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ABSTRACT: This study presents a comprehensive projection of China’s forest product yield dynamics 
(encompassing commodity timber and logs) through 2100, employing an innovative integration of machine 
learning and economic modeling. We developed a hybrid analytical framework combining random forest 
algorithms with Cobb-Douglas production functions to assess multi-dimensional drivers, including climatic 
variables, socio-economic indicators, and demographic trends. Our multi-model validation demonstrated 
strong predictive performance (R2 are 0.86 and 0.92), particularly in quantifying climate-production 
interactions, with sensitivity analysis identifying surface downward shortwave radiation (RSDS), 
population density (POP), and mean annual temperature (MAT) as dominant predictors explaining 68% of 
yield variance. Future yields exhibited significant spatial and temporal variations under different SSP 
scenarios, especially under SSP126, where yields were more stable, and under SSP245 and SSP370, where 
yields showed a moderate increasing trend. The SSP585 shows higher fluctuations and a decreasing trend 
in yields due to climate change. Geospatial modeling uncovered critical regional disparities, suggesting 
potential production migration from traditional southern bases to north-eastern/northwestern frontiers under 
climate stress. The southern subtropical belt emerged as particularly vulnerable to thermal extremes and 
precipitation variability, while northern regions demonstrated greater climate resilience but require 
substantial silvicultural adaptation. These results provide a scientific basis for developing more precise 
forest management policies and sustainable development strategies to help meet the challenges posed by 
future demand for forest products and climate change. 
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1. Introduction 

Global climate change has become a major challenge facing human society and has a profound impact 
on the Earth’s ecosystems [1,2]. Global climate change has introduced substantial uncertainty into the long-
term sustainability of forest resource supply systems, particularly in countries with large populations and 
intensive forest product demand [3,4]. As the world’s most populous country, China’s forest resources 
occupy a crucial position in the ecosystem, economic development, and carbon cycle, and forest products, 
especially wood, pulp, and wood-based bioenergy, play a pivotal role [5]. As one of the world’s largest 
producers and consumers of forest products, China’s forest resources play a central role in meeting domestic 
and international market demand, promoting economic development, and achieving ecological 
sustainability [6,7]. However, under the combined influence of climate change, socio-economic 
development, and current forestry policy constraints, the future trajectory of forest product yield in China 
remains highly uncertain. 

Since the 1980s, the Chinese government has continuously adjusted and optimized its forestry policies 
to address the serious challenges facing forest resources [8], such as overconsumption of forest resources 
and deterioration of the ecological environment [9,10]. Currently, China’s forestry policy is developing in 
the direction of multifunctionality and ecological priority. Through the implementation of natural forest 
protection projects, the return of farmland to forests and grasslands, and various forest management 
measures, the Government is actively promoting the restoration and enhancement of forest resources [11–
13]. In this policy context, it is particularly important to study the complex relationship between the 
production and supply of forest products and population, economic, and climate change [14–16]. Population 
growth directly contributes to the rise in demand for forest products, especially for everyday necessities 
such as building materials, paper products, and fuel [17]. The warming of the climate, the frequency of 
extreme weather events, and the increase in forest pests and diseases will lead to the degradation of forest 
resources, thus reducing the yield of forest products [18–21]. On the other hand, the carbon sink function 
of forests plays an important role in combating climate change, and the conservation and sustainable use of 
forest resources have also become important considerations in policy formulation [22,23]. These policy 
measures aim to ensure that China’s forest resources continue to meet the multiple demands of the economy, 
society, and the ecological environment, and to gradually realize a sustainable supply of forest products [7,11]. 

Statistical models are often used for yield forecasting because of their ability to simplify complex 
relationships and their high interpretability [24]. Statistical models developed based on machine learning 
algorithms have better simulation results than traditional linear regression models [25]. The random forest 
algorithm is one of the most popular machine learning techniques for regression analysis and can be used 
to predict outcomes due to its high degree of generality and accuracy [24,26]. Whereas output can be 
affected by climate, demographics, the economy, etc., the Cobb-Douglas production function, which is a 
highly interpretable economic model, can be used to calculate economic output and analyze the relationship 
between its influencing factors [27–29]. This function has been widely applied to the prediction of 
agricultural products, but less research has been conducted on the prediction of forest products [30–34]. 
However, the integration of machine learning models and economic production functions to predict forest 
product yield under policy and climate constraints remains limited. 

