Review Open Access

Ultra-thin Solid Electrolyte in Lithium-ion Batteries

Sustainable Polymer & Energy. 2023, 1(1), 10004; https://doi.org/10.35534/spe.2023.10004
Lei Zhong 1    Zhifeng Li 1    Shuanjin Wang 1    Sheng Huang 1 *   
1
The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province/State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
*
Authors to whom correspondence should be addressed.

Received: 17 Dec 2022    Accepted: 27 Feb 2023    Published: 15 Mar 2023   

Abstract

Safety concern of lithium-ion battery, attributed to using volatile and flammable liquid electrolytes, could be addressed by using solid electrolytes. Solid electrolytes including inorganic solid electrolytes, polymer solid electrolytes and organic/inorganic composite electrolytes have the common drawbacks in low ion-conductivity. Much efforts have been devoted to increase the specific ion conductivity, especially for inorganic solid electrolyte whose intrinsic conductivity are close to liquid electrolyte. However, most solid-state electrolyte membranes in lithium-ion batteries are thick, resulting in long ion-conduction pathway, low energy density and high cost. In this review, the advantages and disadvantages of different kinds of solid electrolytes were analyzed, and the promising strategies of ultra-thin solid electrolyte preparation are summarized and prospected. Applying organic-inorganic composite, continuous phase enhancement and in situ integration have been devoted to reduce thickness of electrolyte membrane and improve battery performance. On the basis of the technical requirement of lithium-ion batteries, this review aims to provide a guidance in terms of rational design and synthesis of ultra-thin solid electrolytes for further research that addresses the safety issues and improves cycling performance of batteries.

References

1.
Janek J, Zeier WG. A Solid Future for Battery Development. Nat. Energy 2016, 1, 16141. [Google Scholar]
2.
Fan L, Wei S, Li S, Li Q, Lu Y. Recent Progress of the Solid-state Electrolytes for High-energy Metal-based Batteries. Adv. Energy Mater. 2018, 8, 1702657. [Google Scholar]
3.
Zhou Q, Ma J, Dong S, Li X, Cui G. Intermolecular Chemistry in Solid Polymer Electrolytes for High-energy-density Lithium Batteries. Adv. Mater. 2019, 31, 1902029. [Google Scholar]
4.
Gallagher KG, Trask SE, Bauer C, Woehrle T, Lux SF, Tschech M, et al. Optimizing Areal Capacities through Understanding the Limitations of Lithium-ion Electrodes. J. Electrochem. Soc. 2015, 163, A138–A149. [Google Scholar]
5.
Qi MP, Xie LL, Han Q, Zhu LM, Chen LB, Cao XY. An overview of the key challenges and strategies for lithium metal anodes. J. Energy Storage 2022, 47, 103641. [Google Scholar]
6.
Huo HY, Janek J. Silicon as Emerging Anode in Solid-State Batteries. ACS Energy Lett. 2022, 7, 4005–4016. [Google Scholar]
7.
Chen J, Naveed A, Nuli Y, Yang J, Wang J. Designing an intrinsically safe organic electrolyte for rechargeable batteries. Energy Storage Mater. 2020, 31, 382–400. [Google Scholar]
8.
Li S, Zhang S, Shen L, Liu Q, Ma J, Lv W, et al. Progress and Perspective of Ceramic/Polymer Composite Solid Electrolytes for Lithium Batteries. Adv. Sci. 2020, 7, 1903088. [Google Scholar]
9.
Li L, Duan H, Li J, Zhang L, Deng Y, Chen G. Toward High Performance All-solid-state Lithium Batteries with High-voltage Cathode Materials: Design Strategies for Solid Electrolytes, Cathode Interfaces, and Composite Electrodes. Adv. Energy Mater. 2021, 11, 2003154. [Google Scholar]
10.
Peng HJ, Huang JQ, Zhang Q. A Review of Flexible Lithium-sulfur and Analogous Alkali Metal-chalcogen Rechargeable Batteries. Chem. Soc. Rev. 2017, 46, 5237–5288. [Google Scholar]
11.
