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ABSTRACT: Multilayer composite materials, having high specific strength and rigidity, are sensitive to
interlayer defects. The problem of interlayer laminations in a composite plate subjected to a plane
compressive load is studied using a new analytical structure previously developed by the authors. Elastic
characteristics of a multilayer package of thin lamination, including the elastic characteristics of separate
layers, depending on modulus of elasticity, shear modulus, Poisson’s ratio, and angle of orientation of fibers
of the unidirectional layer, are determined. Ratios are obtained for the unidirectional composite material
that reflect the contribution of each component (fiber, matrix) in proportion to its volume fraction, according
to the so-called “mixture rule”. This work examines the behavior after the loss of stability of an elliptical
defect in a composite plate. Only the local bulging of the delamination type defect was considered. The
difference between this work and others lies in the fact that the application of the developed method, based
on the energy approach, makes it possible to obtain explicit analytical expressions for quantities
characterizing the critical load and describing the supercritical behavior of the detached part. The energy
method is generalized to the case of analyzing the stability of defects in a non-linear formulation. The value
of the critical load was obtained, and the analysis of the supercritical deformation of the defect was made.

Keywords: Stability; Composite materials; Critical load; Impact load; Stiffness characteristics; Defects;
Delamination; Nonlinear deformation; Computer modeling

1. Introduction

Interest in the use of composite materials has now increased. Multilayer composite materials with high
specific strength and rigidity are sensitive to interlayer defects. Delamination is the most common type of
defect and is often considered a determining factor in deciding the use of composites in structures.

© 2026 The authors. This is an open access article under the Creative Commons Attribution 4.0 International License
[ (https://creativecommons.org/licenses/by/4.0/).
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Delamination may occur at stress concentrations or in the area of abrupt changes in material thickness, as
a result of imperfections in production technology or the action of operational loads [1,2].

The tasks of studying the plate with interlayer defects during axial compression have received a lot of
attention since the 1980s, starting with the work of Chai and colleagues [3,4]. A large number of studies of
this problem mainly determine the critical load [5-12].

When the critical load is reached, three types of buckling of structural elements made of composite
materials with delamination defects are possible [9,13]. The first type of buckling is the global buckling of
the entire plate, the buckling of the composite beam as a whole. It is observed with defects of short length.
The second type of buckling is local bulging of the defect; the remaining parts of the plate remain flat.
Local buckling is the main type of compression failure of laminated composites with thin lamination defects.
The third type of buckling is called “mixed”, in which both local and global buckling are possible when the
defect and the rest of the plate are bent.

The objectives of studying the supercritical behavior of a local interlayer defect occurring in a plate are
proposed in [5,6,8,9,12]. A post-buckling study for a plate supported on all edges and containing an
embedded lamination can be found in [10-12,14]. However, only Ref. [8] considers a non-rectangular,
elliptical delamination shape. Information in the literature on post-buckling behavior for elliptically
delaminated composite plates is rare. In addition, the problem of a composite plate with embedded
lamination loaded by axial compression is mainly studied using the finite element method. Thus, analytical
approaches to modeling are lacking.

This work examines the behavior after the loss of stability of an elliptical defect in a composite plate.
Only the local bulging of the delamination type defect was considered. The difference between this work
and others lies in the fact that the application of the developed method, based on the energy approach,
makes it possible to obtain explicit analytical expressions for quantities characterizing the critical load and
describing the supercritical behavior of the detached part. The energy method is generalized to the case of
analyzing the stability of defects in a non-linear formulation. The value of the critical load was obtained
and the analysis of the supercritical deformation of the defect was made.

2. Development and Modeling

In the cycle of strength calculations, stability calculations play an essential role, since the failure of
thin-walled structural elements during compression is usually associated with a loss of general or local
stability [5—-10]. Consider of a delaminated composite plate subjected to in-plane compressive loading ¢ ,

& (Figure 1). The center of the defect coincides with the origin of the oxy coordinates. We will consider

the defect as a thin axisymmetric plate, pinched along the contour and subjected to a uniformly distributed
load with an intensity g ,g corresponding to the main load of the structural element. Forces corresponding

to warp deformations are set along the defect contour ¢ , ¢ ,

_ ‘C"xExh .

