villegas HA, Allen RD, Bai X, Benson CH, Beckham GT, et al. Expanding plastics recycling technologies: Chemical aspects, technology status and challenges. Green Chem. 2022, 24, 8899–9002. [Google Scholar]
4.
Thiounn T, Smith, RC. Advances and approaches for chemical recycling of plastic waste. J. Polym. Sci. 2020, 58, 1347–1364. [Google Scholar]
5.
Monteiro R, Andrades R, Noleto-Filho E, Pegado T, Morais L, Goncalves, M, et al. GLOVE: The Global Plastic Ingestion Initiative for a cleaner world. Mar. Pollut. Bull. 2022, 185, 114244. [Google Scholar]
6.
Haward M. Plastic pollution of the world’s seas and oceans as a contemporary challenge in ocean governance. Nat. Commun. 2018, 9, 667. [Google Scholar]
7.
MacLeod M, Arp HPH, Tekman MB, Jahnke A. The global threat from plastic pollution. Science 2021, 373, 61–65. [Google Scholar]
8.
Knepper TP, Martin W, Scott L. Freshwater microplastics: emerging environmental contaminants? Anal. Bioanal. Chem. 2018, 410, 6337–6338. [Google Scholar]
9.
Surendran U, Jayakumar M, Raja P, Gopinath G, Chellam PV. Microplastics in terrestrial ecosystem: Sources and migration in soil environment. Chemosphere 2023, 318, 137946. [Google Scholar]
10.
Mahbub MS, Shams M. Acrylic fabrics as a source of microplastics from portable washer and dryer: Impact of washing and drying parameters. Sci. Total Environ. 2022, 834, 155429. [Google Scholar]
11.
Dalla Fontana G, Mossotti R, Montarsolo A. Assessment of microplastics release from polyester fabrics: The impact of different washing conditions. Environ. Pollut. 2020, 264, 113960. [Google Scholar]
12.
Narancic T, O’Connor KE. Plastic waste as a global challenge: Are biodegradable plastics the answer to the plastic waste problem? Microbiology 2019, 165, 129–137. [Google Scholar]
13.
Chen GQ, Patel MK. Plastics derived from biological sources: present and future: a technical and environmental review. Chem. Rev. 2012, 112, 2082–2099. [Google Scholar]
14.
Emadian SM, Onay TT, Demirel B. Biodegradation of bioplastics in natural environments. Waste Manag. 2017, 59, 526–536. [Google Scholar]
15.
Schnurr REJ, Alboiu V, Chaudhary M, Corbett RA, Quanz ME, Sankar K, et al. Reducing marine pollution from single-use plastics (SUPs): A review. Mar. Pollut. Bull. 2018, 137, 157–171. [Google Scholar]
16.
Chu JW, Zhou Y, Cai YP, Wang X, Li CH, Liu Q. Flows and waste reduction strategies of PE, PP, and PET plastics under plastic limit order in China. Resour. Conserv. Recycl. 2023, 188, 106668–106679. [Google Scholar]
17.
Nwafor N, Walker TR. Plastic Bags Prohibition Bill: A developing story of crass legalism aiming to reduce plastic marine pollution in Nigeria. Marine Policy 2020, 120, 104160. [Google Scholar]
18.
Arriagada R, Lagos F, Jaime M, Salazar C. Exploring consistency between stated and revealed preferences for the plastic bag ban policy in Chile. Waste Manag. 2022, 139, 381–392. [Google Scholar]
19.
UNEP. Nations Sign up to End Global Scourge of Plastic Pollution. UN News 2022. Available online: https://news.un.org/en/story/2022/03/1113142 (accessed on 26 October 2022).
20.
Álvarez Chávez CR, Edwards S, Moure Eraso R, Geiser K. Sustainability of bio-based plastics: general comparative analysis and recommendations for improvement. J. Clean. Prod. 2012, 23, 47–56. [Google Scholar]
21.
Rosenboom JG, Langer R, Traverso G. Bioplastics for a circular economy. Nat. Rev. Mater. 2022, 7, 117–137. [Google Scholar]
22.
Reddy MM, Vivekanandhan S, Misra M, Bhatia SK, Mohanty AK. Biobased plastics and bionanocomposites: Current status and future opportunities. Prog. Polym. Sci. 2013, 38, 1653–1689. [Google Scholar]
23.
Rahman MH, Bhoi PR. An overview of non-biodegradable bioplastics. J. Clean. Prod. 2021, 294, 126218. [Google Scholar]
24.
Hahladakis JN, Iacovidou E, Gerassimidou S. Plastic waste in a circular economy. In Plastic Waste and Recycling; Elsevier: Oxford, UK, 2020; pp. 481–512.
25.
Samantaray PK, Little A, Wemyss AM, Iacovidou E, Wan C. Design and Control of Compostability in Synthetic Biopolyesters. ACS Sustain. Chem. Eng. 2021, 9, 9151–9164. [Google Scholar]
26.
Aversa C, Barletta M, Cappiello G, Gisario A. Compatibilization strategies and analysis of morphological features of poly(butylene adipate-co-terephthalate) (PBAT)/poly(lactic acid) PLA blends: A state-of-art review. Eur. Polym. J. 2022, 173, 111304–111331. [Google Scholar]
27.
Accelerated Growth: Global Production Capacities of Bioplastics 2021–2026. European Bioplastics 2021. Available online: https://www.european-bioplastics.org/global-bioplastics-production-will-more-than-triple-within-the-next-five-years/ (accessed on 28 October 2022).
28.
Zhang X, Fevre M, Jones GO, Waymouth RM. Catalysis as an Enabling Science for Sustainable Polymers. Chem. Rev. 2018, 118, 839–885. [Google Scholar]
29.
Ainali NM, Kalaronis D, Evgenidou E, Kyzas GZ, Bobori DC, Kaloyianni M, et al. Do poly(lactic acid) microplastics instigate a threat? A perception for their dynamic towards environmental pollution and toxicity. Sci. Total Environ. 2022, 832, 155014–155030. [Google Scholar]
30.
Maadani AM, Salahinejad E. Performance comparison of PLA- and PLGA-coated porous bioceramic scaffolds: Mechanical, biodegradability, bioactivity, delivery and biocompatibility assessments. J. Control Release 2022, 351, 1–7. [Google Scholar]
31.
Mehmood A, Raina N, Phakeenuya V, Wonganu B, Cheenkachorn K. The current status and market trend of polylactic acid as biopolymer: Awareness and needs for sustainable development. Mater. Today Proc. 2022, 72, 3049–3055. [Google Scholar]
32.
Jiao J, Zeng XB, Huang XB. An overview on synthesis, properties and applications of poly(butylene-adipate-co-terephthalate)–PBAT. Adv. Ind. Eng. Polym. Res. 2020, 3, 19–26. [Google Scholar]
33.
Lyu Y, Wen XL, Wang GL, Zhang QH, Lin LY, Schlarb AK, et al. 3D printing nanocomposites with controllable “strength-toughness” transition: Modification of SiO2 and construction of Stereocomplex Crystallites. Compos. Sci. Technol. 2022, 218, 109167. [Google Scholar]
34.
Souza PMS, Sommaggio LRD, Marin-Morales MA, Morales AR. PBAT biodegradable mulch films: Study of ecotoxicological impacts using Allium cepa, Lactuca sativa and HepG2/C3A cell culture. Chemosphere 2020, 256, 126985. [Google Scholar]
35.
Farah S, Anderson DG, Langer R. Physical and mechanical properties of PLA, and their functions in widespread applications—A comprehensive review. Adv. Drug Deliv. Rev. 2016, 107, 367–392. [Google Scholar]
36.
Tábi T, Ageyeva T, Kovács JG. Improving the ductility and heat deflection temperature of injection molded Poly(lactic acid) products: A comprehensive review. Polym. Testing 2021, 101, 107282. [Google Scholar]
37.
Saadi Z, Rasmont A, Cesar G, Bewa H, Benguigui L. Fungal Degradation of Poly(L-lactide) in Soil and in Compost. J. Polym. Environ. 2011, 20, 273–282. [Google Scholar]
38.
Genovese L, Soccio M, Lotti N, Gazzano M, Siracusa V, Salatelli E, et al. Design of biobased PLLA triblock copolymers for sustainable food packaging: Thermo-mechanical properties, gas barrier ability and compostability. Eur. Polym. J. 2017, 95, 289–303. [Google Scholar]
39.
