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ABSTRACT: Pulmonary fibrosis is a progressive lung disease associated with high morbidity and
mortality. Increasing evidence indicates that metabolic reprogramming is a central driver of fibrogenesis.
Multiple cell types in the fibrotic lung, including fibroblasts, alveolar epithelial type II (AEC2) cells, and
macrophages, exhibit enhanced glycolysis, dysregulated lipid turnover, and altered amino acid utilization.
These metabolic changes promote fibroblast activation, sustain ECM production, and impair epithelial
repair. Recent studies have identified key regulatory pathways—such as hypoxia-inducible factor-1a(HIF-
la)-mediated glycolysis, aberrant fatty acid and cholesterol metabolism, and glutamine-dependent anabolic
processes—that collectively shape the profibrotic microenvironment. Targeting these metabolic
vulnerabilities has shown promising antifibrotic effects in preclinical studies, supporting glycolysis
inhibitors, lipid-modulating agents, and amino acid metabolism blockers as potential therapeutic
approaches. This review summarizes recent advances in glucose, lipid, and amino acid metabolic
reprogramming in pulmonary fibrosis, with IPF discussed as a representative and well-studied subtype, and
highlights emerging metabolic-targeted therapeutic strategies. Understanding cell-specific metabolic
adaptations may provide new opportunities to develop effective interventions for pulmonary fibrosis,
whereas most metabolic mechanisms are shared across fibrotic lung diseases.

Keywords: Pulmonary fibrosis; Metabolic reprogramming; Glucose metabolism; Lipid metabolism;
Amino acid metabolism; Targeted therapy

1. Introduction

Pulmonary fibrosis encompasses a group of chronic interstitial lung diseases characterized by aberrant
fibroblast activation, excessive extracellular matrix deposition, and progressive remodeling of lung
architecture, ultimately leading to respiratory failure [1]. These disorders primarily affect older adults and
are associated with poor prognosis, with idiopathic pulmonary fibrosis (IPF) exhibiting a median survival
of only three to five years after diagnosis. Despite extensive research, the etiology of many forms of
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pulmonary fibrosis, including IPF, remains incompletely understood, and unpredictable clinical courses
further complicate disease management.

A central pathological event in pulmonary fibrosis is the failure of effective alveolar repair. Injury to
alveolar epithelial type II (AEC2) cells, which function as progenitor cells maintaining epithelial integrity,
disrupts normal regeneration and promotes aberrant activation of fibroblasts. In IPF and related fibrotic
lung diseases, these activated fibroblasts differentiate into myofibroblasts, leading to excessive ECM
accumulation, destruction of alveolar architecture, and progressive impairment of gas exchange. Immune
and endothelial cells also contribute to the establishment of a profibrotic microenvironment, reinforcing the
chronic and self-sustaining nature of fibrotic remodeling.

Currently available antifibrotic drugs, pirfenidone and nintedanib, can partially slow the decline of lung
function but cannot reverse established fibrosis or substantially improve long-term survival. Their limited
efficacy suggests that therapies targeting classical signaling pathways—such as the transforming growth
factor-p/Smad homolog (TGF-B/Smad) axis—may have reached a therapeutic plateau. These limitations
highlight the need to identify additional mechanisms that drive disease progression and to explore novel
therapeutic strategies.

Advances in metabolomics and single-cell transcriptomics have revealed that metabolic
reprogramming is closely associated with the onset and progression of pulmonary fibrosis. Metabolic
alterations not only reflect changes in energy demand but also actively promote fibrogenesis. Three major
metabolic pathways—glucose, lipid, and amino acid metabolism—have gained particular attention.