_ g = e,Eh
l_ﬂxy g

qx - :
I=p,
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Figure 1. A composite plate with delamination, loaded with compressive deformations at the ends &, & .

For thin-walled multilayer structural elements, a plane stress state and bending are typical [6—9]. The
boundaries of the local bundle are given by the equation
2 2

+ 2o

p

Q =
[\S]

the semi—axes of the bundle are a and b, / is the thickness of the bundle. In addition, / satisfies the condition
h <<a, b. In the region of stratification, a multilayer plate consists of two parts (Figure 1): a stratified layer
(upper part 4) and a layer located below the stratification (lower part is thick H-4). The main part of the
laminated plate with thickness H is located outside the defect. The plate consists of # layers, -——number of
lamination layers, 0 —thickness of m—one layer, m—number of layers.

The behavior of multilayer composite materials under load, even with a linear dependence of
deformations on stresses, is fundamentally different from the behavior of isotropic [7,8]. To determine the
elastic characteristics of a multilayer plate package and local stratification, we use the relations for
unidirectional material that reflect the contribution of each component in proportion to its volume fraction,
the so-called “mixture rule” [9,10]. Let’s imagine a unidirectional composite material (OKM) in the form
of alternating layers with matrix and fiber properties. Then fs + fu = 1, where f; the relative volume content
of fiber in the OKM, fu is the relative volume content of matrix in the OKM. Using a JSM-6510LV JEOL
scanning electron microscope (JEOL Ltd., Tokyo, Japan), the volume fraction of fiber f; (Figure 2) for glass
fiber d = 6 um was determined, the fraction of which is 0.7 (percentage of fiber—70%).
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Figure 2. Cross-section image of a single fiber. Accelerating voltage: 20 kV, WD:10 mm, detector: S355, mode (25Pa)
magnification 1000.

The elastic characteristics of the fiber and matrix for OCM are shown in Table 1.

Table 1. Elastic characteristics of the fiber and matrix.

Elastic Characteristics of Fiberglass Elastic Characteristics of the Epoxy Matrix
E,=7.3 x 10* MPa E,=3.78 x 10> MPa
G, =2.9 x 10* MPa G, =14 x10° MPa
e =0.22 tn=0.35

We find the values of the elastic constants OKM in terms of the elastic constants and the volume
fractions of the components using the following expressions:

E=fu+fu
EEE

E’2 — 6 M 1 -

E[fE +fE]-ff(uE -uE))

GG
G, =——tr (1)
u,=fu+fu
_ME

#Zl E

where E1 is the modulus of elasticity along the reinforcement direction, E2 is the modulus of elasticity
across the reinforcement direction, Gi2 is the shear modulus in the layer plane, 4,, 4, and are the
coefficients of transverse deformations. The elastic constants for OKM, according to relations (1), are

presented in Table 2. The analytical values are refined through numerical calculations in the Ansys
Mechanical software package (Ansys 2024 R2).
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Table 2. Elastic characteristics of OKM.

The Elastic Characteristics of OKM (Fiberglass) The Elastic Characteristics of OKM (Fiberglass) Were Obtained in

Are Obtained by the Ratios (1) the Ansys Mechanical Software Package.
E;=5.223 x 10* MPa E;=5.225 x 10* MPa

E>=1.124 x 10* MPa E>=1.759 x 10* MPa

G12=4.207 x 10°* MPa G2 =4.459 x 10* MPa

U211 = 0259 U2 = 0253

The elastic characteristics of a multilayer package are determined if the stiffness characteristics of the
individual layers included in it are known: » —the stiffness characteristics of the 1st layer, depending on

the elastic modulus, shear modulus, Poisson coefficients and the angle of orientation of the fibers of the
unidirectional layer E4, E,, G12, U12, H21, @ ( ¢ —the angle of orientation of the fibers of the layer).
Expressions for the stiffness characteristics of the layer were obtained on the basis of [15,16]