Acik G. Preparation of antimicrobial and biodegradable hybrid soybean oil and poly (L-lactide) based polymer with quaternized ammonium salt. Polym. Degrad. Stab. 2020, 181, 109317. [Google Scholar]
40.
Kalita NK, Sarmah A, Bhasney SM, Kalamdhad A, Katiyar V. Demonstrating an ideal compostable plastic using biodegradability kinetics of poly(lactic acid) (PLA) based green biocomposite films under aerobic composting conditions. Environ. Challenges 2021, 3, 100030. [Google Scholar]
41.
Przybytek A, Sienkiewicz M, Kucińska-Lipka J, Janik H. Preparation and characterization of biodegradable and compostable PLA/TPS/ESO compositions. Ind. Crops Prod. 2018, 122, 375–383. [Google Scholar]
42.
Kalita NK, Bhasney SM, Mudenur C, Kalamdhad A, Katiyar V. End-of-life evaluation and biodegradation of Poly(lactic acid) (PLA)/Polycaprolactone (PCL)/Microcrystalline cellulose (MCC) polyblends under composting conditions.  Chemosphere 2020, 247, 125875. [Google Scholar]
43.
Saadi Z, Cesar G, Bewa H, Benguigui L. Fungal Degradation of Poly(Butylene Adipate-Co-Terephthalate) in Soil and in Compost. J. Polym. Environ. 2013, 21, 893–901. [Google Scholar]
44.
Freitas ALPdL, Tonini Filho LR, Calvão PS, Souza AMCd. Effect of montmorillonite and chain extender on rheological, morphological and biodegradation behavior of PLA/PBAT blends. Polym. Test. 2017, 62, 189–195. [Google Scholar]
45.
Pan HW, Hao YP, Zhao Y, Lang XZ, Zhang Y, Wang Z, Zhang HL, Dong LS. Improved mechanical properties, barrier properties and degradation behavior of poly(butylenes adipate-co-terephthalate)/poly(propylene carbonate) films. Korean J. Chem. Eng. 2017, 34, 1294–1304. [Google Scholar]
46.
Wongphan P, Panrong T, Harnkarnsujarit N. Effect of different modified starches on physical, morphological, thermomechanical, barrier and biodegradation properties of cassava starch and polybutylene adipate terephthalate blend film. Food Pack. Shelf Life 2022, 32, 100844. [Google Scholar]
47.
Dammak M, Fourati Y, Tarrés Q, Delgado-Aguilar M, Mutjé P, Boufi S. Blends of PBAT with plasticized starch for packaging applications: Mechanical properties, rheological behaviour and biodegradability. Ind. Crops Prod. 2020, 144, 112061. [Google Scholar]
48.
Liu YF, Liu S, Liu ZT, Lei Y, Jiang SY, Zhang K, et al. Enhanced mechanical and biodegradable properties of PBAT/lignin composites via silane grafting and reactive extrusion. Compos. Part B Eng. 2021, 220, 108980. [Google Scholar]
49.
de Albuquerque TL, Marques Junior JE, de Queiroz LP, Ricardo ADS, Rocha MVP. Polylactic acid production from biotechnological routes: A review. Int. J. Biol. Macromol. 2021, 186, 933–951. [Google Scholar]
50.
Fang TQ, Liu MY, Li ZZ, Xiong L, Zhang DP, Meng KX, et al. Hydrothermal Conversion of Fructose to Lactic Acid and Derivatives: Synergies of Metal and Acid/Base Catalysts. Chin. J. Chem. Eng. 2022, 53, 381–401. [Google Scholar]
51.
Upare PP, Yoon JW, Hwang DW, Lee UH, Hwang YK, Hong DY, et al. Design of a heterogeneous catalytic process for the continuous and direct synthesis of lactide from lactic acid. Green Chem. 2016, 18, 5978–5983. [Google Scholar]
52.
Dusselier M, Van Wouwe P, Dewaele A, Makshina E, Sels BF. Lactic acid as a platform chemical in the biobased economy: The role of chemocatalysis. Energy Environ. Sci. 2013, 6, 1415–1442. [Google Scholar]
53.
Stanford MJ, Dove AP. Stereocontrolled ring-opening polymerisation of lactide. Chem. Soc. Rev. 2010, 39, 486–494. [Google Scholar]
54.
Li Z, Tan BH, Lin T, He C. Recent advances in stereocomplexation of enantiomeric PLA-based copolymers and applications. Prog. Polym. Sci. 2016, 62, 22–72. [Google Scholar]
55.
Peng ZP, Xu GQ, Yang RL, Guo XH, Sun HG, Wang QG. Isoselective mechanism for asymmetric kinetic resolution polymerization of rac-lactide catalyzed by chiral tridentate bis(oxazolinylphenyl)amido ligand supported zinc complexes. Eur. Polym. J. 2022, 180, 111571. [Google Scholar]
56.
Chen Q, Auras R, Uysal-Unalan I. Role of stereocomplex in advancing mass transport and thermomechanical properties of polylactide. Green Chem. 2022, 24, 3416–3432. [Google Scholar]
57.
Bhattacharjee J, Sarkar A, Panda TK. Recent development of alkali metal complex promoted iso-selective ring-opening polymerization of rac-Lactide. Curr. Opin. Green Sustain. Chem. 2021, 31, 100545–100553. [Google Scholar]
58.
Xu JX, Wang X, Liu JJ, Feng XS, Gnanou Y, Hadjichristidis N. Ionic H-bonding organocatalysts for the ring-opening polymerization of cyclic esters and cyclic carbonates. Prog. Polym. Sci. 2022, 125, 101484. [Google Scholar]
59.
Liu S, Li H, Zhao N, Li Z. Stereoselective Ring-Opening Polymerization of rac-Lactide Using Organocatalytic Cyclic Trimeric Phosphazene Base. ACS Macro Lett. 2018, 7, 624–628. [Google Scholar]
60.
Tsuji H. Poly(lactic acid) stereocomplexes: A decade of progress. Adv. Drug Deliv. Rev. 2016, 107, 97–135. [Google Scholar]
61.
Sugai N, Yamamoto T, Tezuka Y. Synthesis of Orientationally Isomeric Cyclic Stereoblock Polylactides with Head-to-Head and Head-to-Tail Linkages of the Enantiomeric Segments. ACS Macro Lett. 2012, 1, 902–906. [Google Scholar]
62.
Othman N, Xu C, Mehrkhodavandi P, Hatzikiriakos SG. Thermorheological and mechanical behavior of polylactide and its enantiomeric diblock copolymers and blends. Polymer 2012, 53, 2443–2452. [Google Scholar]
63.
Tsuji H, Iguchi K, Tashiro K, Arakawa Y. Crystallization behavior, structure, morphology, and thermal properties of crystalline and amorphous stereo diblock copolymers, poly(L-lactide)-b-poly(DL-lactide). Polym. Chem. 2020, 11, 5711–5724. [Google Scholar]
64.
Tsuji H, Iguchi K, Arakawa Y. Stereocomplex- and homo-crystallization behavior, structure, morphology, and thermal properties of crystalline and amorphous stereo diblock copolymers, enantiomeric Poly(L-lactide)-b-Poly(DL-lactide) and Poly(D-lactide)-b-Poly(DL-lactide). Polymer 2021, 213, 123226. [Google Scholar]
65.
Masutani K, Lee CW, Kimura Y. Synthesis and properties of stereo di- and tri-block polylactides of different block compositions by terminal Diels-Alder coupling of poly-L-lactide and poly-D-lactide prepolymers. Polym. J. 2012, 45, 427–435. [Google Scholar]
66.
Tsuji H, Tamai K, Kimura T, Kubota A, Tahahashi A, Kuzuya A, et al. Stereocomplex- and homo-crystallization of blends from 2-armed poly(L-lactide) and poly(D-lactide) with identical and opposite chain directional architectures and of 2-armed stereo diblock poly(lactide). Polymer 2016, 96, 167–181. [Google Scholar]
67.
Li XL, Yang DS, Zhao YB, Diao XY, Bai HW, Zhang Q, et al. Toward all stereocomplex-type polylactide with outstanding melt stability and crystallizability via solid-state transesterification between enantiomeric poly(L-lactide) and poly(D-lactide). Polymer 2020, 205, 122850. [Google Scholar]
68.
