Article Open Access

Development of a New 1,2,4-butanetriol Biosynthesis Pathway in an Engineered Homoserine-producing Strain of Escherichia coli

Synthetic Biology and Engineering. 2023, 1(1), 10007; https://doi.org/10.35534/sbe.2023.10007
Yujun Zhang 1    Lin Chen 1    Antu Thomas 1    An-Ping Zeng 1,2 *   
1
Hamburg University of Technology, Institute of Bioprocess and Biosystems Engineering, Hamburg, Germany
2
Present Address: Center of Synthetic Biology and Integrated Bioengineering, School of Engineering, Westlake University, Hangzhou, China
*
Authors to whom correspondence should be addressed.

Received: 06 Feb 2023    Accepted: 05 May 2023    Published: 10 May 2023   

Abstract

1,2,4-butanetriol (BT) is a compound of high interest with applications in pharmaceutical and materials. In this work, we designed a novel biosynthetic pathway for BT from glucose via a nonessential amino acid homoserine. This non-natural pathway used an engineered phosphoserine transaminase (SerCR42W/R77W) to achieve the deamination of homoserine to 4-hydroxy-2-oxobutanoic acid (HOBA). Three consecutive enzymes including a lactate dehydrogenase, a 4-hydroxybutyrate CoA-transferase and a bifunctional aldehyde/alcohol dehydrogenase are used to catalyze HOBA to BT. To enhance the carbon flux to homoserine, a homoserine-producing Escherichia coli was developed by improving the overexpression of two relevant key genes metL and lysC (V339A). The simultaneous overexpression of the genes encoding these enzymes for the homoserine-derived BT pathway enabled production of 19.6 mg/L BT from glucose in the homoserine-producing E. coli.