. 1 . .
C/' = A(E, cos* o+ E, sin* ¢+ EMZEZ sin’ 2¢) + G, sin” 2¢;

CJ = A(E,sin" p+E, cos” (o+%y12E2 sin® 2¢) +G,, sin’ 2¢ ;
Clh = A[(E, + E,)sin’ pcos’ p+ u, E, (cos’ p+sin” )] -G, sin” 2¢;

C = [g (E, sin’ 29 — E, cos’ 2¢ + u,, E, cos 2¢) + G,, cos 2¢]sin 2¢ ;
2

Ch = [% (E,cos’ 2¢p—E, sin’ 2 — u,, E, cos2¢) — G,, cos2¢]sin2¢;

2
C;; = M(El + Ez _Z#IZEZ) + G12 COS2 2¢,

1

A=
1= g 005,

; By, =E .

Let us consider the case of a local loss of stability, when the loss of stability begins with the bulging
of a thin bundle. With sufficient accuracy for engineering calculations, it is possible to calculate the elastic
characteristics of a multilayer composite material for layering (upper part):

1 ! m 1 - m 1 f "
All :Zzémcll ; Au =ZZ§”.CH ; Azz :sznczz;
—~ m=1 m=1

A A A E *
E=d4-—5 B =4, ~—5 u =—5 4 =H
x 11 A v 22 A /’ln A /Ll,‘ ILl\) Ex

22 11 22

where E_ is the modulus of elasticity along the reinforcement direction for a package of multilayer
composite material, thickness 4; £ is the modulus of elasticity across the reinforcement direction for a
package of multilayer composite material, thickness A; g, u, are the coefficients of transverse
deformation for a package of multilayer composite material, thickness 4. Table 3 shows the values of the

elastic characteristics of a multilayer composite material for layering (upper part) for two [0/90], three
[0/90/0], four [0/90]2 layers of fiberglass (¢ =2; 3; 4) [17,18].
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Table 3. Elastic characteristics of elastic characteristics of multilayer composite material.

Layer Reinforcement Stiffness Characteristics of the m-Layer, MPa
Angle 11 22 12 13 23 33
m=1¢=0 5.223 x 10* 1.124 x 10* 3.148 x 10° 0 0 4.207 x 103
m=09=9 1.124 x 10* 5.223 x 10* 3.148 x 103 3.906 x 1012 1.962 x 101 4.207 x 103
Elastic characteristics of a two-layer bundle [0/90]
E,, MIla E,, Mlla M, M,
2.095 x 10* 2.095 x 10* 0.099 0.099
Elastic characteristics of a three-layer bundle [0/90/0]
3.817 x 10* 2.465 x 104 0.126 0.082
4.19 x 10* 4.19 x 10* 0.099 0.099

The displacements that describe the plate’s transition to a new deviated state from the initial
equilibrium state are represented as

wlx,y)= 1w (x,y);

ulx, y)=n"u,(x, y);
x,y)=n"v(x.y)

where 77 is a parameter depending on the plate loading level, the displacement components
u, v, w correspond to the direction of the axes x, y, z. We take the transverse deflection function w, (x, y) as

To determine the displacement uz(x, y), vz(x, y) it is necessary to solve an auxiliary problem. We

introduce a stress function related ¢, (x, y) to deflection w,(x, y) by the Karman equation [19],

V'Vg = Eh o'w, Z_ o'w O'w
© |\ oxoy o' oyt |

The boundary conditions for take the form:

a ol
=+— ¢4 =0,—22=0;
* 2 /: ox
y:—éa ¢z_0a %:O
2 oy

Given these conditions, we will set the function ¢, (x, y) next to

sen-Eal1-5-3 )5 (3]

where 6, are unknown coefficients. To determine it, the Karman equation must be integrated using the

Galerkin method. In this case, we obtain a system of linear equations, which we solve using the Gauss
method. We use dependencies u,,v, to determine
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The approximation of the nodal points is performed using polynomial regression in the MathCAD
system. The submatrix function is used to calculate the coefficients of the regression polynomial.