We will consider various factors such as socio-economics (population and GDP) and climate, based on 
the current Chinese forestry policy. The future yield of forest products in China will be predicted by a 
random forest model and Cobb-Douglas function. Moreover, this paper will explore the possible impacts 
of climate and socio-economic factors on the future yield of forest products under the current forestry policy, 
and put forward corresponding recommendations, with a view to providing a scientific basis and policy 
reference for the development of China’s forestry industry. 
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2. Material and Methods 

2.1. Study Region 

China is located in the east of Asia, on the west coast of the Pacific Ocean. The terrain is high in the 
west and low in the east, and the climate is complex and diverse (Figure 1). By 2022, China’s forest area 
will reach 231 million hectares, with a forest coverage rate of 24.02%. China is the world’s most populous 
developing country, the world’s third-largest land area, the world’s second-largest economy, and continues 
to be the largest contributor to global economic growth, with an aggregate economic output exceeding 100 
trillion yuan in 2020. 

 

Figure 1. Location (a), precipitation (b), temperature (c), mean annual surface downward shortwave radiation (RSDS) (e), and 
forest land distribution (d) of the study area. 

2.2. Data Collection and Calculation 

2.2.1. Forest Product Yield Data 

China’s forest products yield data are from the Chinese forestry information network 
(https://www.forestdata.cn/; accessed on 1 August 2024). It contains forest product yield data (log yield 
data and commodity timber yield data) for all provinces in China from 1998 to 2015. 

2.2.2. Land Use Data 

The forest area data from 1985 to 2015 are based on the annual land cover data set (CLCD) of Chinese 
provinces, with a spatial resolution of 30 m, released by Wuhan University, and an overall accuracy of 79.31% 
[35]. In this study, forest pixels within the study area were extracted. The future forest area data are based on 
a global land-use change dataset under different scenarios from 2020 to 2100, which combines climate and 
socio-economic factors to achieve high-precision simulation [36]. Land use data is a key factor in calculating 
forest products per unit area. Statistical forest product data and land cover data (forest area data) were used to 
compile forest product data per unit area. 

2.2.3. Climate Data 

We model forest products based on the effects of climate change on forest growth. Environmental data 
obtained through CMIP6 (https://pcmdi.llnl.gov/CMIP6/; accessed on 1 August 2024), compared with the 
past CMIP project implementation, CMIP6 has more participation mode number, better science experiment 
design, and a larger simulation database [37], making it more accurate to describe the physical processes 
of the earth [38]. In this study, four scenarios, namely sustainable development SSP126, moderate 
development SSP245, local development SSP370, and high-energy unconventional development SSP585, 
are adopted. By averaging the data of these representative models, we obtained average data for future 
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mean annual temperature (MAT), mean annual surface downward shortwave radiation (RSDS), and mean 
annual precipitation (MAP). Different environmental data were used to predict the future forest yield under 
these four scenarios. 

2.2.4. Social Data 

Population and GDP have significant effects on the yield and use of forest products. These two socio-
economic indicators may influence the yield of forest products through government policies, the number 
of people employed in forestry, investment in forestry, and the price and volume of timber trade. By 
incorporating social factors, we examine whether policy and economic changes affect forest product output 
in China. 1985–2015, population and GDP data are obtained from the National Bureau of Statistics 
(https://www.stats.gov.cn/; accessed on 1 August 2024). Future data population and GDP are derived from 
the population forecast and GDP forecast in five common socio-economic paths (SSPs) [39]. We converted 
the data and matched it with other data. 

2.3. Model Design 

We choose Cobb-Douglas function as the basic theoretical model of forest product forecasting in China. 
Projections beyond the historical period are intended for exploratory scenario analysis rather than precise 
long-term forecasting. The Cobb-Douglas function primarily examines the relationship between inputs and 
outputs [40]. It reflects the quantitative relationship between a specific combination of production factors 
and the maximum output they can produce under given technical conditions, and can describe the 
relationship between output and production factors. The yield model is suitable for long-term estimation 
and easy to calculate [34,41]. Therefore, this study simulates the main influencing factors of forest yield in 
China through this model, and the basic formula is as follows: 

𝑌 ൌ 𝐴 ൉ 𝑇௔భ ൉ 𝑃௔మ ൉ 𝑅௔య ൉ 𝑁௔ర ൉ 𝐺௔ఱ (1)

where Y is the forest yield, A is the technical coefficient, T is the MAT, P is the MAP, R is the RSDS, N is 
the population, G is GDP, and 𝑎௜ (i = 1, 2, 3, 4, 5) is the elastic coefficient of each variable. 

