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ABSTRACT: Multilayer composite materials, having high specific strength and rigidity, are sensitive to 
interlayer defects. The problem of interlayer laminations in a composite plate subjected to a plane 
compressive load is studied using a new analytical structure previously developed by the authors. Elastic 
characteristics of a multilayer package of thin lamination, including the elastic characteristics of separate 
layers, depending on modulus of elasticity, shear modulus, Poisson’s ratio, and angle of orientation of fibers 
of the unidirectional layer, are determined. Ratios are obtained for the unidirectional composite material 
that reflect the contribution of each component (fiber, matrix) in proportion to its volume fraction, according 
to the so-called “mixture rule”. This work examines the behavior after the loss of stability of an elliptical 
defect in a composite plate. Only the local bulging of the delamination type defect was considered. The 
difference between this work and others lies in the fact that the application of the developed method, based 
on the energy approach, makes it possible to obtain explicit analytical expressions for quantities 
characterizing the critical load and describing the supercritical behavior of the detached part. The energy 
method is generalized to the case of analyzing the stability of defects in a non-linear formulation. The value 
of the critical load was obtained, and the analysis of the supercritical deformation of the defect was made. 

Keywords: Stability; Composite materials; Critical load; Impact load; Stiffness characteristics; Defects; 
Delamination; Nonlinear deformation; Сomputer modeling 
 

1. Introduction 

Interest in the use of composite materials has now increased. Multilayer composite materials with high 
specific strength and rigidity are sensitive to interlayer defects. Delamination is the most common type of 
defect and is often considered a determining factor in deciding the use of composites in structures. 
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Delamination may occur at stress concentrations or in the area of abrupt changes in material thickness, as 
a result of imperfections in production technology or the action of operational loads [1,2]. 

The tasks of studying the plate with interlayer defects during axial compression have received a lot of 
attention since the 1980s, starting with the work of Chai and colleagues [3,4]. A large number of studies of 
this problem mainly determine the critical load [5–12]. 

When the critical load is reached, three types of buckling of structural elements made of composite 
materials with delamination defects are possible [9,13]. The first type of buckling is the global buckling of 
the entire plate, the buckling of the composite beam as a whole. It is observed with defects of short length. 
The second type of buckling is local bulging of the defect; the remaining parts of the plate remain flat. 
Local buckling is the main type of compression failure of laminated composites with thin lamination defects. 
The third type of buckling is called “mixed”, in which both local and global buckling are possible when the 
defect and the rest of the plate are bent. 

The objectives of studying the supercritical behavior of a local interlayer defect occurring in a plate are 
proposed in [5,6,8,9,12]. A post-buckling study for a plate supported on all edges and containing an 
embedded lamination can be found in [10–12,14]. However, only Ref. [8] considers a non-rectangular, 
elliptical delamination shape. Information in the literature on post-buckling behavior for elliptically 
delaminated composite plates is rare. In addition, the problem of a composite plate with embedded 
lamination loaded by axial compression is mainly studied using the finite element method. Thus, analytical 
approaches to modeling are lacking. 

This work examines the behavior after the loss of stability of an elliptical defect in a composite plate. 
Only the local bulging of the delamination type defect was considered. The difference between this work 
and others lies in the fact that the application of the developed method, based on the energy approach, 
makes it possible to obtain explicit analytical expressions for quantities characterizing the critical load and 
describing the supercritical behavior of the detached part. The energy method is generalized to the case of 
analyzing the stability of defects in a non-linear formulation. The value of the critical load was obtained 
and the analysis of the supercritical deformation of the defect was made. 

2. Development and Modeling 

In the cycle of strength calculations, stability calculations play an essential role, since the failure of 
thin-walled structural elements during compression is usually associated with a loss of general or local 
stability [5–10]. Consider of a delaminated composite plate subjected to in-plane compressive loading 
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Figure 1. А composite plate with delamination, loaded with compressive deformations at the ends
x

 ,
y

 . 