Tang Z, Chen X, Yang Y, Pang X, Sun J, Zhang X, et al. Stereoselective polymerization of rac-lactide with a bulky aluminum/Schiff base complex. J. Polym. Sci. Part A Polym. Chem. 2004, 42, 5974–5982. [Google Scholar]
69.
Masutani K, Lee CW, Kimura Y. Synthesis of stereo multiblock polylactides by dual terminal couplings of poly-L-lactide and poly-D-lactide prepolymers: A new route to high-performance polylactides. Polymer 2012, 53, 6053–6062. [Google Scholar]
70.
Maharana T, Mohanty B, Negi YS. Melt–solid polycondensation of lactic acid and its biodegradability. Prog. Polym. Sci. 2009, 34, 99–124. [Google Scholar]
71.
Takenaka M, Kimura Y, Ohara H. Molecular weight increase driven by evolution of crystal structure in the process of solid-state polycondensation of poly(l-lactic acid). Polymer 2017, 126, 133–140. [Google Scholar]
72.
Widhianto YW, Yamamoto M, Masutani K, Kimura Y, Yamane H. Thermal properties of the multi-stereo block poly(lactic acid)s with various block lengths. Polym. Degrad. Stab. 2017, 142, 188–197. [Google Scholar]
73.
Diaz C, Mehrkhodavandi P. Strategies for the synthesis of block copolymers with biodegradable polyester segments. Polym. Chem. 2021, 12, 783–806. [Google Scholar]
74.
Ibrahim M, Ramadan E, Elsadek NE, Emam SE, Shimizu T, Ando H, et al. Polyethylene glycol (PEG): The nature, immunogenicity, and role in the hypersensitivity of PEGylated products. J. Control Release 2022, 351, 215–230. [Google Scholar]
75.
Ma C, Pan P, Shan G, Bao Y, Fujita M, Maeda M. Core-shell structure, biodegradation, and drug release behavior of poly(lactic acid)/poly(ethylene glycol) block copolymer micelles tuned by macromolecular stereostructure. Langmuir 2015, 31, 1527–1536. [Google Scholar]
76.
Sun L, Pitto-Barry A, Kirby N, Schiller TL, Sanchez AM, Dyson MA, et al. Structural reorganization of cylindrical nanoparticles triggered by polylactide stereocomplexation. Nat. Commun. 2014, 5, 5746. [Google Scholar]
77.
Mao H, Shan G, Bao Y, Wu ZL, Pan P. Thermoresponsive physical hydrogels of poly(lactic acid)/poly(ethylene glycol) stereoblock copolymers tuned by stereostructure and hydrophobic block sequence. Soft Matter 2016, 12, 4628–4637. [Google Scholar]
78.
Cho H, Gao J, Kwon GS. PEG-b-PLA micelles and PLGA-b-PEG-b-PLGA sol-gels for drug delivery. J. Control. Release 2016, 240, 191–201. [Google Scholar]
79.
Sadowski LP, Singh A, Luo DH, Majcher MJ, Urosev I, Rothenbroker M, et al. Functionalized poly(oligo(lactic acid) methacrylate)-block-poly(oligo(ethylene glycol) methacrylate) block copolymers: A synthetically tunable analogue to PLA-PEG for fabricating drug-loaded nanoparticles. Eur. Polym. J. 2022, 177, 111443. [Google Scholar]
80.
Ye WB, Zhu FT, Cai Y, Wang LY, Zhang GL, Zhao GK, et al. Improved paclitaxel delivery with PEG-b-PLA/zein nanoparticles prepared via flash nanoprecipitation. Int. J. Biol. Macromol. 2022, 221, 486–495. [Google Scholar]
81.
Nakajima M, Nakajima H, Fujiwara T, Kimura Y, Sasaki S. Nano-ordered surface morphologies by stereocomplexation of the enantiomeric polylactide chains: specific interactions of surface-immobilized poly(D-lactide) and poly(ethylene glycol)-poly(L-lactide) block copolymers. Langmuir 2014, 30, 14030–14038. [Google Scholar]
82.
Dau H, Jones GR, Tsogtgerel E, Nguyen D, Keyes A, Liu YS, et al. Linear Block Copolymer Synthesis. Chem. Rev. 2022, 122, 14471–14553. [Google Scholar]
83.
Deacy AC, Gregory GL, Sulley GS, Chen TTD, Williams CK. Sequence Control from Mixtures: Switchable Polymerization Catalysis and Future Materials Applications. J. Am. Chem. Soc. 2021, 143, 10021–10040. [Google Scholar]
84.
Liu YY, Wang X, Li ZJ, Wei FL, Zhu H, Dong H, et al. A switch from anionic to bifunctional H-bonding catalyzed ring-opening polymerizations towards polyether–polyester diblock copolymers. Polym. Chem. 2018, 9, 154–159. [Google Scholar]
85.
Kudo H, Nishioka S, Jin H, Maekawa H, Nakamura S, Masuda T. Thermosetting epoxy resin system: Ring-opening by copolymerization of epoxide with D,L-Lactide. Polymer 2022, 240, 124489. [Google Scholar]
86.
Ye SX, Wang SJ, Lin LM, Xiao M, Meng YZ. CO2 derived biodegradable polycarbonates: Synthesis, modification and applications. Adv. Ind. Eng. Polym. Res. 2019, 2, 143–160. [Google Scholar]
87.
Ye SX, Wang WJ, Liang JX, Wang SJ, Xiao M, Meng YZ. Metal-Free Approach for a One-Pot Construction of Biodegradable Block Copolymers from Epoxides, Phthalic Anhydride, and CO2. ACS Sustain. Chem. Eng. 2020, 8, 17860–17867. [Google Scholar]
88.
Zhang M, Xu YH, Williams BL, Xiao M, Wang SJ, Han DM, et al. Catalytic materials for direct synthesis of dimethyl carbonate (DMC) from CO2. J. Clean. Prod. 2021, 279, 123344. [Google Scholar]
89.
Xu Y, Lin L, Xiao M, Wang S, Smith AT, Sun L, et al. Synthesis and properties of CO2-based plastics: Environmentally-friendly, energy-saving and biomedical polymeric materials. Prog. Polym. Sci. 2018, 80, 163–182. [Google Scholar]
90.
Tang L, Luo W, Xiao M, Wang S, Meng Y. One-pot synthesis of terpolymers with long L-lactide rich sequence derived from propylene oxide, CO2, and L-lactide catalyzed by zinc adipate. J. Polym. Sci. Part A Polym. Chem. 2015, 53, 1734–1741. [Google Scholar]
91.
Li X, Duan RL, Hu CY, Pang X, Deng MX. Copolymerization of lactide, epoxides and carbon dioxide: A highly efficient heterogeneous ternary catalyst system. Polym. Chem. 2021, 12, 1700–1706. [Google Scholar]
92.
Li S, Lu H, Zhu L, Yan MX, Kang XH, Luo Y. Ring-opening polymerization of L-lactide catalyzed by food sweetener saccharin with organic base mediated: A computational study. Polymer 2022, 246, 124747. [Google Scholar]
93.
Zhu YJ, Hu YZ, Li ZJ, Liu B, Qu YY, Zhang ZH, et al. A genuine H-bond donor and Lewis base amine cocatalyst in ring-opening polymerizations. Eur. Polym. J. 2021, 143, 110184. [Google Scholar]
94.
Hu CY, Pang X, Chen XS. Self-Switchable Polymerization: A Smart Approach to Sequence-Controlled Degradable Copolymers. Macromolecules 2022, 55, 1879–1893. [Google Scholar]
95.
Lin L, Xu Y, Wang S, Xiao M, Meng Y. Ring-opening polymerization of L-lactide and ε-caprolactone catalyzed by versatile tri-zinc complex: Synthesis of biodegradable polyester with gradient sequence structure. Eur. Polym. J. 2016, 74, 109–119. [Google Scholar]
96.
Luo W, Xiao M, Wang S, Han D, Meng Y. Gradient terpolymers with long ε-caprolactone rich sequence derived from propylene oxide, CO2, and ε-caprolactone catalyzed by zinc glutarate. Eur. Polym. J. 2016, 84, 245–255. [Google Scholar]
97.
Bai J, Xiao X, Zhang Y, Chao J, Chen X. beta-Pyridylenolate zinc catalysts for the ring-opening homo- and copolymerization of epsilon-caprolactone and lactides. Dalton Trans. 2017, 46, 9846–9858. [Google Scholar]
98.