For many years of calculation in this study, we perform a logarithmic transformation of Equation (1) 
to fit the functional form: 

logሺ𝑌௜௧ሻ ൌ logሺ𝐴ሻ ൅ 𝑎ଵ logሺ𝑇௜௧ሻ ൅ 𝑎ଶ logሺ𝑃௜௧ሻ ൅ 𝑎ଷ logሺ𝑅௜௧ሻ ൅ 𝑎ସ logሺ𝑁௜௧ሻ ൅ 𝑎ହlogሺ𝐺௜௧ሻ (2)

where i represents the region and t represents the year. The construction and calculation methods of yield 
function parameters are used to model how each factor affects the output. It can be used to predict the 
sustainable development of yield under the change of environmental factors [42]. 

In the construction of a forest product prediction model, we use the random forest algorithm to integrate 
multiple decision trees. Random forests have significant advantages in dealing with complex nonlinear 
relations [43]. Moreover, the model can provide high accuracy [24,43]. The random forest model has strong 
tolerance for outliers and noise, can handle high-dimensional data, effectively analyzes nonlinear, collinear, 
and interactive data, and provides variable importance scores when reanalyzing the data [35]. The 
importance of random forest can be used to calculate variables and analyze contribution characteristics [36]. 
This process allows the model to effectively deal with various factors that affect forest products, such as 
environmental conditions (temperature, precipitation, and solar radiation), economic factors, population, 
and land use change. In forest ecosystems, there are complex interactions between different variables. 
Random forest aggregate results by voting or averaging, thereby mitigating bias in individual decision trees 
and reducing the risk of overfitting, which is particularly beneficial in dynamic and complex ecological 
environments [44]. In this study, we used a random forest approach to model forest products across China. 
The data set was randomly divided into a training set (80%) and a test set (20%) to effectively evaluate the 
model’s performance on unseen data [45]. We further verified the stability of the model using cross-
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validation, ensuring that each data point was fully utilized during the testing phase. Cross-validation was 
primarily used to assess overall model stability (R2 = 0.92). 

In our modeling framework, the Cobb-Douglas function serves as the theoretical foundation, providing 
a logical and interpretable structure to describe the relationship between forest product yield and socio-
economic and environmental variables in China (Figure 2). The elasticity coefficients of the Cobb-Douglas 
function are first estimated using historical data, allowing preliminary modeling of the theoretical 
production relationships. Building on this baseline, the random forest algorithm is subsequently applied to 
refine the initial predictions by capturing nonlinear relationships and complex interactions that the Cobb-
Douglas formulation does not adequately explain. By constructing multiple decision trees based on different 
data subsets and feature combinations, the random forest model introduces randomness and flexibility, 
enabling a more accurate representation of interactions between climate, socio-economic factors, and forest 
product yield. Compared with the Cobb-Douglas model alone, the combined Cobb-Douglas-random forest 
framework better addresses nonlinearities and interaction effects, while ensemble averaging across trees 
reduces overfitting and enhances model robustness and predictive performance. 

 

Figure 2. Technical route of the study. 

3. Results 

3.1. Accuracy Evaluation and Importance Analysis of the Model 

In model construction, model accuracy evaluation is very important. We trained and tested the model. 
The prediction model showed high accuracy (Figure 3). For China’s commodity timber yield model, the 
model prediction results were reliable (R2 = 0.7441), MSE = 0.502, and MAE = 0.2. For the Chinese log 
yield model, the prediction accuracy of the model was highly reliable (R2 = 0.7015), MSE = 0.523, MAE 
= 0.189, which indicated that the model was also reliable in predicting log yield. 
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(a)  (b) 

Figure 3. Linear relationship between the predicted value and the actual value of commodity timber (a) and logs (b). Prediction 
accuracy is represented by R2. 