Enhanced glycolysis is one of the earliest and most prominent metabolic changes in IPF and other
fibrotic lung diseases. Activated fibroblasts exhibit a Warburg-like phenotype, favoring glycolysis even
under normoxic conditions [2]. Accumulated lactate acts as a signaling molecule that amplifies fibrotic
responses by activating TGF-f3 and HIF-1a, thereby supporting myofibroblast differentiation and ECM
production. Lipid metabolism is also markedly dysregulated. In AEC2 cells, increased de novo lipogenesis
combined with reduced fatty acid oxidation contributes to lipid droplet accumulation and mitochondrial
dysfunction, thereby impairing epithelial repair. Conversely, fibroblasts enhance lipid synthesis to meet the
biosynthetic demands of ECM production [1,3]. Significant abnormalities also occur in amino acid
metabolism: glutamine and arginine pathways are upregulated, supplying energy and precursors for
collagen synthesis. Glutamine metabolism generates a-ketoglutarate to maintain NADPH levels required
for redox homeostasis [4,5], while arginine contributes to the synthesis of proline and other collagen
precursors [6].

These metabolic pathways are interconnected through regulatory hubs such as mammalian target of
rapamycin (mTOR) and HIF-1a. For example, the glycolytic enzyme PFKFB3 can activate mTOR, and
oxidized lipids can stimulate TGF-f signaling, collectively amplifying metabolic and fibrotic remodeling
[5]. This highly integrated network of metabolic disturbances contributes to the persistence and
irreversibility of fibrotic lung diseases, including IPF.

Although many examples discussed in this review are derived from studies on idiopathic pulmonary
fibrosis, most metabolic alterations described are shared across fibrotic lung diseases. Therefore, this review
focuses broadly on lung fibrosis while highlighting IPF as a representative and well-studied subtype.

Metabolic reprogramming not only regulates intracellular energy balance but also shapes intercellular
communication within the fibrotic lung microenvironment. Metabolites such as lactate, lipid mediators,
nitric oxide, and amino acid—derived compounds act as signaling molecules, influencing interactions among
fibroblasts, epithelial cells, endothelial cells, and immune cells. These signals can promote fibroblast
activation, hinder epithelial repair, and bias immune cells toward a profibrotic phenotype, creating a self-
sustaining fibrotic niche [6]. Importantly, metabolic patterns vary between disease stages. Early-stage
fibrosis is marked by enhanced glycolysis and LXR pathway activation, where inhibitors such as the
PFKFB3 blocker 3PO or LXR agonists can effectively prevent fibrosis onset. Late-stage fibrosis [5],
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however, is dominated by disrupted amino acid metabolism, particularly glutamine and arginine pathways,
supporting collagen synthesis, and thus GLS1 inhibitors offer greater therapeutic benefit at this stage.
Understanding these stage-specific metabolic alterations provides insight into optimal timing and targeting
of antifibrotic therapies.

2. Glucose Metabolism and Pulmonary Fibrosis
2.1. Pathological Basis of Glucose Metabolic Dysregulation in Pulmonary Fibrosis

Emerging evidence suggests that glucose metabolism reprogramming is actually a key driver of the
occurrence and development of pulmonary fibrosis, similar to the metabolic phenotype observed in cancer
cells. In fibrotic lungs [7], ysis, even under normoxic conditions. This reminds one of the Warburg effect.
After analyzing the lung tissues of patients with IPF and experimental models, it was found that the
expression of glycolytic related enzymes was significantly upregulated, including hexokinase 2 (HK2), 6-
phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3), pyruvate kinase M2 (PKM2), and lactate
dehydrogenase A (LDHA). Lactic acid production and extracellular acidification also increased.

Lactic acid is not merely a metabolic by-product; it is also a highly functional signaling molecule [8].
It can promote the differentiation of fibroblasts into myofibroblasts, enhance the contractility of cells, and
stimulate the deposition of extracellular matrix [9]. Lactic acid can also amplify the fibrotic response by
relying on local acidification, activating the TGF-§ pathway, and stabilizing HIF-1a [10]. Lactic acid can
also damage the anti-inflammatory activity of macrophages, allowing the profibrotic microenvironment to
persist [11].