Jaumaux P, Wu J, Shanmukaraj D, Wang Y, Zhou D, Sun B, et al. Non-flammable Liquid and Quasi-solid Electrolytes toward Highly-safe Alkali Metal-based Batteries. Adv. Funct. Mater. 2020, 31, 2008644. [Google Scholar]
12.
Ji X, Hou S, Wang P, He X, Piao N, Chen J, et al. Solid-State Electrolyte Design for Lithium Dendrite Suppression. Adv. Mater. 2020, 32, 2002741. [Google Scholar]
13.
Sharafi A, Meyer HM, Nanda J, Wolfenstine J, Sakamoto J. Characterizing the Li-Li7La3Zr2O12 Interface Stability and Kinetics as a Function of Temperature and Current Density. J. Power Sources 2016, 302, 135–139. [Google Scholar]
14.
Kato Y, Hori S, Saito T, Suzuki K, Hirayama M, Mitsui A, et al. High-power All-solid-state Batteries Using Sulfide Superionic Conductors. Nat. Energy 2016, 1, 16030. [Google Scholar]
15.
Xu RC, Wu Z, Zhang SZ, Wang XL, Xia Y, Xia XH, et al. Construction of All-Solid-State Batteries based on a Sulfur-Graphene Composite and Li9.54Si1.74P1.44S11.7Cl0.3 Solid Electrolyte. Chem. Eur. J. 2017, 23, 13950–13956. [Google Scholar]
16.
Yue JP, Yan M, Yin YX, Guo YG. Progress of the Interface Design in All-Solid-State Li-S Batteries. Adv. Funct. Mater. 2018, 28, 1707533. [Google Scholar]
17.
Han FD, Westover AS, Yue J, Fan XL, Wang F, Chi MF, et al. High Electronic Conductivity as the Origin of Lithium Dendrite Formation within Solid Electrolytes. Nat. Energy 2019, 4, 187–196. [Google Scholar]
18.
Yue JP, Guo YG. The Devil is in the Electrons. Nat. Energy 2019, 4, 174–175. [Google Scholar]
19.
Long LZ, Wang SJ, Xiao M, Meng YZ. Polymer Electrolytes for Lithium Polymer Batteries. J. Mater. Chem. A 2016, 4, 10038–10069. [Google Scholar]
20.
Huang S, Guan RT, Wang SJ, Xiao M, Han DM, Sun LY, et al. Polymers for High Performance Li-S batteries: Material Selection and Structure Design. Prog. Polym. Sci. 2019, 89, 19–60. [Google Scholar]
21.
Dishovsky N, Grigorova M. On the correlation between electromagnetic waves absorption and electrical conductivity of carbon black filled polyethylenes. Mater. Res. Bull. 2000, 35, 403–409. [Google Scholar]
22.
Diederichsen KM, McShane EJ, McCloskey BD. Promising routes to a high Li+ transference number electrolyte for lithium ion batteries. ACS Energy Lett. 2017, 2, 2563–2575. [Google Scholar]
23.
Xue Z, He D, Xie X. Poly(ethylene oxide)-based Electrolytes for Lithium-ion Batteries. J. Mater. Chem. A 2015, 3, 19218–19253. [Google Scholar]
24.
Xiao Y, Wang Y, Bo SH, Kim JC, Miara LJ, Ceder G. Understanding Interface Stability in Solid-state Batteries. Nat. Rev. Mater. 2019, 5, 105–126. [Google Scholar]
25.
Zhao C, Zhao B, Yan C, Zhang X, Huang J, Mo Y, et al. Liquid Phase Therapy to Solid Electrolyte-electrode Interface in Solid-state Li Metal Batteries: A Review. Energy Storage Mater. 2020, 24, 75–84. [Google Scholar]
26.
Oshima T, Kajita M, Okuno A. Development of Sodium-sulfur Batteries. Int. J. Appl. Ceram. Technol. 2004, 1, 269–276. [Google Scholar]
27.
Yu X, Bates JB, Jellison GE, Hart FX. A Stable Thin‐film Lithium Electrolyte: Lithium Phosphorus Oxynitride. J. Electrochem. Soc. 1997, 144, 524–532. [Google Scholar]
28.
