Article Open Access

SnS2 Quantum Dots Decorated MoS2 Nanosheets Enabling Efficient Photocatalytic H2 Evolution in CO2 Saturated Water

Photocatalysis: Research and Potential. 2023, 1(1), 10003;
Xuelian Chen 1, 2,    Xi Luo 1,    Lei Liu 3,    Jing Ping 1,    Songmei Sun 1, 4, *   
Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
Shenhua (Beijing) New Materials Technology CO.LTD, CHN Energy Group, Beijing 102211, China
Center for Advanced Low-dimension Materials, Donghua University, Shanghai 201620, China
Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai 200092, China
Authors to whom correspondence should be addressed.

Received: 13 Dec 2022    Accepted: 01 Mar 2023    Published: 03 Mar 2023   


SnS2/MoS2 heterojunction nanocomposite was prepared by a one-step hydrothermal synthesis method. The nanocomposite exhibited much improved photocatalytic hydrogen evolution performance in CO2 saturated solution compared with pure MoS2 and SnS2 samples. The improved photocatalytic activity was attributed to the S-scheme heterojunction structure between SnS2 quantum dots and MoS2 nanosheets which facilitate electron-hole separation both in MoS2 and SnS2. In the S-scheme structure, the strong reduction ability of SnS2 quantum dots was well maintained for the improved H2 evolution. In situ DRIFT studies allowed us to suggest reaction pathways from CO2 and H2O to photocatalytic H2, CO, and CH4 generation.