In the aspect of feature importance evaluation, random forest provides importance scores for features, 
which help to identify key factors affecting forest products. The characteristic importance of the model for 
commercial timber and logs, respectively (Figure 4). As can be seen from the figure, for commodity timber, 
RSDS was the most important feature, followed by MAT > POP > MAP > GDP, and in this order, the 
contribution was at least the most. For the log yield model, the order of importance of variables was POP > 
RSDS > MAT > MAP > GDP. This indicates that RSDS, POP, and MAT play the most critical role in 
influencing forest products. By assessing the importance of features in this way, we can identify key 
influencing factors and improve the accuracy of our forest product model simulations. 

(a) (b) 

Figure 4. RF Models feature the importance of commodity timber (a) and logs (b). The mean annual temperature means MAT, 
the annual mean surface downward shortwave radiation means RSDS, the mean annual precipitation means MAP, the gross 
domestic product means GDP, and the population means POP. 

3.2. Forecast Trends in the Future Yield of Commodities and Logs 

Based on forest yield data and other variables from 1985–2015, we used a random forest model to 
simulate future trends in commercial timber and log yields under four different SSPs (SSP126, SSP245, 
SSP370, and SSP585). Under the SSP126, the output per unit area of logs is relatively stable, with little 
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fluctuation and a slow increase trend (Figure 5). Under the SSP245, the output per unit area of logs shows 
an upward trend, and the increase is large. In the SSP370, the log yield per unit area increases to 2038, then 
the growth rate flattens out. Unit yield at the SSP585 peak in 2030, then begins to decline, rising slightly 
in 2045 and declining in 2080. The output per unit area of commodity timber has a large overall change 
from 2015 to 2040, and a more moderate change from 2040 to 2100. Under the SSP126 and SSP245, the 
fluctuation of unit yield is relatively gentle, and the overall trend is increasing. The output under SSP245 
is higher than under SSP126. In 2080, the output under the two scenarios is similar. In the SSP370, yield 
increases rapidly, then begins to decrease in 2038 and levels off in 2060. In the SSP585, yield increases to 
a sharp decline in 2035, shows an increasing trend to 2046, and then declines in 2080. 

 

Figure 5. Projected yield per unit area for logs (a) and commodity timber (b). 

Based on projections of log and commodity timber yields per unit area, we calculated total log and 
commodity timber yields (Figure 6). The trend in total yield was generally consistent with that of yield per 
unit area. In the SSP126, the total log yield and commodity timber yield are relatively stable, with less 
fluctuation and a slow growth trend. Under the SSP245, log yields show an upward trend, with a significant 
increase in 2038, and commodity timber yields show a slow, increasing trend. Under the SSP370, log yields 
fluctuate steadily overall, with a slow, increasing trend, and commodity timber yields peak in 2038, then 
decline and level off in 2060. In the SSP585, both log and commodity timber yields fluctuate considerably, 
with two peaks in 2038 and 2060. 

 

Figure 6. Forecast of total yield of logs (a) and commodity timber (b). 