Liu Y, Dong WS, Liu JY, Li YS. Living ring-opening homo- and copolymerisation of epsilon-caprolactone and L-lactide by cyclic beta-ketiminato aluminium complexes. Dalton Trans. 2014, 43, 2244–2251. [Google Scholar]
99.
Huang HC, Wang B, Zhang YP, Li YS. Bimetallic aluminum complexes with cyclic β-ketiminato ligands: the cooperative effect improves their capability in polymerization of lactide and ε-caprolactone.  Polym. Chem. 2016, 7, 5819–5827. [Google Scholar]
100.
Santulli F, D’Auria I, Boggioni L, Losio S, Proverbio M, Costabile C, et al. Bimetallic Aluminum Complexes Bearing Binaphthyl-Based Iminophenolate Ligands as Catalysts for the Synthesis of Polyesters. Organometallics 2020, 39, 1213–1220. [Google Scholar]
101.
Jiang YS, Zhang WJ, Han MY, Wang X, Solan GA, Wang R, et al. Phenoxy-imine/-amide aluminum complexes with pendant or coordinated pyridine moieties: Solvent effects on structural type and catalytic capability for the ROP of cyclic esters. Polymer 2022, 242, 124602–124623. [Google Scholar]
102.
Sangroniz A, Sangroniz L, Hamzehlou S, Río, J.d.;Santamaria A, Sarasua JR, et al. Lactide-caprolactone copolymers with tuneable barrier properties for packaging applications. Polymer 2020, 202, 122681. [Google Scholar]
103.
Shao JJ, Zhou HR, Wang YR, Luo YJ, Yao YM. Lanthanum complexes stabilized by a pentadentate Schiff-base ligand: synthesis, characterization, and reactivity in statistical copolymerization of epsilon-caprolactone and L-lactide. Dalton Trans. 2020, 49, 5842–5850. [Google Scholar]
104.
Zhang X, Prior TJ, Redshaw C. Niobium and Tantalum complexes derived from the acids Ph2C(X)CO2H (X = OH, NH2): Synthesis, structure and ROP capability.  New J. Chem. 2022, 46, 14146–14154. [Google Scholar]
105.
Mezzasalma L, De Winter J, Taton D, Coulembier O. Benzoic acid-organocatalyzed ring-opening (co)polymerization (ORO(c)P) of L-lactide and ε-caprolactone under solvent-free conditions: from simplicity to recyclability. Green Chem. 2018, 20, 5385–5396. [Google Scholar]
106.
Feng ZH, Wu L, Dong H, Liu BP, Cheng RH. Copolyesters of epsilon-caprolactone and l-lactide catalyzed by a tetrabutylammonium phthalimide-N-oxyl organocatalyst. RSC Adv. 2021, 11, 19021–19028. [Google Scholar]
107.
Maharana T, Pattanaik S, Routaray A, Nath N, Sutar AK. Synthesis and characterization of poly(lactic acid) based graft copolymers. React. Funct. Polym. 2015, 93, 47–67. [Google Scholar]
108.
Zhang N, Zhao M, Liu GF, Wang JY, Chen YZ, Zhang ZJ. Alkylated lignin with graft copolymerization for enhancing toughness of PLA. J. Mater. Sci. 2022, 57, 8687–8700. [Google Scholar]
109.
Han XX, Huang LJ, Wei ZH, Wang YN, Chen HB, Huang CX, et al. Technology and mechanism of enhanced compatibilization of polylactic acid-grafted glycidyl methacrylate. Ind. Crops Prod. 2021, 172, 114065. [Google Scholar]
110.
Coudane J, Nottelet B, Mouton J, Garric X, Van Den Berghe H. Poly(ε-caprolactone)-Based Graft Copolymers: Synthesis Methods and Applications in the Biomedical Field: A Review. Molecules 2022, 27, 7339–7368. [Google Scholar]
111.
Hassouna F, Raquez JM, Addiego F, Dubois P, Toniazzo V, Ruch D. New approach on the development of plasticized polylactide (PLA): Grafting of poly(ethylene glycol) (PEG) via reactive extrusion. Eur. Polym. J. 2011, 47, 2134–2144. [Google Scholar]
112.
Kalelkar PP, Collard DM. Tricomponent Amphiphilic Poly(oligo(ethylene glycol) methacrylate) Brush-Grafted Poly(lactic acid): Synthesis, Nanoparticle Formation, and In Vitro Uptake and Release of Hydrophobic Dyes. Macromolecules 2020, 53, 4274–4283. [Google Scholar]
113.
Zhu Y, Akagi T, Akashi M. Preparation and characterization of nanoparticles formed through stereocomplexation between enantiomeric poly(γ-glutamic acid)-graft-poly(lactide) copolymers. Polym. J. 2012, 45, 560–566. [Google Scholar]
114.
Qian WH, Song T, Ye M, Xu PC, Lu GL, Huang XY. PAA-g-PLA amphiphilic graft copolymer: synthesis, self-assembly, and drug loading ability.  Polym. Chem. 2017, 8, 4098–4107. [Google Scholar]
115.
Trinh BM, Tadele DT, Mekonnen TH. Robust and high barrier thermoplastic starch – PLA blend films using starch-graft-poly(lactic acid) as a compatibilizer.  Mater. Adv. 2022, 3, 6208–6221. [Google Scholar]
116.
Boonpavanitchakul K, Jarussophon S, Pimpha N, Kangwansupamonkon W, Magaraphan R. Silk sericin as a bio-initiator for grafting from synthesis of polylactide via ring-opening polymerization. Eur. Polym. J. 2019, 121, 109265. [Google Scholar]
117.
Kang Y, Wang CL, Shi XT, Zhang GC, Chen P, Wang J. Crystallization, rheology behavior, and antibacterial application of graphene oxide- graft -poly ( L -lactide)/poly (L -lactide) nanocomposites. Appl. Surface Sci. 2018, 451, 315–324. [Google Scholar]
118.
Basheer BV, George JJ, Siengchin S, Parameswaranpillai J. Polymer grafted carbon nanotubes—Synthesis, properties, and applications: A review. Nano-Struct. Nano-Objects 2020, 22, 100429. [Google Scholar]
119.
Jang MG, Lee YK, Kim WN. Influence of lactic acid-grafted multi-walled carbon nanotube (LA-g-MWCNT) on the electrical and rheological properties of polycarbonate/poly(lactic acid)/ LA-g-MWCNT composites. Macromol. Res. 2015, 23, 916–923. [Google Scholar]
120.
Campos JM, Ferraria AM, Botelho do Rego AM, Ribeiro MR, Barros-Timmons A. Studies on PLA grafting onto graphene oxide and its effect on the ensuing composite films. Mater. Chem. Phys. 2015, 166, 122–132. [Google Scholar]
121.
Zhang Y, Deng BY, Liu QS. Rheology and crystallisation of PLA containing PLA-grafted nanosilica. Plast. Rubber Compos. 2014, 43, 309–314. [Google Scholar]
122.
Wu F, Zhang B, Yang W, Liu ZY, Yang MB. Inorganic silica functionalized with PLLA chains via grafting methods to enhance the melt strength of PLLA/silica nanocomposites.  Polymer 2014, 55, 5760–5772. [Google Scholar]
123.
Lv HX, Song SX, Sun SL, Ren L, Zhang HX. Enhanced properties of poly(lactic acid) with silica nanoparticles. Polym. Adv. Technol. 2016, 27, 1156–1163. [Google Scholar]
124.
Lai XL, Yang W, Wang Z, Shi DW, Liu ZY, Yang MB. Enhancing crystallization rate and melt strength of PLLA with four-arm PLLA grafted silica: The effect of molecular weight of the grafting PLLA chains.  J. Appl. Polym. Sci. 2018, 135, 45675–45687. [Google Scholar]
125.
Wang B, Zhang X, Zhang LT, Feng YZ, Liu CT, Shen CY. Simultaneously reinforcing and toughening poly(lactic acid) by incorporating reactive melt‐functionalized silica nanoparticles.  J. Appl. Polym. Sci. 2020, 137, 48834–48855. [Google Scholar]
126.
Shaikh T, Kaur H. Synthesis and characterization of nanosized polylactic acid/TiO2 particle brushes by azeotropic dehydration polycondensation of lactic acid. J. Polym. Res. 2017, 25, 22–41. [Google Scholar]
127.