Balaish M, Gonzalez-Rosillo JC, Kim KJ, Zhu Y, Hood ZD, Rupp JL. Processing Thin But Robust Electrolytes for Solid-state Batteries. Nat. Energy 2021, 6, 227. [Google Scholar]
29.
Zhao Q, Stalin S, Zhao C, Archer LA. Designing Solid-state Electrolytes for Safe, Energy-dense Batteries. Nat. Rev. Mater. 2020, 5, 229–252. [Google Scholar]
30.
Ye T, Li L, Zhang Y. Recent Progress in Solid Electrolytes for Energy Storage Devices. Adv. Funct. Mater. 2020, 30, 2000077. [Google Scholar]
31.
Chandra S, Lal HB, Shahi KJ. An Electrochemical Cell with Solid, Super-ionic Ag4KI5 as the Electrolyte. Phys. D Appl. Phys. 1974, 7, 194–198. [Google Scholar]
32.
Hueso KB, Armand M, Rojo T. High Temperature Sodium Batteries: Status, Challenges and Future Trends. Energy Environ. Sci. 2013, 6, 734–749. [Google Scholar]
33.
Sudworth JL. The Sodium/Nickel Chloride (ZEBRA) Battery. J. Power Sources 2001, 100, 149–163. [Google Scholar]
34.
Kwon WJ, Kim H, Jung KN, Cho W, Kim SH, Lee JW, et al. Enhanced Li+ Conduction in Perovskite Li3xLa2/3−x1/3−2xTiO3 Solid-electrolytes via Microstructural Engineering. J. Mater. Chem. A 2017, 5, 6257–6262. [Google Scholar]
35.
Jiang C, Li H, Wang C. Recent Progress in Solid-state Electrolytes for Alkali-ion Batteries. Sci. Bull. 2017, 62, 1473. [Google Scholar]
36.
Aono H, Sugimoto E, Sadaoka Y, Imanaka N, Adachi G. ChemInform Abstract: Ionic Conductivity of Solid Electrolytes Based on Lithium Titanium Phosphate. ChemInform 1990, 21. doi:10.1002/chin.199025008.
37.
Manthiram A, Yu X, Wang S. Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2017, 2, 16103. [Google Scholar]
38.
Murugan R, Thangadurai V, Weppner W. Fast Lithium Ion Conduction in Garnet-type Li7La3Zr2O12. Angew. Chem. Int. Ed. 2007, 46, 7778–7781. [Google Scholar]
39.
Buannic L, Orayech B, López Del Amo JM, Carrasco J, Katcho NA, Aguesse F, et al. Dual Substitution Strategy to Enhance Li+ Ionic Conductivity in Li7La3Zr2O12 Solid Electrolyte. Chem. Mater. 2017, 29, 1769–1778. [Google Scholar]
40.
Hayashi A, Hama S, Morimoto H, Tatsumisago M, Minami T. Preparation of Li2S-P2S5 Amorphous Solid Electrolytes by Mechanical Milling. J. Am. Ceram. Soc. 2001, 84, 477–479. [Google Scholar]
41.
Seino Y, Ota T, Takada K, Hayashi A, Tatsumisago M. A Sulphide Lithium Super Ion Conductor is Superior to Liquid Ion Conductors for Use in Rechargeable Batteries. Energy Environ. Sci. 2014, 7, 627–631. [Google Scholar]
42.
Muramatsu H, Hayashi A, Ohtomo T, Hama S, Tatsumisago M. Structural Change of Li2S-P2S5 Sulfide Solid Electrolytes in the Atmosphere. Solid State Ionics 2011, 182, 116–119. [Google Scholar]
43.
Ohtomo T, Hayashi A, Tatsumisago M, Kawamoto K. Characteristics of the Li2O-Li2S-P2S5 Glasses Synthesized by the Two-step Mechanical Milling. J. Non-Cryst. Solids 2013, 364, 57–61. [Google Scholar]
44.