Based on the future forest product data obtained from the forecast, the spatial distribution of commodity 
timber and log yield was obtained (Figures 7 and 8). It can be seen that the overall spatial distribution 
pattern of China’s commodity timber yield is high in the north and south and low in the east and west. 
Under the SSP126, the yield of commodity lumber is high in the northeast and low in the northwest. The 
provinces with the highest yield in 2030, 2050, and 2070 are Hubei (2.23 × 107 m3), Heilongjiang (1.27 × 
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107 m3), and Inner Mongolia (2.73 × 107 m3). By 2100, the five provinces with the highest yields are, in 
descending order, Heilongjiang (2.44 × 107 m3), Inner Mongolia (2.26 × 107 m3), Yunnan (2.20 × 107 m3), 
Sichuan (1.54 × 107 m3), and Guangxi (6.43 × 106 m3). The main areas of origin of a product are in the 
northeast and southwest. Under the SSP245, there is little overall change in yield in the north and a decrease 
in the south over time. The provinces with the highest yields in 2030, 2050, and 2070 are Zhejiang (3.45 × 
107 m3), Zhejiang (2.13 × 107 m3), and Heilongjiang (2.36 × 107 m3). By 2100, the five provinces with the 
highest yield are Liaoning (2.48 × 107 m3), Inner Mongolia (2.41 × 107 m3), Heilongjiang (2.24 × 107 m3), 
Shanxi (1.85 × 107 m3), and Yunnan (1.67 × 107 m3). By 2100, the five provinces with the highest yield are 
Liaoning (2.48 × 107 m3), Inner Mongolia (2.41 × 107 m3), Heilongjiang (2.24 × 107 m3), Shanxi (1.85 × 
107 m3), and Yunnan (1.67 × 107 m3). The overall, the source of a product gradually shifts northward, except 
in the southwest. Under the SSP370, the central region shows a decrease in yield over time, with an overall 
distribution pattern of high north-south and low east-west. In 2030, 2050, and 2070, the provinces with the 
highest yield are Hubei, with 6.43 × 107 m3, 3.23 × 107 m3, 3.12 × 107 m3, respectively. The five provinces 
with the highest yield of commodity timber in 2100 are Inner Mongolia (2.69 × 107 m3), Heilongjiang (2.08 
× 107 m3), Hubei (2.04 × 107 m3), Yunnan (1.55 × 107 m3), and Sichuan (1.50 × 107 m3). In the SSP585, 
the distribution of yields shows a decreasing trend, with the north-south remaining higher than the east-
west. The provinces with the highest yield in 2030, 2050, and 2070 are Hubei (6.84 × 107 m3), Yunnan (2 
× 107 m3), and Sichuan (2.85 × 107 m3). By 2100, the five provinces with the highest yield of commodity 
timber are Yunnan (1.51 × 107 m3), Sichuan (1.39 × 107 m3), Heilongjiang (8.36 × 106 m3), Jilin (7.33 × 
106 m3), and Guangxi (7.29 × 106 m3). It shows a distribution pattern of higher yield in the northeast and 
southwest than in other regions. 

We can see that the overall distribution pattern of log yield is high in the southwest and low in the 
center (Figure 8). In the SSP126, the yield in the northeast region gradually increases, and the other regions 
do not change much. The provinces with the highest yield in 2030, 2050, and 2070 are Inner Mongolia 
(9.28 × 106 m3), Heilongjiang (1.59 × 107 m3), and Inner Mongolia (2.91 × 107 m3). By 2100, the top six 
provinces in terms of national log yield are Inner Mongolia (2.38 × 107 m3), Heilongjiang (2.34 × 107 m3), 
Guizhou (7.40 × 106 m3), Guangxi (6.76 × 106 m3), Shaanxi (5.94 × 106 m3), and Yunnan (5.86 × 106 m3). 
Under the SSP245, the overall change in yield is insignificant in the north-west and southern regions of 
China, with a gradual increase in the northern region. The provinces with the highest yield in 2030, 2050, 
and 2070 are Guangxi (2.39 × 107 m3), Guangxi (2.34 × 107 m3), and Henan (5.67 × 107 m3). By 2100, the 
top six provinces in terms of log yield are Shaanxi (7.68 × 107 m3), Shanxi (3.31 × 107 m3), Guangdong 
(2.90 × 107 m3), Liaoning (1.77 × 107 m3), Guangxi (1.13 × 107 m3), and Inner Mongolia (8.36 × 106 m3). 
In the SSP370, yield in the central region shows an increasing trend. The provinces with the highest yields 
in 2030, 2050, and 2070 are Henan (2.24 × 107 m3), Henan (1.54 × 107 m3), and Heilongjiang (2.22 × 107 
m3). By 2100, the top six provinces in terms of log yield are Inner Mongolia (2.54 × 107 m3), Heilongjiang 
(1.98 × 107 m3), Yunnan (1.95 × 107 m3), Sichuan (9.33 × 106 m3), Hebei (6.73 × 106 m3), and Guangxi 
(6.72 × 106 m3). Under the SSP585, there is a clear decreasing trend in the southern region of China and a 
slight increase in yield in the north-west. The provinces with the highest yield in 2030, 2050, and 2070 are 
Yunnan (3.25 × 107 m3), Yunnan (9.87 × 106 m3), and Guangdong (1.83 × 107 m3). By 2100, the top six 
provinces in terms of log yield are Yunnan (1.3 × 107 m3), Guangxi (7.31 × 106 m3), Heilongjiang (7.14 × 
106 m3), Jilin (6.87 × 106 m3), Hunan (5 × 106 m3), and Guizhou (4.88 × 106 m3). 
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Figure 7. Spatial distribution of total yield of commodity timber by province. 
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Figure 8. Spatial distribution of total log yield by province. 