Shaikh T, Rathore A, Kaur H. Poly (Lactic Acid) Grafting of TiO2 Nanoparticles: A Shift in Dye Degradation Performance of TiO2 from UV to Solar Light.  ChemistrySelect 2017, 2, 6901–6908. [Google Scholar]
128.
Xu Q, Huang Z, Ji ST, Zhou J, Shi RZ, Shi WY. Cu2O nanoparticles grafting onto PLA fibers via electron beam irradiation: bifunctional composite fibers with enhanced photocatalytic of organic pollutants in aqueous and soil systems. J. Radioanal. Nuclear Chem. 2019, 323, 253–261. [Google Scholar]
129.
Zhou L, He H, Li MC, Huang SW, Mei CT, Wu QL. Enhancing mechanical properties of poly(lactic acid) through its in-situ crosslinking with maleic anhydride-modified cellulose nanocrystals from cottonseed hulls. Ind. Crops Prod. 2018, 112, 449–459. [Google Scholar]
130.
Mangeon C, Renard E, Thevenieau F, Langlois V. Networks based on biodegradable polyesters: An overview of the chemical ways of crosslinking. Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 80, 760–770. [Google Scholar]
131.
Garavand F, Rouhi M, Razavi SH, Cacciotti I, Mohammadi R. Improving the integrity of natural biopolymer films used in food packaging by crosslinking approach: A review. Int. J. Biol. Macromol. 2017, 104, 687–707. [Google Scholar]
132.
Hennink WE, van Nostrum CF. Novel crosslinking methods to design hydrogels. Adv. Drug Del. Rev. 2012, 64, 223–236. [Google Scholar]
133.
Bednarek M, Borska K, Kubisa P. New Polylactide-Based Materials by Chemical Crosslinking of PLA. Polym. Rev. 2020, 61, 493–519. [Google Scholar]
134.
Hao YP, Chen J, Wang F, Liu Y, Ai X, Tian HC. Influence of Crosslinking on Rheological Properties, Crystallization Behavior and Thermal Stability of Poly(lactic acid). Fibers Polym. 2022, 23, 1763–1769. [Google Scholar]
135.
Pourshooshtar R, Ahmadi Z, Taromi FA. Formation of 3D networks in polylactic acid by adjusting the cross-linking agent content with respect to processing variables: a simple approach. Iranian Polym. J. 2018, 27, 329–337. [Google Scholar]
136.
Yamoum C, Maia J, Magaraphan R. Rheological and thermal behavior of PLA modified by chemical crosslinking in the presence of ethoxylated bisphenol A dimethacrylates. Polym. Adv. Technol. 2017, 28, 102–112. [Google Scholar]
137.
Basu A, Kunduru KR, Doppalapudi S, Domb AJ, Khan W. Poly(lactic acid) based hydrogels. Adv. Drug Deliv. Rev. 2016, 107, 192–205. [Google Scholar]
138.
Chan N, An SY, Oh JK. Dual location disulfide degradable interlayer-crosslinked micelles with extended sheddable coronas exhibiting enhanced colloidal stability and rapid release.  Polym. Chem. 2014, 5, 1637–1649. [Google Scholar]
139.
Borska K, Bednarek M, Pawlak A. Reprocessable polylactide-based networks containing urethane and disulfide linkages. Eur. Polym. J. 2021, 156, 110636. [Google Scholar]
140.
Rohman G, Lauprêtre F, Boileau S, Guérin P, Grande D. Poly(d,l-lactide)/poly(methyl methacrylate) interpenetrating polymer networks: Synthesis, characterization, and use as precursors to porous polymeric materials. Polymer 2007, 48, 7017–7028. [Google Scholar]
141.
Quynh TM, Mai HH, Lan PN. Stereocomplexation of low molecular weight poly(L-lactic acid) and high molecular weight poly(D-lactic acid), radiation crosslinking PLLA/PDLA stereocomplexes and their characterization. Radiat. Phys. Chem. 2013, 83, 105–110. [Google Scholar]
142.
Zhang YY, Wang YT, Wang BJ, Feng XL, Ma BM, Sui XF. Exclusive formation of poly(lactide) stereocomplexes with enhanced melt stability via regenerated cellulose assisted Pickering emulsion approach. Compos. Commun. 2022, 32, 101138. [Google Scholar]
143.
Izraylit V, Heuchel M, Gould OEC, Kratz K, Lendlein A. Strain recovery and stress relaxation behaviour of multiblock copolymer blends physically cross-linked with PLA stereocomplexation. Polymer 2020, 209, 122984. [Google Scholar]
144.
Sarath CC, Shanks RA, Thomas S. Polymer Blends. In Nanostructured Polymer Blends; William Andrew: Norwich, NY, USA, 2014; pp. 1–14.
145.
Nofar M, Sacligil D, Carreau PJ, Kamal MR, Heuzey MC. Poly (lactic acid) blends: Processing, properties and applications. Int. J. Biol. Macromol. 2019, 125, 307–360. [Google Scholar]
146.
Ajitha AR, Thomas S. Introduction: polymer blends, thermodynamics, miscibility, phase separation, and compatibilization. In Compatibilization of Polymer Blends; Elsevier: Oxford, UK, 2020; pp. 1–29.
147.
Paul DR. Chapter 12—Interfacial Agents (“Compatibilizers”) for Polymer Blends. In Polymer Blends; Academic Press: Cambridge, MA, USA, 1978; pp. 35–62.
148.
Imre B, Pukánszky B. Compatibilization in bio-based and biodegradable polymer blends. Eur. Polym. J. 2013, 49, 1215–1233. [Google Scholar]
149.
Hu L, Vuillaume PY. Reactive compatibilization of polymer blends by coupling agents and interchange catalysts. In Compatibilization of Polymer Blends; Elsevier: Oxford, UK, 2020; pp. 205–248.
150.
Chen K, Li P, Li X, Liao C, Li X, Zuo Y. Effect of silane coupling agent on compatibility interface and properties of wheat straw/polylactic acid composites. Int. J. Biol. Macromol. 2021, 182, 2108–2116. [Google Scholar]
151.
Rakmae S, Ruksakulpiwat Y, Sutapun W, Suppakarn N. Effect of silane coupling agent treated bovine bone based carbonated hydroxyapatite on in vitro degradation behavior and bioactivity of PLA composites. Mater. Sci. Eng. C. Mater. Biol. Appl. 2012, 32, 1428–1436. [Google Scholar]
152.
Karakurt I, Ozaltin K, Pistekova H, Vesela D, Michael-Lindhard J, Humpolicek P, et al. Effect of Saccharides Coating on Antibacterial Potential and Drug Loading and Releasing Capability of Plasma Treated Polylactic Acid Films. Int. J. Mol. Sci. 2022, 23, 8821–8840. [Google Scholar]
153.
Mhiri S, Abid M, Abid S, Prochazka F, Pillon C, Mignard N. Green synthesis of covalent hybrid hydrogels containing PEG/PLA-based thermoreversible networks.  J. Polym. Res. 2022, 29, 328–346. [Google Scholar]
154.
Vachon A, Pépin K, Balampanis E, Veilleux J, Vuillaume PY. Compatibilization of PLA/PEBA Blends via Reactive Extrusion: A Comparison of Different Coupling Agents. J. Polym. Environ. 2016, 25, 812–827. [Google Scholar]
155.
Oliver-Ortega H, Reixach R, Espinach FX, Mendez JA. Maleic Anhydride Polylactic Acid Coupling Agent Prepared from Solvent Reaction: Synthesis, Characterization and Composite Performance.  Materials 2022, 15, 1161–1178. [Google Scholar]
156.
Meng X, Shi G, Wu C, Chen W, Xin Z, Shi Y, et al. Chain extension and oxidation stabilization of Triphenyl Phosphite (TPP) in PLA.  Polym. Degrad. Stab. 2016, 124, 112–118. [Google Scholar]
157.
Punyodom W, Meepowpan P, Girdthep S, Limwanich W. Influence of tin(II), aluminum(III) and titanium(IV) catalysts on the transesterification of poly(L-lactic acid).  Polym. Bull. 2022, 79, 11409–11429. [Google Scholar]
158.