References

1.
Bhoge SM, Kshirsagar P, Richhariya S, Singh K. Process for the preparation of fosamprenavir calcium. US Patent 9085592B2, 2012.
2.
Niu W, Molefe MN, Frost JW. Microbial Synthesis of the Energetic Material Precursor 1,2,4-Butanetriol.  J. Am. Chem. Soc. 2003, 125, 12998–12999. [Google Scholar]
3.
Abdel-Ghany SE, Day I, Heuberger AL, Broeckling CD, Reddy AS. Metabolic engineering of Arabidopsis for butanetriol production using bacterial genes.  Metab. Eng. 2013, 20, 109–120. [Google Scholar]
4.
Sun L, Yang F, Sun H, Zhu T, Li X, Li Y, et al. Synthetic pathway optimization for improved 1,2,4-butanetriol production.  J. Ind. Microbiol. Biot. 2016, 43, 67–78. [Google Scholar]
5.
Bal’zhinimaev BS, Paukshtis EA, Suknev AP, Makolkin NV. Highly selective/enantioselective Pt-ReOx/C catalyst for hydrogenation of L-malic acid at mild conditions.  J. Energy Chem. 2018, 27, 903–912. [Google Scholar]
6.
Ikai K, Mikami M, Furukawa Y, Urano T, Ohtaka S. Process for Preparing 1,2,4-butanetriol. US Patent 6949684B2, 2005.
7.
Frost JW, Niu W. Microbial Synthesis of d-1,2,4-butanetriol. US Patent 2011/0076730 A1, 2011.
8.
Lu X, He S, Zong H, Song J, Chen W, Zhuge B. Improved 1,2,4-butanetriol production from an engineered Escherichia coli by co-expression of different chaperone proteins.  World J. Microb. Biot. 2016, 32, 149. [Google Scholar]
9.
Jing P, Cao X, Lu X, Zong H, Zhuge B. Modification of an engineered Escherichia coli by a combined strategy of deleting branch pathway, fine-tuning xylose isomerase expression, and substituting decarboxylase to improve 1,2,4-butanetriol production.  J. Biosci. Bioeng. 2018, 126, 547–552. [Google Scholar]
10.
Bamba T, Yukawa T, Guirimand G, Inokuma K, Sasaki K, Hasunuma T, et al. Production of 1,2,4-butanetriol from xylose by Saccharomyces cerevisiae through Fe metabolic engineering.  Metab. Eng. 2019, 56, 17–27. [Google Scholar]
11.
Wang J, Chen QY, Wang X, Chen KQ, Ouyang PK. The biosynthesis of D-1,2,4-butanetriol from d-arabinose with an engineered Escherichia coli Front. Bioeng. Biotechnol. 2022, 10, 844517. [Google Scholar]
12.
Li X, Cai Z, Li Y, Zhang Y. Design and construction of a non-natural malate to 1,2,4-butanetriol pathway creates possibility to produce 1,2,4-butanetriol from glucose.  Sci. Rep. 2014, 4, 5541. [Google Scholar]
13.
Chen Z, Geng F, Zeng AP. Protein design and engineering of a de novo pathway for microbial production of 1,3-propanediol from glucose.  Biotechnol. J. 2015, 10, 284–289. [Google Scholar]
14.
Jun X, Charles WS, Phillip RG, Velasquez, JE. Microorganisms and Methods for Producing Acrylate and Other Products from Homoserine. WIPO Patent WO2013052717, 2013.
15.
Walther T, Calvayrac F, Malbert Y, Alkim C, Dressaire C, Cordier H, et al. Construction of a synthetic metabolic pathway for the production of 2,4-dihydroxybutyric acid from homoserine.  Metab. Eng. 2018, 45, 237–245. [Google Scholar]
16.
Walther T, Cordier H, Dressaire C, Francois JM, Huet R. Method for the preparation of 2,4-dihydroxybutyrate. WIPO Patent WO/2014/009435, 2014.
17.
Zhang YJ, Ma CW, Dischert W, Soucaille P, Zeng AP. Engineering of Phosphoserine Aminotransferase Increases the Conversion of l-Homoserine to 4-Hydroxy-2-ketobutyrate in a Glycerol-Independent Pathway of 1,3-Propanediol Production from Glucose. Biotechnol. J. 2019, 14, e1900003. [Google Scholar]
18.
Liu P, Zhang, B, Yao ZH, Liu, ZQ, Zheng, YG. Multiplex design of the metabolic network for production of l-homoserine in Escherichia coli Appl. Environ. Microb. 2020, 86, e01477-20. [Google Scholar]
19.
Vo TM, Park S. Metabolic engineering Escherichia coli W3110 for efficient production of homoserine from glucose.  Metab. Eng. 2022, 73, 104–113. [Google Scholar]
20.
Liu M, Lou JL, Gu JL, Lyu XM, Wang FQ, Wei DZ. Increasing L-homoserine production in Escherichia coli by engineering the central metabolic pathways.  J. Biotechnol. 2020, 314, 1–7. [Google Scholar]
21.