In terms of mechanism, the mTOR pathway plays a coordinating role in this metabolic remodeling.
PFKFB3 activates mTOR, which then increases the expression of glycolytic genes, establishing a PFKFB3-
mTOR glycolytic positive feedback loop that maintains fibroblast activation. Besides fibroblasts, Abnormal
sugar metabolism can also cause damage to the functions of other cells in the lungs [12]. In alveolar
epithelial cells, elevated glycolysis can lead to endoplasmic reticulum stress, apoptosis, and impaired tissue
repair [13]. In macrophages, glycolysis promotes the release of pro-inflammatory cytokines and also
facilitates the recruitment of fibroblasts [14,15]. Overall, these findings suggest that metabolic
reprogramming in pulmonary fibrosis is not merely an energy adaptation [16]. It is also a cross-cellular
signaling event that can promote the progression of diseases. These metabolic alterations further influence
intercellular communication between fibroblasts and surrounding epithelial and immune cells, amplifying
profibrotic signaling within the lung microenvironment.

2.2. Key Molecular Pathways Linking Glucose Metabolism and Fibrosis

Four major signaling axes mediate the interplay between glucose metabolism and pulmonary fibrosis,
promoting sustained fibroblast activation and ECM accumulation:

HIF-10. pathway: Hypoxia or lactate accumulation stabilizes HIF-la, which transcriptionally
upregulates glycolytic genes such as glucose transporter 1 (GLUT1), HK2, and LDHA, forming a positive
feedback loop that amplifies glycolysis and fibrotic signaling [17].

PI3K-Akt—-mTOR pathway: This pathway enhances both expression and activity of glycolytic
enzymes while suppressing mitochondrial oxidative metabolism, thereby favoring glycolysis to support
fibroblast proliferation and collagen biosynthesis [18,19].

TGF-p/Smad signaling: TGF- induces PFKFB3 expression and lactate production, which, in turn,
reinforce TGF-f signaling, creating a feedforward loop that accelerates ECM synthesis [20].

ATF4-mediated metabolic adaptation: Under stress conditions such as nutrient deprivation or
oxidative stress [21], activating transcription factor 4 (ATF4) upregulates genes involved in glucose and
one-carbon metabolism, ensuring adequate substrates for collagen and ECM production [22,23].
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These pathways underscore the close integration of metabolic alterations with canonical profibrotic
signaling, highlighting potential targets for therapeutic ¢ intervention [24].

2.3. Representative Metabolic Targets and Drug Research
2.3.1. PFKFB3 Inhibition: 3PO

PFKFB3 can catalyze the formation process of fructose-2,6-diphosphate, and fructose-2,6-diphosphate
is a highly active allosteric activator of PFK-1. This activator is highly expressed in activated fibroblasts
and promotes collagen synthesis through mTOR activation [25]. In the LPS-induced lung injury model, the
small molecule PFKFB3 inhibitor 3PO reduces the release of pro-inflammatory cytokines by alveolar
macrophages. The release of pro-inflammatory cytokines such as TNF-a and IL-1p will also decrease. At
the same time, it can alleviate pulmonary edema and reduce collagen deposition. In addition, 3PO can also
inhibit NF-xB signaling and the transdifferentiation of fibroblasts into myofibroblasts. Currently, 3PO
remains in preclinical evaluation, with strategies such as lung-targeted delivery proposed to minimize off-
target effects. In addition to small-molecule inhibitors like 3PO, activation of the glucagon-like peptide-1
receptor (GLP-1R) has also been shown to attenuate pulmonary fibrosis progression by disrupting NOD-
like receptor family pyrin domain containing 3 (NLRP3) inflammasome/PFKFB3-driven glycolysis and
histone lactylation, providing an alternative strategy for targeting PFKFB3-related metabolic
reprogramming [26].