Zhou L, Zhao G, Jiang W. Effects of Catalytic Transesterification and Composition on the Toughness of Poly(lactic acid)/Poly(propylene carbonate) Blends.  Ind. Eng. Chem. Res. 2016, 55, 5565–5573. [Google Scholar]
159.
Matta AK, Rao RU, Suman KNS, Rambabu V. Preparation and Characterization of Biodegradable PLA/PCL Polymeric Blends.  Procedia Mater. Sci. 2014, 6, 1266–1270. [Google Scholar]
160.
Haneef INHM, Buys YF, Shaffiar NM, Shaharuddin SIS, Nor Khairusshima MK. Miscibility, mechanical, and thermal properties of polylactic acid/polypropylene carbonate (PLA/PPC) blends prepared by melt-mixing method.  Mater. Today Proc. 2019, 17, 534–542. [Google Scholar]
161.
Zhao XP, Liu JC, Li JC, Liang XY, Zhou WY, Pe SX. Strategies and techniques for improving heat resistance and mechanical performances of poly(lactic acid) (PLA) biodegradable materials.  Int. J. Biol. Macromol. 2022, 218, 115–134. [Google Scholar]
162.
Fortelny I, Ujcic A, Fambri L, Slouf M. Phase Structure, Compatibility, and Toughness of PLA/PCL Blends: A Review.  Front. Mater. 2019, 6, 206. [Google Scholar]
163.
Musa L, Krishna Kumar N, Abd Rahim SZ, Mohamad Rasidi MS, Watson Rennie AE, Rahman R, et al. A review on the potential of polylactic acid based thermoplastic elastomer as filament material for fused deposition modelling.  J. Mater. Res. Technol. 2022, 20, 2841–2858. [Google Scholar]
164.
Yuryev Y, Mohanty AK, Misra M. Hydrolytic stability of polycarbonate/poly(lactic acid) blends and its evaluation via poly(lactic) acid median melting point depression.  Polym. Degrad. Stab. 2016, 134, 227–236. [Google Scholar]
165.
Yuryev Y, Mohanty AK, Misra M. Novel biocomposites from biobased PC/PLA blend matrix system for durable applications. Compos. Part B Eng. 2017, 130, 158–166. [Google Scholar]
166.
Gigante V, Aliotta L, Coltelli MB, Lazzeri A. Upcycling of Poly(Lactic Acid) by Reactive Extrusion with Recycled Polycarbonate: Morphological and Mechanical Properties of Blends.  Polymers 2022, 14, 5058–5072. [Google Scholar]
167.
Ma X, Yu J, Wang N. Compatibility characterization of poly(lactic acid)/poly(propylene carbonate) blends. J. Polym. Sci. Part B Polym. Phys. 2006, 44, 94–101. [Google Scholar]
168.
Wang Z, Lai XL, Zhang M, Yang W, Yang MB. Synthesis of an Efficient Processing Modifier Silica-g-poly(lactic acid)/poly(propylene carbonate) and Its Behavior for Poly(lactic acid)/Poly(propylene carbonate) Blends.  Ind. Eng. Chem. Res. 2017, 56, 14704–14715. [Google Scholar]
169.
Song LX, Li YC, Meng XY, Wang T, Shi Y, Wang YX, et al. Crystallization, Structure and Significantly Improved Mechanical Properties of PLA/PPC Blends Compatibilized with PLA-PPC Copolymers Produced by Reactions Initiated with TBT or TDI.  Polymers 2021, 13, 3245–3262. [Google Scholar]
170.
Wang X, Wu S. Toughening of PLA with PPC.  China Plast. Ind. 2012, 40, 26–28,41. [Google Scholar]
171.
Li JQ, He HZ, Zhu ZW, Xu MH, Gao JF, Gu Q, Tan B. Unique Morphology of Polylactide/Poly(ε-Caprolactone) Blends Extruded by Eccentric Rotor Extruder.  J. Polym. Environ. 2022, 30, 4252–4262. [Google Scholar]
172.
Patrício T, Bártolo P. Thermal Stability of PCL/PLA Blends Produced by Physical Blending Process.  Procedia Eng. 2013, 59, 292–297. [Google Scholar]
173.
Van de Voorde KM, Pokorski JK, Korley LTJ. Exploring Morphological Effects on the Mechanics of Blended Poly(lactic acid)/Poly(ε-caprolactone) Extruded Fibers Fabricated Using Multilayer Coextrusion.  Macromolecules 2020, 53, 5047–5055. [Google Scholar]
174.
Wang B, Ye X, Wang BW, Li XP, Xiao SL, Liu HS. Reactive graphene as highly efficient compatibilizer for cocontinuous poly(lactic acid)/poly(ε-caprolactone) blends toward robust biodegradable nanocomposites.  Compos. Sci. Technol. 2022, 221, 109326. [Google Scholar]
175.
do Patrocinio Dias P, Aparecido Chinelatto M. Effect of Poly(ε-caprolactone-b-tetrahydrofuran) Triblock Copolymer Concentration on Morphological, Thermal and Mechanical Properties of Immiscible PLA/PCL Blends.  J. Renew. Mater. 2019, 7, 129–138. [Google Scholar]
176.
Wang P, Gao S, Chen XL, Yang L, Cao T, Fan BY, et al. Effect of PCL-b-PEG Oligomer Containing Ionic Elements on Phase Interfacial Properties and Aggregated Structure of PLA/PCL Blends.  Macromol. Res. 2022, 30, 438–445. [Google Scholar]
177.
Naser AZ, Deiab I, Darras BM. Poly(lactic acid) (PLA) and polyhydroxyalkanoates (PHAs), green alternatives to petroleum-based plastics: A review.  RSC Adv. 2021, 11, 17151–17196. [Google Scholar]
178.
Vigil Fuentes MA, Thakur S, Wu F, Misra M, Gregori S, Mohanty AK. Study on the 3D printability of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/poly(lactic acid) blends with chain extender using fused filament fabrication.  Sci. Rep. 2020, 10, 11804. [Google Scholar]
179.
Hu X, Su T, Li P, Wang Z. Blending modification of PBS/PLA and its enzymatic degradation.  Polym. Bull. 2017, 75, 533–546. [Google Scholar]
180.
Jem KJ, Tan B. The development and challenges of poly (lactic acid) and poly (glycolic acid).  Adv. Ind. Eng. Polym. Res. 2020, 3, 60–70. [Google Scholar]
181.
Ramdhanie LI, Aubuchon SR, Boland ED, Knapp DC, Barnes CP, Simpson DG, et al. Thermal and Mechanical Characterization of Electrospun Blends of Poly(lactic acid) and Poly(glycolic acid).  Polym. J. 2006, 38, 1137–1145. [Google Scholar]
182.
Sheth M, Kumar RA, Davé V, Gross RA, McCarthy SP. Biodegradable Polymer Blends of Poly(lactic acid) and Poly(ethylene glycol).  J. Appl. Polym. Sci. 1997, 66, 1495–1505. [Google Scholar]
183.
Nazari T, Garmabi H. Polylactic acid/polyethylene glycol blend fibres prepared via melt electrospinning: effect of polyethylene glycol content.  Micro Nano Lett. 2014, 9, 686–690. [Google Scholar]
184.
Vrandečić NS, Erceg M, Jakić M, Klarić I. Kinetic analysis of thermal degradation of poly(ethylene glycol) and poly(ethylene oxide)s of different molecular weight.  Thermochim. Acta 2010, 498, 71–80. [Google Scholar]
185.
Kong WL, Tong BB, Ye AL, Ma RX, Gou JM, Wang YM, et al. Crystallization behavior and mechanical properties of poly(lactic acid)/poly(ethylene oxide) blends nucleated by a self-assembly nucleator.  J. Therm. Anal. Calorimetry 2018, 135, 3107–3114. [Google Scholar]
186.
Diaz A, Katsarava R, Puiggali J. Synthesis, properties and applications of biodegradable polymers derived from diols and dicarboxylic acids: from polyesters to poly(ester amide)s.  Int. J. Mol. Sci. 2014, 15, 7064–7123. [Google Scholar]
187.
Nifant’ev IE, Bagrov VV, Komarov PD, Ilyin SO, Ivchenko PV. The Use of Branching Agents in the Synthesis of PBAT.  Polymers 2022, 14, 1720–1736. [Google Scholar]
188.