Banerjee A, Park KH, Heo JW, Nam YJ, Moon CK, Oh SM, et al. A Solution Processable Sodium Superionic Conductor for All-solid-state Sodium-ion Batteries. Angew. Chem. Int. Ed. Engl. 2016, 55, 9634–9638. [Google Scholar]
45.
Neveu A, Pelé V, Jordy C, Pralong V. Exploration of Li-P-S-O Composition for Solid-state Electrolyte Materials Discovery. J. Power Sources 2020, 467, 228250. [Google Scholar]
46.
Ahmad N, Zhou L, Faheem M, Tufail MK, Yang L, Chen R, et al. Enhanced Air Stability and High Li-ion Conductivity of Li6.988P2.994Nb0.2S10.934O0.6 Glass-Ceramic Electrolyte for All-solid-state Lithium-sulfur Batteries. ACS Appl. Mater. Interfaces 2020, 12, 21548–21558. [Google Scholar]
47.
Jung WD, Jeon M, Shin SS, Kim JS, Jung HG, Kim BK, et al. Functionalized Sulfide Solid Electrolyte with Air-stable and Chemical-Resistant Oxysulfide Nanolayer for All-solid-state Batteries. ACS Omega 2020, 5, 26015–26022. [Google Scholar]
48.
Tan DHS, Banerjee A, Deng Z, Wu EA, Nguyen H, Doux JM, et al. Enabling Thin and Flexible Solid-state Composite Electrolytes by the Scalable Solution Process. ACS Appl. Energy Mater. 2019, 2, 6542–6550. [Google Scholar]
49.
Fenton DE, Parker JM, Wright PV. Complexes of Alkali Metal Ions with Poly(ethylene oxide). Polymer 1973, 14, 589. [Google Scholar]
50.
Farrington GC, Briant JL. Fast ionic transport in solids. Science 1979, 204, 1371–1379. [Google Scholar]
51.
Liu FQ, Wang WP, Yin YX, Zhang SF, Shi JL, Wang L, et al. Upgrading Traditional Liquid Electrolyte via In Situ Gelation for Future Lithium Metal Batteries. Sci. Adv. 2018, 4, 5383. [Google Scholar]
52.
Hu J, Wang W, Peng H, Guo M, Feng Y, Xue Z, et al. Flexible Organic-inorganic Hybrid Solid Electrolytes Formed via Thiol-acrylate Photopolymerization. Macromolecules 2017, 50, 1970–1980. [Google Scholar]
53.
Zheng Q, Ma L, Khurana R, Archer LA, Coates GW. Structure-property Study of Cross-linked Hydrocarbon/Poly(ethylene oxide) Electrolytes with Superior Conductivity and Dendrite Resistance. Chem. Sci. 2016, 7, 6832–6838. [Google Scholar]
54.
Zhang H, Liu C, Zheng L, Xu F, Feng W, Li H, et al. Lithium Bis(fluorosulfonyl)imide/Poly(ethylene oxide) Polymer Electrolyte. Electrochim. Acta 2014, 133, 529–538. [Google Scholar]
55.
Qiu J, Liu X, Chen R, Li Q, Wang Y, Chen P, et al. Enabling Stable Cycling of 4.2 V High-voltage All-solid-state Batteries with PEO-based Solid Electrolyte. Adv. Funct. Mater. 2020, 30, 1909392. [Google Scholar]
56.
Nie K, Wang X, Qiu J, Wang Y, Yang Q, Xu J, et al. Increasing Poly(ethylene oxide) Stability to 4.5 V by Surface Coating of the Cathode. ACS Energy Lett. 2020, 5, 826–832. [Google Scholar]
57.
Yang X, Jiang M, Gao X, Bao D, Sun Q, Holmes N, et al. Determining the Limiting Factor of the Electrochemical Stability Window for PEO-based Solid Polymer Electrolytes: Main Chain or Terminal-OH Group? Energy Environ. Sci. 2020, 13, 1318–1325. [Google Scholar]
58.