Photocatalysis; H2 evolution; CO2 hydrogenation; S-scheme


Chen B, Meng Y, Sha J, Zhong C, Hu W, Zhao N. Preparation of MoS2/TiO2 based nanocomposites for photocatalysis and rechargeable batteries: progress, challenges, and perspective. Nanoscale 2017, 10, 34–68. [Google Scholar]
Lin Y, Liu X, Liu Z, Xu Y. Visible-Light-Driven Photocatalysis-Enhanced Nanozyme of TiO2 Nanotubes@MoS2 Nanoflowers for Efficient Wound Healing Infected with Multidrug-Resistant Bacteria. Small 2021, 17, e2103348. [Google Scholar]
Ye K, Li Y, Yang H, Li M, Huang Y, Zhang S, Ji H. An ultrathin carbon layer activated CeO2 heterojunction nanorods for photocatalytic degradation of organic pollutants. Appl. Catal. B Environ. 2019, 259, 118085. [Google Scholar]
Chava RK, Do JY, Kang M. Enhanced photoexcited carrier separation in CdS–SnS2 heteronanostructures: a new 1D–0D visible-light photocatalytic system for the hydrogen evolution reaction. J. Mater. Chem. A 2019, 7, 13614–13628. [Google Scholar]
Xu Q, Ma D, Yang S, Tian Z, Cheng B, Fan J. Novel g-C3N4/g-C3N4 S-scheme isotype heterojunction for improved photocatalytic hydrogen generation. Appl. Surf. Sci. 2019, 495, 143555. [Google Scholar]
Low J, Jiang C, Cheng B, Wageh S, Al-Ghamdi AA, Yu J. A Review of Direct Z-Scheme Photocatalysts. Small Methods 2017, 1, 1700080. [Google Scholar]
Li J, Li M, Jin Z. Rational design of a cobalt sulfide/bismuth sulfide S-scheme heterojunction for efficient photocatalytic hydrogen evolution. J. Colloid Interf. Sci. 2021, 592, 237–248. [Google Scholar]
Xu Q, Zhang L, Cheng B, Fan J, Yu J. S-scheme heterojunction photocatalyst. Chem 2020, 6, 1543–1559. [Google Scholar]
Jiang Y, Sun Z, Chen Q, Cao C, Zhao Y, Yang W, et al. Fabrication of 0D/2D TiO2 Nanodots/g-C3N4 S-scheme heterojunction photocatalyst for efficient photocatalytic overall water splitting. Appl. Surf. Sci. 2022, 571, 151287. [Google Scholar]
Bai J, Shen R, Chen W, Xie J, Zhang P, Jiang Z, et al. Enhanced photocatalytic H2 evolution based on a Ti3C2/Zn0.7Cd0.3S/Fe2O3 Ohmic/S-scheme hybrid heterojunction with cascade 2D coupling interfaces. Chem. Eng. J. 2022, 429, 132587. [Google Scholar]
Li B, Zhang B, Zhang Y, Zhang M, Huang W, Yu C, et al. Prediction of the failure probability of the overhead power line exposed to large-scale jet fires induced by high-pressure gas leakage. Int. J. Hydrogen Energ. 2021, 46, 2413–2431. [Google Scholar]
Liu T, Yang K, Gong H, Jin Z. Visible-light driven S-scheme Mn0.2Cd0.8S/CoTiO3 heterojunction for photocatalytic hydrogen evolution. Renew. Energ. 2021, 173, 389–400. [Google Scholar]
Xu X, Su Y, Dong Y, Luo X, Wang S, Zhou W, et al. Designing and fabricating a CdS QDs/Bi2MoO6 monolayer S-scheme heterojunction for highly efficient photocatalytic C2H4 degradation under visible light. J. Hazard. Mater. 2022, 424, 127685. [Google Scholar]
Wu S, Yu X, Zhang J, Zhang Y, Zhu Y, Zhu M. Construction of BiOCl/CuBi2O4 S-scheme heterojunction with oxygen vacancy for enhanced photocatalytic diclofenac degradation and nitric oxide removal Chem. Eng. J. 2021, 411, 128555. [Google Scholar]
Sabzehparvar M, Kiani F, Tabrizi NS. Mesoporous-assembled TiO2-NiO-Ag nanocomposites with pn/Schottky heterojunctions for enhanced photocatalytic performance. J. Alloy. Compd. 2021, 876, 160133. [Google Scholar]
Liu J, Wei X, Sun W, Guan X, Zheng X, Li J. Fabrication of S-scheme CdS-g-C3N4-graphene aerogel heterojunction for enhanced visible light driven photocatalysis. Environ. Res. 2021, 197, 111136. [Google Scholar]
Wang A, Ni J, Wang W, Wang X, Liu D, Zhu Q. MOF-derived N-doped ZnO carbon skeleton@hierarchical Bi2MoO6 S-scheme heterojunction for photodegradation of SMX: Mechanism, pathways and DFT calculation. J. Hazard Mater. 2022, 426, 128106. [Google Scholar]
Van Pham V, Mai DQ, Bui DP, Van MT, Zhu B, Zhang L, et al. Emerging 2D/0D g-C3N4/SnO2 S-scheme photocatalyst: new generation architectural structure of heterojunctions toward visible-light-driven NO degradation. Environ. Pollut. 2021, 286, 117510. [Google Scholar]
Dong Z, Zhang Z, Jiang Y, Chu Y, Xu J. Embedding CsPbBr3 perovskite quantum dots into mesoporous TiO2 beads as an S-scheme heterojunction for CO2 photoreduction. Chem. Eng. J. 2022, 433, 133762. [Google Scholar]