The change in the total potential energy AD for thin bundles with deviation from the initial plane state
is determined by the expression [16,20]

2
) 2 2 2 2
+4 le +n22(1—uxy{£a le e ]}dydx—nzﬂuqu +,q, IS,
5,

1
A9:7725J I

4 0

dx’ dy’ ox0y ox’oy’

ab\/l—_(%) {(d2wl

where S, is the boundary of the detachment, p — _ER the cylindrical stiffness of the multilayer bundle.
12(1 = p0,,)

From the condition, AD =0 we find the critical load (4), which, for convenience, can be represented as

1 " 1—(51 ow, 9w, Y ow ) 8w
—'[ j D T+ +2(1—,ux) L -5 |pdydx
2 ox oy "\ oxoy Ox*dy

0 0

kp
Eh
1—ny L§ u2d52+yiv2dS2}

Q)

When considering the non-linear behavior of the detachment, when the deflection value w becomes
comparable to the height of the detachment 4, the displacement of the points of the median surface u, v
begins to play an important role. When the plate transitions to a new perturbed state adjacent to the initial
plane, the displacement functions are taken as:

w(x,y)zwo +1ws
”(x’y): Uy +772“2
v(x,y)z Vo + 177V,

where 7 is a parameter that depends on the loading condition of the plate. The deflection of the plate can
be set by the function.

'oox oy
The displacements of the median surface u2 and v2 are defined above.
The components of the deformations in the new perturbed equilibrium state can be calculated with an
accuracy of 7’

The boundary conditions are as follows ,, _ 9 _ W _ .
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e =¢ +&';
e =& +¢&";
y y y
" o_
yxy_o’

where &£’,&" -components of deformations in the initial state, &', & -components of deformations of the

second order of smallness

go_éuo

oo

50—%'

y ay 2

: ,76_771(@)
' Ox 2\ ox

2
RS R il
Y oy 2\ oy

The deformation energy of the median surface of the plate has the form.

U=Uy+ U+ Us,

ST I(é‘f’ +2u g's" + " )dydx
20— )s o -
U _E—th‘h I[Lq‘g +e'e +2u (e'e +&'e)]dydx
Ty G TS TGS TEE I
U.= —J I(é‘ St +2u € ¢ )dydx
2(1 - ILI“‘ILIJ_Y) 0 0 ’

The potential of external forces is determined by the expression for the ellipse defect.
IM=I1 +I1 =II, + 772§(uqu +v.q )dsl R
The boundary of the interlayer defect is Si.

The displacements u2(x,y) and v2(x,y) are chosen so that all terms containing the initial conditions are
excluded from the equation Ua. Let’s calculate the change in the total potential energy of the plate in the form

ahm 2 2 ? 2 ? 4
A9:9—9027722.[J. AR (Y2 S AU AT | AN
24 9 ox’ oy "\ Oxoy ox’oy’

2 2 2
e (o @1{%) .
-y 3 | e 2lar o 2o

ou 1({ow ? ov, 1(ow ?
2 e i 24| —L| |tdvdx—n’ + S, .
ﬂxy{ Ox 2[ 8xJ :l[ oy 2[ @J }} e i(uqu quy)d 1
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Equating the first derivative to zero

=0, we establish possible equilibrium positions

on
E h JT ou. 1(awlj“ ov, 1(ow)]
— —+— +|—+—= +
21— )s 9 ox 2\ ox oy 2\ oy
o o
e flu+ par)ds
5)
2 2
P RN U N (AR [N [ PN
ox 2\ ox oy 2\ oy
—19=0
Eh E
The equations for the load have the form qY:q=E‘—hg; q,=,u‘q=u; q = ‘hg"".
B T T )

If g <gq,, only one rectilinear form of equilibrium is possible, which corresponds to =0 .If g > q,,

2

a bending form of equilibrium is possible (5). The study of the sign of the second derivative -— made

on
it possible to establish that the planeg > g,, form of the equilibrium is unstable, while the bending one is

stable (Figure 3). The relationship between the deflection in the center of the elliptical detachment and the

load is obtained in the form
=1.01yg-1; g = q .
wmax q q A{p

Since the exfoliated layer is quite thin, the critical load is small, and the area of subcritical deformation is
large enough, it is necessary to assess the ranges of existence of the basic form of equilibrium and more complex
ones. First, after the loss of stability, the deflection in the center of the defect becomes maximum [17,18]. This
is the basic form of equilibrium. As loads increase, a transition to more complex forms is possible.

unstable

1 f [ Winax
r 1
-1 0 1

Figure 3. Flat form of equilibrium lamination is unstable, and bending form of lamination is stable.