Huang Y, Gu T, Rui G, Shi P, Fu W, Chen L, et al. Relaxor Ferroelectric Polymer with Ultrahigh Dielectric Constant Largely Promotes the Dissociation of Lithium Salts to Achieve High Ionic Conductivity. Energy Environ. Sci. 2021, 14, 6021–6029. [Google Scholar]
59.
Li W, Zhu Z, Shen W, Tang J, Yang G, Xu Z. A Novel PVdF-based Composite Gel Polymer Electrolyte Doped with Ionomer Modified Graphene Oxide. RSC Adv. 2016, 6, 97338–97345. [Google Scholar]
60.
Mindemark J, Sun B, Törmä E, Brandell D. High-performance Solid Polymer Electrolytes for Lithium Batteries Operational at Ambient Temperature. J. Power Sources 2015, 298, 166–170. [Google Scholar]
61.
Appetecchi GB, Croce F, Scrosati B. Kinetics and Stability of the Lithium Electrode in Poly(methylmethacrylate)-based Gel Electrolytes. Electrochim. Acta 1995, 40, 991–997. [Google Scholar]
62.
Bohnke O, Frand G, Rezrazi M, Rousselot C, Truche C. Fast Ion Transport in New Lithium Electrolytes Gelled with PMMA. 1. Influence of Polymer Concentration. Solid State Ionics 1993, 66, 97–104. [Google Scholar]
63.
Xiang J, Zhang Y, Zhang B, Yuan L, Liu X, Cheng Z, et al. A Flame-retardant Polymer Electrolyte for High Performance Lithium Metal Batteries with an Expanded Operation Temperature. Energy Environ. Sci. 2021, 14, 3510–3521. [Google Scholar]
64.
Khan K, Tu Z, Zhao Q, Zhao C, Archerm LA. Synthesis and Properties of Poly-ether/Ethylene Carbonate Electrolytes with High Oxidative Stability. Chem. Mater. 2019, 31, 8466–8472. [Google Scholar]
65.
Zhao Q, Liu X, Stalin S, Khan K, Archer LA. Solid-state Polymer Electrolytes with In-built Fast Interfacial Transport for Secondary Lithium Batteries. Nat. Energy 2019, 4, 365–373. [Google Scholar]
66.
Xi G, Xiao M, Wang S, Han D, Li Y, Meng Y. Polymer-based Solid Electrolytes: Material Selection, Design, and Application. Adv. Funct. Mater. 2021, 31, 2007598. [Google Scholar]
67.
Xue Z, He D, Xie X. Poly(ethylene oxide)-based Electrolytes for Lithium-ion Batteries. J. Mater. Chem. A 2015, 3, 19218–19253. [Google Scholar]
68.
Lopez J, Mackanic DG, Cui Y, Bao Z. Designing Polymers for Advanced Battery Chemistries. Nat. Rev. Mater. 2019, 4, 312–330. [Google Scholar]
69.
Mindemark J, Lacey MJ, Bowden T, Brandell D. Beyond PEO-Alternative Host Materials for Li+-conducting Solid Polymer Electrolytes. Prog. Polym. Sci. 2018, 81, 114–143. [Google Scholar]
70.
Plathea FM, Gunsteren WF. Computer simulation of a polymer electrolyte: Lithium iodide in amorphous poly(ethylene oxide). J. Chem. Phys. 1995, 103, 4745–4756. [Google Scholar]
71.
Meyer WH. Polymer electrolytes for lithium-ion batteries. Adv. Mater. 1998, 10, 439–448. [Google Scholar]
72.
Liu J, Qian T, Wang MF, Zhou JQ, Xu N, Yan CL. Use of Tween Polymer to Enhance the Compatibility of the Li/Electrolyte Interface for the High-performance and High-safety Quasi-solid-state Lithium-sulfur Battery. Nano Lett. 2018, 18, 4598–4605. [Google Scholar]
73.
Ma Y, Wan J, Yang Y, Ye Y, Xiao X, Boyle D, et al. Scalable, Ultrathin, and High-temperature-resistant Solid Polymer Electrolytes for Energy-dense Lithium Metal Batteries. Adv. Energy Mater. 2022, 12, 2103720. [Google Scholar]
74.