Liu P, Liu JS, Zhang B, Liu ZQ, Zheng, YG. Increasement of O-acetylhomoserine production in Escherichia coli by modification of glycerol-oxidative pathway coupled with optimization of fermentation.  Biotechnol. Lett. 2021, 43, 105–117. [Google Scholar]
22.
Zakataeva NP, Aleshin VV, Tokmakova IL, Troshin PV, Livshits VA. The novel transmembrane Escherichia coli proteins involved in the amino acid efflux.  FEBS Lett. 1999, 452, 228–232. [Google Scholar]
23.
Chen Z, Rappert S, Sun J, Zeng AP. Integrating molecular dynamics and co-evolutionary analysis for reliable target prediction and deregulation of the allosteric inhibition of aspartokinase for amino acid production.  J. Biotechnol. 2011, 154, 248–254. [Google Scholar]
24.
Chen Z, Rappert S, Zeng AP. Rational design of allosteric regulation of homoserine dehydrogenase by a nonnatural inhibitor L-lysine.  ACS Synth. Biol. 2015, 4, 126–131. [Google Scholar]
25.
Chen L. Rational metabolic engineering and systematic analysis of Escherichia coli for L-tryptophan bioproduction. PhD Thesis. Technische Universität Hamburg: Hamburg, Germany, 2016.
26.
Jiang Y, Chen B, Duan C, Sun B, Yang J, Yang S. Multigene editing in the Escherichia coli genome via the CRISPR-Cas9 system.  Appl. Environ. Microbiol. 2015, 81, 2506–2514. [Google Scholar]
27.
Chen L, Zeng AP. Rational design and metabolic analysis of Escherichia coli for effective production of L-tryptophan at high concentration.  Appl. Microbiol. Biotechnol. 2017, 101, 559–568. [Google Scholar]
28.
Yim H, Haselbeck R, Niu W, Pujol-Baxley C, Burgard A, Boldt J, et al. Metabolic engineering of Escherichia coli for direct production of 1,4-butanediol.  Nat. Chem. Biol. 2011, 7, 445–452. [Google Scholar]
29.
Elliott S, Burgess V. The presence of gamma-hydroxybutyric acid (GHB) and gammabutyrolactone (GBL) in alcoholic and non-alcoholic beverages.  Forensic Sci. Int. 2005, 151, 289–292. [Google Scholar]
30.
da Luz JA, Hans E, Zeng AP. Automated fast filtration and on‐filter quenching improve the intracellular metabolite analysis of microorganisms.  Eng. Life Sci. 2014, 14, 135–142. [Google Scholar]
31.
Bennett BD, Yuan J, Kimball EH, Rabinowitz JD. Absolute quantitation of intracellular metabolite concentrations by an isotope ratio-based approach.  Nat. Protoc. 2008, 3, 1299–1311. [Google Scholar]
32.
Jankowski MD, Henry CS, Broadbelt LJ, Hatzimanikatis V. Group contribution method for thermodynamic analysis of complex metabolic networks.  Biophys. J. 2008, 95, 1487–1499. [Google Scholar]
33.
Li H, Wang BS, Zhu LH, Cheng S, Li YR, Zhang L, et al. Metabolic engineering of Escherichia coli W3110 for L-homoserine production.  Process Biochem. 2016, 51, 1973–1983. [Google Scholar]
34.
Sumantran VN, Schweizer HP, Datta P. A novel membrane-associated threonine permease encoded by the tdcC gene of Escherichia coli J. Bacteriol. 1990, 172, 4288–4294. [Google Scholar]
35.
Templeton BA, Savageau MA. Transport of Biosynthetic Intermediates: Homoserine and Threonine Uptake in Escherichia coli J. Bacteriol. 1974, 117, 1002–1009. [Google Scholar]
36.
Partridge JD, Sanguinetti G, Dibden DP, Roberts RE, Poole RK, Green J. Transition of Escherichia coli from aerobic to micro-aerobic conditions involves fast and slow reacting regulatory components.  J. Biol. Chem. 2007, 282, 11230–11237. [Google Scholar]
37.
Frazão CJR, Topham CM, Malbert Y, François JM, Walther T. Rational engineering of a malate dehydrogenase for microbial production of 2,4-dihydroxybutyric acid via homoserine pathway.  Biochem. J. 2018, 475, 3887–3901. [Google Scholar]
38.
Ma C, Ou J, Xu N, Fierst JL, Yang S-T, Liu X. Rebalancing Redox to Improve Biobutanol Production by Clostridium tyrobutyricum. Bioengineering 2016, 3, 2. [Google Scholar]
39.
Molla GS, Wohlgemuth R, Liese A. One-pot enzymatic reaction sequence for the syntheses of d-glyceraldehyde 3-phosphate and l-glycerol 3-phosphate.  J. Mol. Catal. B-Enzym. 2016, 124, 77–82. [Google Scholar]
Creative Commons

© 2024 by the authors; licensee SCIEPublish, SCISCAN co. Ltd. This article is an open access article distributed under the CC BY license (https://creativecommons.org/licenses/by/4.0/).