Wang Z, Cheng B, Zhang L, Yu J, Tan H. BiOBr/NiO S-Scheme Heterojunction Photocatalyst for CO2 Photoreduction. Solar RRL 2021, 6, 2100587. [Google Scholar]
Yu B, Wu Y, Meng F, Wang Q, Jia X, Wasim Khan M, et al. Formation of hierarchical Bi2MoO6/ln2S3 S-scheme heterojunction with rich oxygen vacancies for boosting photocatalytic CO2 reduction. Chem. Eng. J. 2022, 429, 132456. [Google Scholar]
Liu L, Dai K, Zhang J, Li L. Plasmonic Bi-enhanced ammoniated α-MnS/Bi2MoO6 S-scheme heterostructure for visible-light-driven CO2 reduction. J. Colloid Interf. Sci. 2021, 604, 844–855. [Google Scholar]
Wang J, Yu Y, Cui J, Li X, Zhang Y, Wang C, et al. Defective g-C3N4/covalent organic framework van der Waals heterojunction toward highly efficient S-scheme CO2 photoreduction. Appl. Catal. B Environ. 2022, 301, 120814. [Google Scholar]
Chen Q, Lan X, Chen K, Ren Q, Shi J. Construction of WO3/CsPbBr3 S-scheme heterojunction via electrostatic Self-assembly for efficient and Long-Period photocatalytic CO2 reduction. J. Colloid Interf. Sci. 2022, 616, 253–260. [Google Scholar]
Wang L, Cheng B, Zhang L, Yu J. In situ Irradiated XPS Investigation on S‐Scheme TiO2@ZnIn2S4 Photocatalyst for Efficient Photocatalytic CO2 Reduction. Small 2021, 17, e2103447. [Google Scholar]
Gong S, Teng X, Niu Y, Liu X, Xu M, Xu C, et al. Construction of S-scheme 0D/2D heterostructures for enhanced visible-light-driven CO2 reduction. Appl. Catal. B Environ. 2021, 298, 120521. [Google Scholar]
Zhang Z, Cao Y, Zhan F, Li W, Li Y, Yu H, et al. Tungsten oxide quantum dots deposited onto ultrathin CdIn2S4 nanosheets for efficient S-scheme photocatalytic CO2 reduction via cascade charge transfer. Chem. Eng. J. 2022, 428, 131218. [Google Scholar]
Deng H, Fei X, Yang Y, Fa J, Yu J, Cheng B, et al. S-scheme heterojunction based on p-type ZnMn2O4 and n-type ZnO with improved photocatalytic CO2 reduction activity. Chem. Eng. J. 2021, 409, 127377. [Google Scholar]
Xia P, Cao S, Zhu B, Liu M, Shi M, Yu J, et al. Designing a 0D/2D S‐scheme heterojunction over polymeric carbon nitride for visible‐light photocatalytic inactivation of bacteria. Angew. Chem. Int. Ed. 2020, 59, 5218–5225. [Google Scholar]
Aihemaiti X, Wang X, Li Y, Wang Y, Xiao L, Ma Y, et al. Enhanced photocatalytic and antibacterial activities of S-scheme SnO2/Red phosphorus photocatalyst under visible light. Chemosphere 2022, 296, 134013. [Google Scholar]
Liu J, Huang L, Li Y, Yao J, Shu S, Huang L, et al. Constructing an S-scheme CuBi2O4/Bi4O5I2 heterojunction for light emitting diode-driven pollutant degradation and bacterial inactivation. J. Colloid Interf. Sci. 2022, 621, 295–310. [Google Scholar]
Yang H, He D, Liu C, Zhang T, Qu J, Jin D, et al. Visible-light-driven photocatalytic disinfection by S-scheme α-Fe2O3/g-C3N4 heterojunction: Bactericidal performance and mechanism insight. Chemosphere 2022, 287, 132072. [Google Scholar]
Kang Y, Gong Y, Hu Z, Li Z, Qiu Z, Zhu X, et al. Plasmonic hot electron enhanced MoS2 photocatalysis in hydrogen evolution. Nanoscale 2015, 7, 4482–4488. [Google Scholar]
Maitra U, Gupta U, De M, Datta R, Govindaraj A, Rao CN. Highly effective visible-light-induced H2 generation by single-layer 1T-MoS2 and a nanocomposite of few-layer 2H-MoS (2) with heavily nitrogenated graphene. Angew. Chem. Int. Ed. 2013, 52, 13057–13061. [Google Scholar]
Singh N, Jabbour G, Schwingenschlögl U. Optical and photocatalytic properties of two-dimensional MoS2. Eur. Phys. J. B 2012, 85, 1–4. [Google Scholar]
Yuan YJ, Lu HW, Yu ZT, Zou ZG. Noble‐metal‐free molybdenum disulfide cocatalyst for photocatalytic hydrogen production. ChemSusChem 2015, 8, 4113–4127. [Google Scholar]
Huo Y, Yang Y, Dai K, Zhang J. Construction of 2D/2D porous graphitic C3N4/SnS2 composite as a direct Z-scheme system for efficient visible photocatalytic activity. Appl. Surf. Sci. 2019, 481, 1260–1269. [Google Scholar]
Zhang YC, Yao L, Zhang G, Dionysiou DD, Li J, Du X. One-step hydrothermal synthesis of high-performance visible-light-driven SnS2/SnO2 nanoheterojunction photocatalyst for the reduction of aqueous Cr(VI). Appl. Catal. B Environ 2014, 144, 730–738. [Google Scholar]