Li RY, Wu LB, Li BG. Poly(l-lactide)/PEG-mb-PBAT blends with highly improved toughness and balanced performance.  Eur. Polym. J. 2018, 100, 178–186. [Google Scholar]
189.
Neng WB, Xie WG, Lu B, Zhen ZC, Zhao JL, Wang GX, et al. Biodegradable thermoplastic copolyester elastomers: Methyl branched PBAmT.  e-Polymers 2021, 21, 336–345. [Google Scholar]
190.
Nifant’ev IE, Bagrov VV, Komarov PD, Ovchinnikova VI, Ivchenko PV. Aryloxy ‘biometal’ complexes as efficient catalysts for the synthesis of poly(butylene adipate terephthalate).  Mendeleev Commun. 2022, 32, 351–353. [Google Scholar]
191.
Ye SX, Xiang XQ, Wang SJ, Han DM, Xiao M, Meng YZ. Nonisocyanate CO2-Based Poly(ester-co-urethane)s with Tunable Performances: A Potential Alternative to Improve the Biodegradability of PBAT.  ACS Sustain. Chem. Eng. 2020, 8, 1923–1932. [Google Scholar]
192.
Mahata D, Cherian A, Parab A, Gupta V. In situ functionalization of poly(butylene adipate-co-terephthalate) polyester with a multi-functional macromolecular additive.  Iranian Polym. J. 2020, 29, 1045–1055. [Google Scholar]
193.
Ding Y, Lu B, Wang PL, Wang GX, Ji JH. PLA-PBAT-PLA tri-block copolymers: Effective compatibilizers for promotion of the mechanical and rheological properties of PLA/PBAT blends.  Polym. Degrad. Stab. 2018, 147, 41–48. [Google Scholar]
194.
Sun Z, Zhang B, Bian X, Feng L, Zhang H, Duan R, et al. Synergistic effect of PLA–PBAT–PLA tri-block copolymers with two molecular weights as compatibilizers on the mechanical and rheological properties of PLA/PBAT blends.  RSC Adv. 2015, 5, 73842–73849. [Google Scholar]
195.
Kashani Rahimi S, Aeinehvand R, Kim K, Otaigbe JU. Structure and Biocompatibility of Bioabsorbable Nanocomposites of Aliphatic-Aromatic Copolyester and Cellulose Nanocrystals.  Biomacromolecules 2017, 18, 2179–2194. [Google Scholar]
196.
Wu CS. Antibacterial and static dissipating composites of poly(butylene adipate-co-terephthalate) and multi-walled carbon nanotubes.  Carbon 2009, 47, 3091–3098. [Google Scholar]
197.
Wu CS. Aliphatic-aromatic polyester-polyaniline composites: preparation, characterization, antibacterial activity and conducting properties.  Polym. Int. 2012, 61, 1556–1563. [Google Scholar]
198.
Wu CS, Liao HT. Antibacterial activity and antistatic composites of polyester/Ag-SiO2 prepared by a sol-gel method.  J. Appl. Polym. Sci. 2011, 121, 2193–2201. [Google Scholar]
199.
Wu CS. Utilization of peanut husks as a filler in aliphatic–aromatic polyesters: Preparation, characterization, and biodegradability.  Polym. Degrad. Stab. 2012, 97, 2388–2395. [Google Scholar]
200.
Wu CS. Characterization of cellulose acetate-reinforced aliphatic–aromatic copolyester composites.  Carbohydr. Polym. 2012, 87, 1249–1256. [Google Scholar]
201.
Liu WC, Liu T, Liu H, Xin J, Zhang JW, Muhidinov ZK, et al. Properties of poly(butylene adipate-co-terephthalate) and sunflower head residue biocomposites.  J. Appl. Polym. Sci. 2017, 134, 44644. [Google Scholar]
202.
Wang HT, Wang JM, Wu TM. Synthesis and characterization of biodegradable aliphatic–aromatic nanocomposites fabricated using maleic acid‐grafted poly[(butylene adipate)‐co‐terephthalate] and organically modified layered zinc phenylphosphonate.  Polym. Int. 2019, 68, 1531–1537. [Google Scholar]
203.
Wang HT, Chen EC, Wu TM. Crystallization and Enzymatic Degradation of Maleic Acid-Grafted Poly(butylene adipate-co-terephthalate)/Organically Modified Layered Zinc Phenylphosphonate Nanocomposites.  J. Polym. Environ. 2020, 28, 834–843. [Google Scholar]
204.
Hung YJ, Chiang MY, Wang ET, Wu TM. Synthesis, Characterization, and Physical Properties of Maleic Acid-Grafted Poly(butylene adipate-co-terephthalate)/ Cellulose Nanocrystal Composites.  Polymers 2022, 14, 2742. [Google Scholar]
205.
Niu DY, Xu PW, Sun ZY, Yang WJ, Dong WF, Ji Y, et al. Superior toughened bio-compostable Poly(glycolic acid)-based blends with enhanced melt strength via selective interfacial localization of in-situ grafted copolymers.  Polymer 2021, 235, 124269. [Google Scholar]
206.
Raquez JM, Nabar Y, Narayan R, Dubois P. In situ compatibilization of maleated thermoplastic starch/polyester melt-blends by reactive extrusion.  Polym. Eng. Sci. 2008, 48, 1747–1754. [Google Scholar]
207.
Xiao MM, Pan YF, Xiao HN. Preparation and Properties of Compatibilized Poly(Butylenesadipate-Co-Terephalate)/Thermoplastic Starch Blends.  Appl. Mech. Mater. 2014, 556, 15–18. [Google Scholar]
208.
Hwang IT, Jung CH, Kuk IS, Choi JH, Nho YC. Electron beam-induced crosslinking of poly(butylene adipate-co-terephthalate). Nuclear Instr. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2010, 268, 3386–3389. [Google Scholar]
209.
Choi JH, Jung CH, Hwang IT, Choi JH. Preparation and characterization of crosslinked poly(butylene adipate-co-terephthalate)/polyhedral oligomeric silsesquioxane nanocomposite by electron beam irradiation.  Radiat. Phys. Chem. 2013, 82, 100–105. [Google Scholar]
210.
Malinowski R, Janczak K, Moraczewski K, Raszkowska-Kaczor A. Analysis of swelling degree and gel fraction of polylactide/poly(butylene adipate-co-terephthalate) blends crosslinked by radiation.  Polimery 2018, 63, 25–30. [Google Scholar]
211.
Wang B, Jin Y, Kang K, Yang N, Weng Y, Huang Z, Men S. Investigation on compatibility of PLA/PBAT blends modified by epoxy-terminated branched polymers through chemical micro-crosslinking.  e-Polymers 2020, 20, 39–54. [Google Scholar]
212.
Nishida M, Ichihara H, Watanabe H, Fukuda N, Ito H. Improvement of dynamic tensile properties of Poly(lactic acid)/Poly(butylene adipate-co-terephthalate) polymer alloys using a crosslinking agent and observation of fracture surfaces.  Int. J. Impact Eng. 2015, 79, 117–125. [Google Scholar]
213.
Ai X, Li X, Yu YL, Pan HW, Yang J, Wang DM, et al. The Mechanical, Thermal, Rheological and Morphological Properties of PLA/PBAT Blown Films by Using Bis(tert-butyl dioxy isopropyl) Benzene as Crosslinking Agent.  Polym. Eng. Sci. 2019, 59, 227–236. [Google Scholar]
214.
Wang LF, Rhim JW, Hong SI. Preparation of poly(lactide)/poly(butylene adipate-co-terephthalate) blend films using a solvent casting method and their food packaging application.  LWT Food Sci. Technol. 2016, 68, 454–461. [Google Scholar]
215.
Xiao HW, Lu W, Yeh JT. Crystallization behavior of fully biodegradable poly(lactic acid)/poly(butylene adipate-co-terephthalate) blends.  J. Appl. Polym. Sci. 2009, 112, 3754–3763. [Google Scholar]
216.
Jalali Dil E, Carreau PJ, Favis BD. Morphology, miscibility and continuity development in poly(lactic acid)/poly(butylene adipate-co-terephthalate) blends.  Polymer 2015, 68, 202–212. [Google Scholar]
217.
Deng YX, Yu CY, Wongwiwattana P, Thomas NL. Optimising Ductility of Poly(Lactic Acid)/Poly(Butylene Adipate-co-Terephthalate) Blends through Co-continuous Phase Morphology.  J. Polym. Environ. 2018, 26, 3802–3816. [Google Scholar]
218.