For thin-walled multilayer structural elements, a plane stress state and bending are typical [6–9]. The 
boundaries of the local bundle are given by the equation 
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2
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the semi–axes of the bundle are a and b, h is the thickness of the bundle. In addition, h satisfies the condition 
h << a, b. In the region of stratification, a multilayer plate consists of two parts (Figure 1): a stratified layer 
(upper part h) and a layer located below the stratification (lower part is thick H-h). The main part of the 
laminated plate with thickness H is located outside the defect. The plate consists of n layers, t—number of 
lamination layers, 

m
 —thickness of m—one layer,  m—number of layers. 

The behavior of multilayer composite materials under load, even with a linear dependence of 
deformations on stresses, is fundamentally different from the behavior of isotropic [7,8]. To determine the 
elastic characteristics of a multilayer plate package and local stratification, we use the relations for 
unidirectional material that reflect the contribution of each component in proportion to its volume fraction, 
the so-called “mixture rule” [9,10]. Let’s imagine a unidirectional composite material (OKM) in the form 
of alternating layers with matrix and fiber properties. Then fв + fм = 1, where fв the relative volume content 
of fiber in the OKM, fм is the relative volume content of matrix in the OKM. Using a JSM-6510LV JEOL 
scanning electron microscope (JEOL Ltd., Tokyo, Japan), the volume fraction of fiber fв (Figure 2) for glass 
fiber d = 6 µm was determined, the fraction of which is 0.7 (percentage of fiber—70%). 
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Figure 2. Cross-section image of a single fiber. Accelerating voltage: 20 kV, WD:10 mm, detector: S355, mode (25Pa) 
magnification 1000. 

The elastic characteristics of the fiber and matrix for OCM are shown in Table 1. 

Table 1. Elastic characteristics of the fiber and matrix. 

Elastic Characteristics of Fiberglass Elastic Characteristics of the Epoxy Matrix 
Eв = 7.3 × 104 MPa Eм = 3.78 × 103 MPa 
Gв = 2.9 × 104 MPa Gм = 1.4 × 103 MPa 

µв = 0.22 µм = 0.35 

We find the values of the elastic constants OKM in terms of the elastic constants and the volume 
fractions of the components using the following expressions: 
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(1)

where E1 is the modulus of elasticity along the reinforcement direction, E2 is the modulus of elasticity 
across the reinforcement direction, G12 is the shear modulus in the layer plane,  and are the 

coefficients of transverse deformations. The elastic constants for OKM, according to relations (1), are 
presented in Table 2. The analytical values are refined through numerical calculations in the Ansys 
Mechanical software package (Ansys 2024 R2). 

2112 ,
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Table 2. Elastic characteristics of OKM. 

The Elastic Characteristics of OKM (Fiberglass) 
Are Obtained by the Ratios (1) 

The Elastic Characteristics of OKM (Fiberglass) Were Obtained in 
the Ansys Mechanical Software Package. 

E1 = 5.223 × 104 MPa E1 = 5.225 × 104 MPa 
E2 = 1.124 × 104 MPa E2 = 1.759 × 104 MPa 
G12 = 4.207 × 103 MPa G12 = 4.459 × 104 MPa 
µ21 = 0.259 µ21 = 0.253 

The elastic characteristics of a multilayer package are determined if the stiffness characteristics of the 
individual layers included in it are known: —the stiffness characteristics of the 1st layer, depending on 

the elastic modulus, shear modulus, Poisson coefficients and the angle of orientation of the fibers of the 
unidirectional layer 𝐸ଵ,𝐸ଶ,𝐺ଵଶ, 𝜇ଵଶ, 𝜇ଶଵ,  ( —the angle of orientation of the fibers of the layer). 

Expressions for the stiffness characteristics of the layer were obtained on the basis of [15,16] 
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Let us consider the case of a local loss of stability, when the loss of stability begins with the bulging 
of a thin bundle. With sufficient accuracy for engineering calculations, it is possible to calculate the elastic 
characteristics of a multilayer composite material for layering (upper part): 
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(3)

where xE  is the modulus of elasticity along the reinforcement direction for a package of multilayer 

composite material, thickness h; yE  is the modulus of elasticity across the reinforcement direction for a 

package of multilayer composite material, thickness h; yxxy  ,  are the coefficients of transverse 

deformation for a package of multilayer composite material, thickness h. Table 3 shows the values of the 
elastic characteristics of a multilayer composite material for layering (upper part) for two [0/90], three 
[0/90/0], four [0/90]2 layers of fiberglass (t = 2; 3; 4) [17,18]. 

m

sjС ,


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Table 3. Elastic characteristics of elastic characteristics of multilayer composite material. 