4. Discussion 

4.1. Results of Forest Products Modelling Projections 

In this study, China’s commodity timber and log yield up to 2100 under different scenarios were 
simulated based on the random forest model and Cobb-Douglas function, and the model’s prediction 
accuracy for both commodity timber and logs showed high confidence (Figure 3). Indicators such as R2 and 
MSE show the good predictive ability of the model for forest products, and this high accuracy indicates the 
applicability of the selected model with the variables. In addition, the low error values indicate that the 
model is potentially effective in practical applications and can be applied to different forest product data, 
providing important data support for forest management and sustainable development decisions. 

Different variables showed different levels of importance in predicting commercial timber and logs 
(Figure 4). From the results, we can see that climatic conditions play a key role in the growth of commodity 
timber, while socio-economic factors such as GDP make a relatively small contribution. This may be due 
to the possibility that the yield of forest products may be more influenced by natural environmental factors, 
such as climate. Policies such as environmental protection and sustainable development goals in China may 
have limited the overexploitation of forest resources, which, in turn, has led to a relatively weak relationship 
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between GDP and forest product yields [46–48]. For log yield, population is the most important variable. 
This suggests that social demand is the main driver of changes in log yields, with climatic factors such as 
RSDS and MAT following closely behind. This difference in variable importance reflects differences in 
the sensitivity of different forest products to environmental and socio-economic factors. 

The yield under the SSP585 scenario shows two wave peaks in 2035 and 2090 (Figure 6). This may be 
due to the high-intensity climate change, high socio-economic development, and population growth in the 
SSP585, which may produce phase fluctuations in demand for forest products. This is also related to land 
use change under climate change. In 2035, the peak may be driven by the interaction between market 
demand and competitive exuberance amid high carbon emissions, while the 2090 peak may be driven by 
variable effects of resource reallocation or ecosystem adaptive restoration. 

4.2. Spatial Distribution of Forest Yield under Different Scenarios 

Analyses of the spatial distribution of future yield of commodity timber and logs reveal a pattern of 
high north-south and low east-west (Figures 7 and 8), which may be closely related to regional forest 
resource endowment and economic activities. Under SSP126, commercial timber yield is higher in the 
north-eastern and southern regions. However, under SSP585, the yield of commodity timber in the southern 
region gradually decreases, whereas that in the northern region remains relatively stable. This change may 
be influenced by a combination of climate change and regulatory policies [49,50]. Increased temperatures 
due to global warming, some southern forest yield areas may become unsuitable for forest growth due to 
high summer temperatures or increased drought, while the higher latitude of the northern region and the 
longer summer sunshine hours are conducive to the extension of the growth cycle of forest trees [51,52]. 
In the South, where population density is higher, and land is mostly used for agriculture, urban expansion, 
etc., the area of forested land may be reduced. In contrast, the north is relatively rich in land resources, 
which makes it easier to expand forested lands [53]. The Government of China has implemented a series 
of ecological protection measures in recent years, such as the ‘Returning Cultivated Land to Forests’ and 
the ‘Three-North Protection Forest Project’. These policies may have facilitated afforestation activities in 
the northern regions, thereby expanding the range of tree-producing areas, and the widespread use of 
modern forestry technologies (e.g., precision silviculture, irrigation systems) in the northern regions may 
have improved their yield conditions [54,55]. 

In terms of future spatial distribution of both commodity timber and log yield, under different scenarios, 
most of the peak yield areas are concentrated in the provinces of Inner Mongolia, Heilongjiang, and Yunnan. 
These regions are rich in forest resources, and high yields are supported by favorable climatic conditions 
and large plantation areas. However, Northwest China and parts of the south experience a significant 
reduction in yields under the high emissions scenario, suggesting that these regions may be negatively 
affected by climate change. Climate change may lead to an increase in the frequency and intensity of pests 
and diseases in the southern region, and higher temperatures may lead to an increase in evapotranspiration, 
making water availability insufficient, which in turn affects plant growth and forest productivity. 
Particularly in the north-west, where water resources are already scarce, higher temperatures may further 
exacerbate water stress and inhibit plant growth. This suggests that regional variability should be taken into 
account when developing regional forest management strategies to optimize resource allocation to 
maximize yield. 