Chen XZ, He WJ, Ding LX, Wang SQ, Wang HH. Enhancing interfacial contact in all solid state batteries with a cathode-supported solid electrolyte membrane framework. Energy Environ. Sci. 2019, 12, 938–944. [Google Scholar]
75.
Zheng X, Ma S, Zhang Y, Lin W, Ji K, Wang C, et al. In Situ Polymerization of Fluorinated Polyacrylate Copolymer Solid Electrolytes for High-Voltage Lithium Metal Batteries at Room Temperature. Macromolecules 2023, 56, 1077–1085. [Google Scholar]
76.
Lingua G, Grysan P, Vlasov PS, Verge P, Shaplov AS, Gerbaldi C. Unique Carbonate-based Single Ion Conducting Block Copolymers Enabling High-voltage, All-solid-state Lithium Metal Batteries. Macromolecules 2021, 54, 6911–6924. [Google Scholar]
77.
Guo K, Wang J, Shi Z, Wang Y, Xie X, Xue Z. One-Step In Situ Polymerization: A Facile Design Strategy for Block Copolymer Electrolytes. Angew. Chem. Int. Ed. 2023, 62, e202213606. [Google Scholar]
78.
Zhou B, Jiang J, Zhang F, Zhang H. Crosslinked Poly(ethylene oxide)-based Membrane Electrolyte Consisting of Polyhedral Oligomeric Silsesquioxane Nanocages for All-solid-state Lithium Ion Batteries. J. Power Sources 2020, 449, 227541. [Google Scholar]
79.
Du A, Zhang H, Zhang Z, Zhao J, Cui Z, Zhao Y, et al. A Crosslinked Polytetrahydrofuran-borate-based Polymer Electrolyte Enabling Wide-working-temperature-range Rechargeable Magnesium Batteries. Adv. Mater. 2019, 31, 1805930. [Google Scholar]
80.
Mendes-Felipe C, Barbosa JC, Gonçalves R, Miranda D, Costa CM, Vilas-Vilela JL, et al. Lithium Bis(trifluoromethanesulfonyl)imide Blended in Polyurethane Acrylate Photocurable Solid Polymer Electrolytes for Lithium-ion Batteries. J. Energy Chem. 2021, 62, 485–496. [Google Scholar]
81.
Zhu L, Li J, Jia Y, Zhu P, Jing M, Yao S, et al. Toward High Performance Solid-state Lithium-ion Battery with a Promising PEO/PPC Blend Solid Polymer Electrolyte. Int. J. Energy Res. 2020, 44, 10168–10178. [Google Scholar]
82.
Liu W, Liu N, Sun J, Hsu PC, Li Y, Lee HW, et al. Ionic Conductivity Enhancement of Polymer Electrolytes with Ceramic Nanowire Fillers. Nano Lett. 2015, 15, 2740–2745. [Google Scholar]
83.
Sun W, Zhang J, Xie M, Lu D, Zhao Z, Li Y, et al. Ultrathin Aramid/COF Heterolayered Membrane for Solid-state Li-metal Batteries. Nano Lett. 2020, 20, 8120–8126. [Google Scholar]
84.
Lv Z, Zhou Q, Zhang S, Dong S, Wang Q, Huang L, et al. Cyano-reinforced In-situ Polymer Electrolyte Enabling Long-life Cycling for High-voltage Lithium Metal Batteries. Energy Storage Mater. 2021, 37, 215–223. [Google Scholar]
85.
Schulze MW, McIntosh LD, Hillmyer MA, Lodge TP. High-modulus, High-conductivity Nanostructured Polymer Electrolyte Membranes via Polymerization-induced Phase Separation. Nano Lett. 2014, 14, 122–126. [Google Scholar]
86.
Zhou D, Shanmukaraj D, Tkacheva A, Armand M, Wang G. Polymer Electrolytes for Lithium-based Batteries: Advances and Prospects. Chem 2019, 5, 2326–2352. [Google Scholar]
87.
Cheng X, Pan J, Zhao Y, Liao M, Peng H. Gel Polymer Electrolytes for Electrochemical Energy Storage. Adv. Energy Mater. 2018, 8, 1702184. [Google Scholar]
88.