Layer Reinforcement 
Angle 

Stiffness Characteristics of the m-Layer, MPa 
𝑪𝟏𝟏
𝒎  𝑪𝟐𝟐

𝒎  𝑪𝟏𝟐
𝒎  𝑪𝟏𝟑

𝒎  𝑪𝟐𝟑
𝒎  𝑪𝟑𝟑

𝒎  
m = 1 0  5.223 × 104 1.124 × 104 3.148 × 103 0 0 4.207 × 103 

m = 0 90  1.124 × 104 5.223 × 104 3.148 × 103 3.906 × 10−12 1.962 × 10−14 4.207 × 103 
Elastic characteristics of a two-layer bundle [0/90] 

 Ех, МПа  Еу, МПа xy  yx  

2.095 × 104 2.095 × 104 0.099 0.099 
Elastic characteristics of a three-layer bundle [0/90/0] 

3.817 × 104 2.465 × 104 0.126 0.082 

4.19 × 104 4.19 × 104 0.099 0.099 

The displacements that describe the plate’s transition to a new deviated state from the initial 
equilibrium state are represented as 

   yxwyxw ,,
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where   is a parameter depending on the plate loading level, the displacement components 

𝑢, 𝑣,𝑤 correspond to the direction of the axes 𝑥,𝑦, 𝑧. We take the transverse deflection function 𝑤ଵሺ𝑥, 𝑦ሻ as 
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To determine the displacement  yxu ,2 ,  yxv ,2  it is necessary to solve an auxiliary problem. We 
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1

 by the Karman equation [19], 
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where ij are unknown coefficients. To determine it, the Karman equation must be integrated using the 

Galerkin method. In this case, we obtain a system of linear equations, which we solve using the Gauss 
method. We use dependencies 22 ,vu  to determine 
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The approximation of the nodal points is performed using polynomial regression in the MathCAD 
system. The submatrix function is used to calculate the coefficients of the regression polynomial. 

The change in the total potential energy  for thin bundles with deviation from the initial plane state 
is determined by the expression [16,20] 
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From the condition, 0Э  we find the critical load (4), which, for convenience, can be represented as 
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When considering the non-linear behavior of the detachment, when the deflection value w becomes 
comparable to the height of the detachment h, the displacement of the points of the median surface u, v 
begins to play an important role. When the plate transitions to a new perturbed state adjacent to the initial 
plane, the displacement functions are taken as: 
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where ŋ is a parameter that depends on the loading condition of the plate. The deflection of the plate can 
be set by the function. 
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The boundary conditions are as follows . 

The displacements of the median surface u2 and v2 are defined above. 
The components of the deformations in the new perturbed equilibrium state can be calculated with an 

accuracy of ŋ2 

Э

011
1 









y

w

x

w
w



Adv. Mat. Sustain. Manuf. 2026, 3(1), 10003. doi:10.70322/amsm.2026.10003 8 of 14 

 

xxx   0 ; 

yyy   0 ; 

0xy , 

where 00 ,
yx
 -components of deformations in the initial state, //// ,

yx
 -components of deformations of the 

second order of smallness 

x

u
x 


 00 ; 

y

v
y 


 00 ; 

;
x

w

x

u"

x

2

1222

2

1














   

2

1222

2

1
















y

w

y

v"

y    

The deformation energy of the median surface of the plate has the form. 
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The potential of external forces is determined by the expression for the ellipse defect. 
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The boundary of the interlayer defect is S1. 
The displacements u2(x,y) and v2(x,y) are chosen so that all terms containing the initial conditions are 

excluded from the equation U2. Let’s calculate the change in the total potential energy of the plate in the form 
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Equating the first derivative to zero , we establish possible equilibrium positions 
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The equations for the load have the form 
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If only one rectilinear form of equilibrium is possible, which corresponds to 0  . If kpqq 

a bending form of equilibrium is possible (5). The study of the sign of the second derivative 
2

2


 Э

 made 

it possible to establish that the plane kpqq   form of the equilibrium is unstable, while the bending one is 

stable (Figure 3). The relationship between the deflection in the center of the elliptical detachment and the 
load is obtained in the form 

101.1max  qw ; 
крq

qq  .  