Adv. Mat. Sustain. Manuf. 2026, 3(1), 10003. doi:10.70322/amsm.2026.10003 10 of 14

3. Numerical Simulation

When loaded, first, after a loss of stability, the deflection at the center reaches a maximum,
corresponding to the main form of equilibrium; then, under heavy loads, a transition to more complex forms
is possible. To obtain numerical results, we take data corresponding to the basic form of equilibrium with
the subsequent growth of the deflection boom, since this case is more dangerous from the point of view of
the growth of the defect. Figure 4 shows the relationship between deflection in the center of the elliptical
lamination and the load at different occurrences of the defect 4 = 0.1; 0.08; 0.06.

nts h=0.06
h = 0.08
075 -
/ h=01
[ 30 P q

Figure 4. The relationship between deflection in the center of the elliptical lamination and the load at different occurrences of
the defect £ =0.1; 0.08; 0.06.

In the work, ANSYS medium [20,21] was used to calculate samples from prepreg (glass fiber),
industrial grade of glass fabric—T-25 (VM) TU 6-11-380-76. Unidirectional material has the following
characteristics: fiberglass—E; = 5.4 X 10* MPa, E, = 1.2 X 10* MPa, G;, = 0.5 X 10* MPa, u = 0.28.
Figures 5 and 6 show the results of the analysis of the non-linear behavior of elliptical delaminations for
the case #=0.5 mm; H=3 mm; a =15 mm; b =7 mm; L = 100 mm. The elastic characteristics Ex, Ey, Gx,
Uy, i, of the detached plate are obtained by Equations (1)—(3). The plate consists of 24 layers: the fibers

of the exfoliated layer are located in the direction of loading at an angle of 0° (Figure 5); fibers of the peeled
layer are located in the direction of loading at an angle of 90° (Figure 6). Arrangement of fibers in direction
of loading reduces resistance to deformation (Figure 5), arrangement of fibers in direction perpendicular to
loading increases resistance to deformation (Figure 6).
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Figure 5. Force-strain dependence for laminated part of plate. The fibers of the exfoliated layer are located in the direction of
loading at an angle of 0°.
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Figure 6. Force-strain dependence for laminated part of plate. The fibers of the exfoliated layer are located in the direction of
loading at an angle of 90°.

4. Analysis of the Results of the Calculation

The task of studying the stability of thin-walled laminations of composite materials is considered in a
non-linear formulation. A refined approach for solving this class of problems is presented. The problem of
stability study in the two-dimensional case is considered using the example of elliptic delaminations in a
non-linear formulation. The use of the developed method based on the energy approach allows obtaining
explicit analytical expressions for the quantities characterizing the critical load and describing the
supercritical behavior of the detached part. The energy method is generalized to the case of analyzing the
stability of defects in a non-linear formulation. The value of the critical load was obtained, and the analysis
of the supercritical deformation of the defect was made. Forms of equilibrium near the critical point of
bifurcation have been investigated. Elastic characteristics of a multilayer package of thin lamination,
including the elastic characteristics of separate layers included in it, depending on modulus of elasticity,
shear modulus, Poisson’s ratio, and angle of orientation of fibers of unidirectional layer, are determined.
Ratios are obtained for the unidirectional composite material, which reflect the contribution of each
component (fiber, matrix) in proportion to its volume fraction, the so-called “mixture rule”. The results of
the analytical solution are comparable to the numerical data. The strength estimation and numerical
calculation methods discussed can also be applied to a wide range of composite materials.
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