Wu H, Cao Y, Su H, Wang C. Tough Gel Electrolyte Using Double Polymer Network Design for the Safe, Stable Cycling of Lithium Metal Anode. Angew. Chem. Int. Ed. 2018, 57, 1361–1365. [Google Scholar]
89.
Zhang H, Li C, Piszcz M, Coya E, Rojo T, Rodriguez-Martinez LM, et al. Single Lithium-ion Conducting Solid Polymer Electrolytes: Advances and Perspectives. Chem. Soc. Rev. 2017, 46, 797–815. [Google Scholar]
90.
Porcarelli L, Aboudzadeh MA, Rubatat L, Nair JR, Shaplov AS, Gerbaldi C, et al. Single-ion Triblock Copolymer Electrolytes Based on Poly(ethylene oxide) and Methacrylic Sulfonamide Blocks for Lithium Metal Batteries. J. Power Sources 2017, 364, 191–199. [Google Scholar]
91.
Bouchet R, Maria S, Meziane R, Aboulaich A, Lienafa L, Bonnet JP, et al. Single-ion BAB Triblock Copolymers as Highly Efficient Electrolytes for Lithium-metal Batteries. Nat. Mater. 2013, 12, 452–457. [Google Scholar]
92.
Li Y, Wong KW, Dou Q, Ng KM. A Single-ion Conducting and Shear-thinning Polymer Electrolyte Based on Ionic Liquid-decorated PMMA Nanoparticles for Lithium-metal Batteries. J. Mater. Chem. A 2016, 4, 18543–18550. [Google Scholar]
93.
Deng K, Zeng Q, Wang D, Liu Z, Qiu Z, Zhang Y, et al. Single-ion Conducting Gel Polymer Electrolytes: Design, Preparation and Application. J. Mater. Chem. A 2020, 8, 1557–1577. [Google Scholar]
94.
Zhou M, Liu R, Jia D, Cui Y, Liu Q, Liu S, et al. Ultrathin Yet Robust Single Lithium-ion Conducting Quasi-Solid-State Polymer-Brush Electrolytes Enable Ultralong-life and Dendrite-free Lithium-metal Batteries. Adv. Mater. 2021, 33, 2100943. [Google Scholar]
95.
Fan L, He H, Nan C. Tailoring Inorganic-polymer Composites for the Mass Production of Solid-state Batteries. Nat. Rev. Mater. 2021, 6, 1003–1019. [Google Scholar]
96.
Chen L, Li Y, Li S, Fan L, Nan C, Goodenough JB. PEO/garnet Composite Electrolytes for Solid-state Lithium Batteries: From “Ceramic-in-polymer” to “Polymer-in-ceramic”. Nano Energy 2018, 46, 176. [Google Scholar]
97.
Wu J, Yuan L, Zhang W, Li Z, Xie X, Huang Y. Reducing the Thickness of Solid-state Electrolyte Membranes for High-energy Lithium Batteries. Energy Environ. Sci. 2020, 14, 12. [Google Scholar]
98.
Yang X, Adair KR, Gao X, Sun X. Recent Advances and Perspectives on Thin Electrolytes for High-energy-density Solid-state Lithium Batteries. Energy Environ. Sci. 2021, 14, 643–671. [Google Scholar]
99.
Wu J, Rao Z, Cheng Z, Yuan L, Li Z, Huang Y. Ultrathin, Flexible Polymer Electrolyte for Cost-effective Fabrication of All-solid-state Lithium Metal Batteries. Adv. Energy Mater. 2019, 9, 1902767. [Google Scholar]
100.
Wang Z, Shen L, Deng S, Cui P, Yao X. 10 μm-thick High-strength Solid Polymer Electrolytes with Excellent Interface Compatibility for Flexible All-solid-state Lithium-metal Batteries. Adv. Mater. 2021, 33, 2100353. [Google Scholar]
101.