Since the exfoliated layer is quite thin, the critical load is small, and the area of subcritical deformation is 
large enough, it is necessary to assess the ranges of existence of the basic form of equilibrium and more complex 
ones. First, after the loss of stability, the deflection in the center of the defect becomes maximum [17,18]. This 
is the basic form of equilibrium. As loads increase, a transition to more complex forms is possible. 

 

Figure 3. Flat form of equilibrium lamination is unstable, and bending form of lamination is stable. 

0



Э

.крqq 
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3. Numerical Simulation 

When loaded, first, after a loss of stability, the deflection at the center reaches a maximum, 
corresponding to the main form of equilibrium; then, under heavy loads, a transition to more complex forms 
is possible. To obtain numerical results, we take data corresponding to the basic form of equilibrium with 
the subsequent growth of the deflection boom, since this case is more dangerous from the point of view of 
the growth of the defect. Figure 4 shows the relationship between deflection in the center of the elliptical 
lamination and the load at different occurrences of the defect h 0.1; 0.08; 0.06. 

 

Figure 4. The relationship between deflection in the center of the elliptical lamination and the load at different occurrences of 

the defect h 0.1; 0.08; 0.06. 

In the work, ANSYS medium [20,21] was used to calculate samples from prepreg (glass fiber), 
industrial grade of glass fabric—T-25 (VM) TU 6-11-380-76. Unidirectional material has the following 
characteristics: fiberglass—𝐸ଵ ൌ 5.4 ൈ 10ସ MPa, 𝐸ଶ ൌ 1.2 ൈ 10ସ MPa, 𝐺ଵଶ ൌ 0.5 ൈ 10ସ MPa, 𝜇 ൌ 0.28. 
Figures 5 and 6 show the results of the analysis of the non-linear behavior of elliptical delaminations for 
the case h = 0.5 mm; Н = 3 mm; а = 15 mm; b = 7 mm; L = 100 mm. The elastic characteristics Ex, Ey, Gxy, 

yxxy  ,  of the detached plate are obtained by Equations (1)–(3). The plate consists of 24 layers: the fibers 

of the exfoliated layer are located in the direction of loading at an angle of 0° (Figure 5); fibers of the peeled 
layer are located in the direction of loading at an angle of 90° (Figure 6). Arrangement of fibers in direction 
of loading reduces resistance to deformation (Figure 5), arrangement of fibers in direction perpendicular to 
loading increases resistance to deformation (Figure 6).  
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Figure 5. Force-strain dependence for laminated part of plate. The fibers of the exfoliated layer are located in the direction of 
loading at an angle of 0°.  
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Figure 6. Force-strain dependence for laminated part of plate. The fibers of the exfoliated layer are located in the direction of 
loading at an angle of 90°. 

4. Analysis of the Results of the Calculation 

The task of studying the stability of thin-walled laminations of composite materials is considered in a 
non-linear formulation. A refined approach for solving this class of problems is presented. The problem of 
stability study in the two-dimensional case is considered using the example of elliptic delaminations in a 
non-linear formulation. The use of the developed method based on the energy approach allows obtaining 
explicit analytical expressions for the quantities characterizing the critical load and describing the 
supercritical behavior of the detached part. The energy method is generalized to the case of analyzing the 
stability of defects in a non-linear formulation. The value of the critical load was obtained, and the analysis 
of the supercritical deformation of the defect was made. Forms of equilibrium near the critical point of 
bifurcation have been investigated. Elastic characteristics of a multilayer package of thin lamination, 
including the elastic characteristics of separate layers included in it, depending on modulus of elasticity, 
shear modulus, Poisson’s ratio, and angle of orientation of fibers of unidirectional layer, are determined. 
Ratios are obtained for the unidirectional composite material, which reflect the contribution of each 
component (fiber, matrix) in proportion to its volume fraction, the so-called “mixture rule”. The results of 
the analytical solution are comparable to the numerical data. The strength estimation and numerical 
calculation methods discussed can also be applied to a wide range of composite materials. 
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