Ding Y, Feng WT, Lu B, Wang PL, Wang GX, Ji J. PLA-PEG-PLA tri-block copolymers: Effective compatibilizers for promotion of the interfacial structure and mechanical properties of PLA/PBAT blends.  Polymer 2018, 146, 179–187. [Google Scholar]
219.
Ding Y, Feng WT, Huang D, Lu B, Wang PL, Wang GX, et al. Compatibilization of immiscible PLA-based biodegradable polymer blends using amphiphilic di-block copolymers.  Eur. Polym. J. 2019, 118, 45–52. [Google Scholar]
220.
Sui XY, Zhao XY, Wang ZC, Sun SL. Super‐ductile and stiff PBAT/PLA biodegradable composites balanced with random PMMA‐co‐GMA copolymer as compatibilizer.  Polym. Int. 2022, 72, 333–341. [Google Scholar]
221.
Shanks RA. Concepts and classification of compatibilization processes.  Compatibiliz. Polym. Blends. 2020, 2, 31–56. [Google Scholar]
222.
Wu DD, Guo Y, Huang AP, Xu RW, Liu P. Effect of the multi-functional epoxides on the thermal, mechanical and rheological properties of poly(butylene adipate-co-terephthalate)/polylactide blends.  Polym. Bull. 2020, 78, 5567–5591. [Google Scholar]
223.
Wang P, Gao S, Chen XL, Yang L, Wu XS, Feng SJ, et al. Effect of hydroxyl and carboxyl-functionalized carbon nanotubes on phase morphology, mechanical and dielectric properties of poly(lactide)/poly(butylene adipate-co-terephthalate) composites.  Int. J. Biol. Macromol. 2022, 206, 661–669. [Google Scholar]
224.
Han Y, Shi JW, Mao LX, Wang Z, Zhang LQ. Improvement of Compatibility and Mechanical Performances of PLA/PBAT Composites with Epoxidized Soybean Oil as Compatibilizer.  Ind. Eng. Chem. Res. 2020, 59, 21779–21790. [Google Scholar]
225.
Gupta A, Lolic L, Mekonnen TH. Reactive extrusion of highly filled, compatibilized, and sustainable PHBV/PBAT – Hemp residue biocomposite.  Compos. Part A Appl. Sci. Manuf. 2022, 156, 106885. [Google Scholar]
226.
Sousa FM, Costa ARM, Reul LTA, Cavalcanti FB, Carvalho LH, Almeida TG, et al. Rheological and thermal characterization of PCL/PBAT blends.  Polym. Bull. 2018, 76, 1573–1593. [Google Scholar]
227.
Pagno V, Módenes AN, Dragunski DC, Fiorentin-Ferrari LD, Caetano J, Guellis C, et al. Heat treatment of polymeric PBAT/PCL membranes containing activated carbon from Brazil nutshell biomass obtained by electrospinning and applied in drug removal.  J. Environ. Chem. Eng. 2020, 8, 104159. [Google Scholar]
228.
Muthuraj R, Misra M, Mohanty AK. Biodegradable Poly(butylene succinate) and Poly(butylene adipate-co-terephthalate) Blends: Reactive Extrusion and Performance Evaluation.  J. Polym. Environ. 2014, 22, 336–349. [Google Scholar]
229.
Wei XY, Ren L, Sun YN, Zhang XY, Guan XF, Zhang MY, et al. Sustainable composites from biodegradable poly(butylene succinate) modified with thermoplastic starch and poly(butylene adipate-co-terephthalate): preparation and performance.  New J. Chem. 2021, 45, 17384–17397. [Google Scholar]
230.
Jang MO, Kim SB, Nam BU. Transesterification effects on miscibility polycarbonate/poly(butylene adipate-co-terephthalate) blends.  Polym. Bull. 2011, 68, 287–298. [Google Scholar]
231.
Liu ZR, Hu JJ, Gao FX, Cao H, Zhou QH, Wang XH. Biodegradable and resilient poly (propylene carbonate) based foam from high pressure CO2 foaming.  Polym. Degrad. Stab. 2019, 165, 12–19. [Google Scholar]
232.
Jiang G, Li HL, Wang F. Structure of PBAT/PPC blends prepared by in-situ reactive compatibilization and properties of their blowing films.  Mater. Today Commun. 2021, 27, 102215. [Google Scholar]
233.
Mohammadi Nafchi A, Moradpour M, Saeidi M, Alias AK. Thermoplastic starches: Properties, challenges, and prospects.  Starch Stärke 2013, 65, 61–72. [Google Scholar]
234.
Zhai XS, Zhang R, Wang WT, Xue HH. Relationship between phase morphologies and mechanical properties of thermoplastic starch/poly(butylene adipate-co-terephthalate) composite films prepared by extrusion blowing.  Int. J. Biol. Macromol. 2022, 224, 1356–1360. [Google Scholar]
235.
Yimnak K, Thipmanee R, Sane A. Poly(butylene adipate-co-terephthalate)/thermoplastic starch/zeolite 5A films: Effects of compounding sequence and plasticizer content.  Int. J. Biol. Macromol. 2020, 164, 1037–1045. [Google Scholar]
236.
Bai J, Pei HJ, Zhou XP, Xie XL. Reactive compatibilization and properties of low-cost and high-performance PBAT/thermoplastic starch blends.  Eur. Polym. J. 2021, 143, 110198. [Google Scholar]
237.
Leelaphiwat P, Pechprankan C, Siripho P, Bumbudsanpharoke N, Harnkarnsujarit N. Effects of nisin and EDTA on morphology and properties of thermoplastic starch and PBAT biodegradable films for meat packaging.  Food Chem. 2022, 369, 130956. [Google Scholar]
238.
Kargarzadeh H, Galeski A, Pawlak A. PBAT green composites: Effects of kraft lignin particles on the morphological, thermal, crystalline, macro and micromechanical properties.  Polymer 2020, 203, 122748. [Google Scholar]
239.
Xiao LQ, Yao Z, He YB, Han Z, Zhang XJ, Li CC, et al. Antioxidant and antibacterial PBAT/lignin-ZnO nanocomposite films for active food packaging.  Ind. Crops Prod. 2022, 187, 115515. [Google Scholar]
240.
Nunes EdCD, de Souza AG, Rosa DdS. Use of a chain extender as a dispersing agent of the CaCO3 into PBAT matrix.  J. Compos. Mater. 2019, 54, 1373–1382. [Google Scholar]
241.
Zhang T, Zhang CL, Yang Y, Yang F, Zhao M, Weng YX.  Improved properties of poly(butylene adipate‐co‐terephthalate)/calcium carbonate films through silane modification.  J. Appl. Polym. Sci. 2021, 138, 50970–50980. [Google Scholar]
242.
Diao X, Zhang C, Weng Y. Properties and Degradability of Poly(Butylene Adipate-Co-Terephthalate)/Calcium Carbonate Films Modified by Polyethylene Glycol.  Polymers 2022, 14, 484–496. [Google Scholar]
243.
Helanto K, Talja R, Rojas OJ. Effects of talc, kaolin and calcium carbonate as fillers in biopolymer packaging materials.  J. Polym. Eng. 2021, 41, 746–758. [Google Scholar]
244.
Zhang RQ, Han WJ, Jiang HJ, Wang XF, Wang B, Liu CT, et al. PBAT/MXene monolithic solar vapor generator with high efficiency on seawater evaporation and swage purification.  Desalination 2022, 541, 116015. [Google Scholar]
245.
Bheemaneni G, Saravana S, Kandaswamy R. Processing and Characterization of Poly (butylene adipate-co-terephthalate) / Wollastonite Biocomposites for Medical Applications.  Mater. Today Proc. 2018, 5, 1807–1816. [Google Scholar]
246.
Balbinot GS, Bahlis E, Visioli F, Leitune VCB, Soares RMD, Collares FM. Polybutylene-adipate-terephthalate and niobium-containing bioactive glasses composites: Development of barrier membranes with adjusted properties for guided bone regeneration. Mater. Sci. Eng. C. Mater. Biol. Appl. 2021, 125, 112115. [Google Scholar]
Creative Commons

© 2024 by the authors; licensee SCIEPublish, SCISCAN co. Ltd. This article is an open access article distributed under the CC BY license (https://creativecommons.org/licenses/by/4.0/).