Ma X, Zuo X, Wu J, Deng X, Xiao X, Liu J, et al. Polyethylene-supported Ultra-thin Polyvinylidene Fluoride/hydroxyethyl Cellulose Blended Polymer Electrolyte for 5 V High Voltage Lithium Ion Batteries. J. Mater. Chem. A 2018, 6, 1496–1503. [Google Scholar]
102.
Wan JY, Xie J, Kong X, Liu Z, Liu K, Shi FF, et al. Ultrathin, Flexible, Solid Polymer Composite Electrolyte Enabled with Aligned Nanoporous Host for Lithium Batteries. Nat. Nanotech. 2019, 14, 705–711. [Google Scholar]
103.
Cui Y, Wan J, Ye Y, Liu K, Chou L, Cui Y. A Fireproof, Lightweight, Polymer-polymer Solid-state Electrolyte for Safe Lithium Batteries. Nano Lett. 2020, 20, 1686–1692. [Google Scholar]
104.
Li H, Yang J, Chen S, Xu Z, Wang J, Nuli Y, et al. Inherently Flame-retardant Solid Polymer Electrolyte for Safety-enhanced Lithium Metal Battery. Chem. Eng. J. 2021, 410, 128415. [Google Scholar]
105.
Kim H, Lee YH, Song YB, Kwak H, Lee SY, Jung YS. Thin and Flexible Solid Electrolyte Membranes with Ultrahigh Thermal Stability Derived from Solution-processable Li Argyrodites for All-solid-state Li-ion Batteries. ACS Energy Lett. 2020, 5, 718–727. [Google Scholar]
106.
Duan H, Yin Y, Shi Y, Wang P, Zhang X, Yang C, et al. Dendrite-free Li-metal Battery Enabled by a Thin Asymmetric Solid Electrolyte with Engineered Layers. J. Am. Chem. Soc. 2018, 140, 82–85. [Google Scholar]
107.
Wen P, Zhao Y, Wang Z, Lin J, Chen M, Lin X. Solvent-free Synthesis of the Polymer Electrolyte via Photo-Controlled Radical Polymerization: Toward Ultrafast In-Built Fabrication of Solid-state Batteries under Visible Light. ACS Appl. Mater. Interfaces 2021, 13, 8426–8434. [Google Scholar]
108.
Hu C, Shen Y, Shen M, Liu X, Chen H, Liu C, et al. Superionic Conductors via Bulk Interfacial Conduction. J. Am. Chem. Soc. 2020, 142, 18035–18041. [Google Scholar]
109.
Hu J, He P, Zhang B, Wang B, Fan L. Porous Film Host-derived 3D Composite Polymer Electrolyte for High-voltage Solid State Lithium Batteries. Energy Storage Mater. 2020, 26, 283–289. [Google Scholar]
110.
Riphaus N, Strobl P, Stiaszny B, Zinkevich T, Yavuz M, Schnell J, et al. Slurry-based Processing of Solid Electrolytes: A Comparative Binder Study. J. Electrochem. Soc. 2018, 165, A3993–A3999. [Google Scholar]
111.
Fu K, Gong Y, Dai J, Gong A, Han X, Yao Y, et al. Flexible, Solid-state, Ion-conducting Membrane with 3D Garnet Nanofiber Networks for Lithium Batteries. Proc. Natl. Acad. Sci. USA 2016, 113, 7094. [Google Scholar]
112.
Ma Y, Wan J, Yang Y, Ye Y, Xiao X, Boyle DT, et al. Scalable, Ultrathin, and High-temperature-resistant Solid Polymer Electrolytes for Energy-dense Lithium Metal Batteries. Adv. Energy Mater. 2022, 12, 2103720. [Google Scholar]
113.
Wang H, Wang Q, Cao X, He Y, Wu K, Yang J, et al. Thiol-branched Solid Polymer Electrolyte Featuring High Strength, Toughness, and Lithium Ionic Conductivity for Lithium-metal Batteries. Adv. Mater. 2020, 32, 2001259. [Google Scholar]
Creative Commons

© 2024 by the authors; licensee SCIEPublish, SCISCAN co. Ltd. This article is an open access article distributed under the CC BY license (https://creativecommons.org/licenses/by/4.0/).