4.3. Influence of Policy, Climatic, and Socio-Economic Factors on the Existence of Forest Yields 

Policy plays a central role in forest yield [56]. Through policy guidance, the government can regulate 
the balance between supply and demand of forest products and promote the sustainable management of 
forest resources. For example, by restricting the felling of natural forests and promoting the planting and 
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management of plantation forests, the Government has effectively controlled the overconsumption of forest 
resources and guaranteed the long-term supply of forest products [9,57,58]. 

After our study, we found that the future yield of commodity timber and logs showed significant 
differences under different climate scenarios. Under the SSP370 and SSP585, the yield of forest products 
decreased significantly in some regions, especially in the original main yield areas, such as provinces in 
southern and southwestern China. Taking Guangxi, Yunnan, and Sichuan as examples, the yield of 
commodity timber and logs under the SSP585 in these regions, which were originally important yield areas 
for forest products, showed significant decreasing trends. The decrease in yield may be related to the 
deterioration of forestry yield conditions due to increases in economic development, land-use change, and 
climate change [18,59,60]. In the central region, such as Hubei and Henan, although high yields are 
maintained in the short term, yields tend to decline in the long term due to climate suitability and under-
utilization of resources. Under climate change scenarios (e.g., SSP585), the southern and central regions 
(e.g., Guangxi, Hunan) may experience declining yields due to reduced climatic suitability and over-
exploitation of resources, whereas the north-eastern and northwestern regions (e.g., Heilongjiang, Inner 
Mongolia) may emerge as new major yield areas due to improved climate and population migration. 
Therefore, forestry policies need to take climate change as a key consideration when developing future 
strategies and prioritize the development of climate-adapted forestry to cope with the uncertainties that 
climate change may bring. In addition, socio-economic factors such as rural migration and labour shortages 
in forestry may affect the effectiveness of forestry operations. 

4.4. Model Applicability and Uncertainty 

Uncertainty from CMIP6 climate projections is not explicitly propagated through the random forest 
model. Therefore, long-term results should be interpreted as scenario-based outcomes rather than 
probabilistic forecasts. The combined Cobb-Douglas and random forest framework provides an efficient 
and flexible tool for national-scale prediction of forest product yield. Its main strength lies in integrating 
interpretable economic relationships with the strong nonlinear predictive capability of machine-learning 
models. The Cobb-Douglas function offers a transparent representation of socio-economic drivers, while 
the random forest model captures complex responses to climatic and demographic factors. This modular 
design allows the framework to be easily extended to different regions and future socio-economic scenarios. 
The model is intended for large-scale scenario analysis rather than detailed simulation of forest biological 
processes. By focusing on widely available climate and socio-economic variables, it enables rapid 
evaluation of long-term development pathways at relatively low data and computational cost. This makes 
the framework particularly suitable for policy-oriented assessments of how population growth, economic 
development, and climate change jointly affect forest product supply. 

5. Conclusions 

From 1985 to 2020, China’s forestry policy shifted from resource use to ecological protection, gradually 
moving towards a green, sustainable development model. Based on the random forest model and the Cobb-
Douglas yield function, this study predicts future yield trends and the spatial distribution of forest products in 
China, accounting for the effects of climate change and socio-economic factors. By simulating the yield of 
forest products under different scenarios (SSP126, SSP245, SSP370, and SSP585), the results of the study 
show that the constructed prediction model has a high accuracy for forest yield and can effectively reveal the 
key roles of climatic, economic, and demographic factors in the changes of forest product yield. The future 
yield per unit area of forest products showed obvious spatial and temporal trends under different scenarios. 
Spatial distribution analyses show significant differences in forest product yields across regions of China, 
with relatively high yields in the northeast and northwest, while parts of the south and southwest may face 
the risk of declining yields in the future. The paper finds that climate change in the southern region may lead 
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to water scarcity and declining forest productivity, while the northern region may become a new major area 
for forest products because of improved climate and abundant land resources. Government policies have 
played a crucial role in this process, promoting the sustainable use of forest resources by limiting natural 
forest harvesting, promoting plantation forestry and optimizing forestry management. 

In summary, this paper provides a scientific foundation for predicting China’s future forest product 
output and serves as an important reference for adjusting forestry policies and sustainable management of 
forest resources. With the intensification of climate change, forestry policies need to place greater emphasis 
on climate adaptation and prioritize the development of adaptive forestry technologies and management 
approaches to cope with future changes in forest product yields and ecosystem service functions. 
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