Zhang Z, Huang J, Zhang M, Yuan Q, Dong B. Ultrathin hexagonal SnS2 nanosheets coupled with g-C3N4 nanosheets as 2D/2D heterojunction photocatalysts toward high photocatalytic activity. Appl. Catal. B Environ. 2015, 163, 298–305. [Google Scholar]
Yin S, Li J, Sun L, Li X, Shen D, Song X, et al. Construction of Heterogenous S–C–S MoS2/SnS2/r-GO Heterojunction for Efficient CO2 Photoreduction. Inorg. Chem. 2019, 58, 15590–15601. [Google Scholar]
Zhang J, Huang G, Zeng J, Jiang X, Shi Y, Lin S, et al. SnS2 nanosheets coupled with 2D ultrathin MoS2 nanolayers as face-to-face 2D/2D heterojunction photocatalysts with excellent photocatalytic and photoelectrochemical activities. J. Alloy. Compd. 2019, 775, 726–735. [Google Scholar]
Dong R, Zhong Y, Chen D, Li N, Xu Q, Li H, et al. Morphology-controlled fabrication of CNT@ MoS2/SnS2 nanotubes for promoting photocatalytic reduction of aqueous Cr (VI) under visible light. J. Alloy. Compd. 2019, 784, 282–292. [Google Scholar]
Sun S, An Q, Watanabe M, Cheng J, Kim HH, Akbay T, et al. Highly correlation of CO2 reduction selectivity and surface electron Accumulation: A case study of Au-MoS2 and Ag-MoS2 catalyst. Appl. Catal. B Environ. 2020, 271, 118931. [Google Scholar]
Hu L, Song XF, Zhang SL, Zeng HB, Zhang XJ, Marks R, et al. MoS2 nanoparticles coupled to SnS2 nanosheets: The structural and electronic modulation for synergetic electrocatalytic hydrogen evolution. J. Catal. 2018, 366, 8–15. [Google Scholar]
Xiao X, Wang Y, Xu X, Yang T, Zhang D. Preparation of the flower-like MoS2/SnS2 heterojunction as an efficient electrocatalyst for hydrogen evolution reaction. Mol. Catal. 2020, 487, 110890. [Google Scholar]
Mangiri R, Subramanyam K, Ratnakaram Y, Sudharani A, Reddy DA, Vijayalakshmi R. Boosting solar driven hydrogen evolution rate of CdS nanorods adorned with MoS2 and SnS2 nanostructures. Colloid Interf. Sci. 2021, 43, 100437. [Google Scholar]
Sun S, Wang W, Li D, Zhang L, Jiang D. Solar Light Driven Pure Water Splitting on Quantum Sized BiVO4 without any Cocatalyst. ACS. Catal. 2014, 4, 3498–3503. [Google Scholar]
Butler M. Photoelectrolysis and physical properties of the semiconducting electrode WO2. J. Appl. Phys. 1977, 48, 1914–1920. [Google Scholar]
Sun S, Wang W, Zhang L, Zhou L, Yin W, Shang M. Visible Light-Induced Efficient Contaminant Removal by Bi5O7I. Environ. Sci. Technol. 2009, 43, 2005–2010. [Google Scholar]
Su B, Huang H, Ding Z, Roeffaers MB, Wang S, Long J. S-scheme CoTiO3/Cd9.51Zn0.49S10 heterostructures for visible-light driven photocatalytic CO2 reduction. J. Mater. Sci. Technol. 2022, 124, 164–170. [Google Scholar]
Li B, Wang W, Zhao J, Wang Z, Su B, Hou Y, et al. All-solid-state direct Z-scheme NiTiO3/Cd0.5Zn0.5S heterostructures for photocatalytic hydrogen evolution with visible light. J. Mater. Chem. A 2021, 9, 10270–10276. [Google Scholar]
Ishikawa A, Takata T, Kondo JN, Hara M, Kobayashi H, Domen K. Oxysulfide Sm2Ti2S2O5 as a Stable Photocatalyst for Water Oxidation and Reduction under Visible Light Irradiation (λ ≤ 650 nm). J. Am. Chem. Soc. 2002, 124, 13547–13553. [Google Scholar]
Tamulewicz M, Kutrowska-Girzycka J, Gajewski K, Serafinczuk J, Sierakowski A, Jadczak J, et al. Layer number dependence of the work function and optical properties of single and few layers MoS2: Effect of substrate. Nanotechnology 2019, 30, 245708. [Google Scholar]
Ham G, Shin S, Park J, Choi H, Kim J, Lee YA, et al. Tuning the electronic structure of tin sulfides grown by atomic layer deposition. ACS Appl. Mater. Interf. 2013, 5, 8889−8896. [Google Scholar]
Vasylieva A, Doroshenko I, Vaskivskyi Y, Chernolevska Y, Pogorelov V. FTIR study of condensed water structure. J. Mol. Struct. 2018, 1167, 232–238. [Google Scholar]
Sun S, Watanabe M, Wu J, An Q, Ishihara T. Ultrathin WO3·0.33H2O Nanotubes for CO2 Photoreduction to Acetate with High Selectivity. J. Am. Chem. Soc. 2018, 140, 6474–6482. [Google Scholar]
Figueiredo MC, Ledezma-Yanez I, Koper MT. In Situ Spectroscopic Study of CO2 Electroreduction at Copper Electrodes in Acetonitrile. ACS Catal. 2016, 6, 2382–2392. [Google Scholar]
Creative Commons

© 2023 by the authors; licensee SCIEPublish, SCISCAN co. Ltd. This article is an open access article distributed under the CC BY license (