2.3.2. LDHA Inhibition: Gossypol

LDHA can catalyze the conversion of pyruvate into lactic acid, and this process is a key step in
promoting lactic acid accumulation during the differentiation of myofibroblasts through the activation of
TGF-B1. Relevant content is mentioned in references [27,28]. Gossypol is a natural LDHA inhibitor that
competitively binds to the active site of the enzyme, thereby reducing lactic acid production. It can also
inhibit the TGF-B1/Smad3 signaling pathway, which is also explained in reference [29]. Preclinical studies
have demonstrated that gossypol has antifibrotic effects. However, gossypol has certain toxicity, such as
hepatotoxicity and reproductive effects. It is necessary to develop safer analogues for its clinical application.

2.3.3. GLUT1 Inhibition: STF-31

GLUTI can mediate the uptake of glucose by fibroblasts and is upregulated in IPF. STF-31 can reduce
the availability of glycolytic substrates [30] and also inhibit the activation of mTOR and the synthesis of
collagen, which are recorded in relevant literature [31,32]. Although STF-31 has demonstrated certain
antifibrotic potential in in vivo model experiments, it still needs to be optimized to enhance its selectivity
while minimizing its impact on GLUT1-dependent tissues as much as possible.

2.3.4. Broad Glycolysis Inhibition: 2-Deoxy-D-Glucose (2-DG)

2-DG@ can inhibit glycolysis over a relatively wide range and also reduce inflammatory phenomena and
ECM deposition in preclinical fibrosis models [33]. However, its application in clinical practice is
constrained by systemic toxicity. In tissues with a high degree of glucose dependence, if local
administration is adopted, just like by inhalation or using nanoparticle carriers for drug administration, it
may enhance its safety and efficacy, and it may also be used in combination therapy rather than just as a
single treatment.
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2.3.5. Indirect Modulation: Metformin

Metformin can inhibit the glycolytic process mediated by PFKFB3 by activating adenosine
monophosphate-activated protein kinase (AMPK)/mTOR. It can increase the AMP/ATP ratio by reducing
mitochondrial ATP production, then activate AMPK, inhibit mTOR, and finally reduce collagen synthesis
in fibroblasts [34,35]. Preclinical studies have shown that metformin, whether used alone or in combination
with pirfenidone, has antifibrotic effects [36]. Considering that metformin has been proven safe in clinical
practice, makes it an attractive candidate for repurposing, pending further controlled clinical evaluation
(Table 1).

Table 1. Summary of Glucose Metabolism Drugs.

COMPOUND TARGET MECHANISM OF ACTION RESEARCH STATUS

Inhibits PFKFB3, reduces the production of

fructose-2,6-bisphosphate, thereby inhibiting the In the preclinical evaluation stage; a
mTOR signaling pathway, decreasing the release lung-targeted delivery strategy has
of pro-inflammatory cytokines (TNF-a, IL-1f),  been proposed to reduce off-target
suppressing the transformation of fibroblasts into effects [26]

myofibroblasts, and reducing collagen deposition

Preclinical studies have shown
antifibrotic efficacy, but it has issues
such as hepatotoxicity and
reproductive toxicity; safer analogs
need to be developed for clinical
translation [29]

In vivo models have demonstrated
Inhibits GLUT1-mediated glucose uptake in antifibrotic potential; further
fibroblasts, reduces glycolytic substrate supply,  optimization is required to improve

3PO PFKFB3

Competitively binds to the active site of LDHA,
inhibits the conversion of pyruvate to lactate,

GOSSYPOL LDHA reduces lactate accumulation, and further inhibits
the TGF-B1/Smad3 signaling pathway to suppress
myofibroblast differentiation

STE-31 GLUTI and inhibits mTOR activation, thereby suppressingselectivity and reduce impacts on
collagen synthesis GLUT1-dependent tissues such as
the brain and heart [32]
Clinical application is limited by
systemic toxicity, especially
2-DEOXY-D- Glycolytic Broadly inhibits the glycolytic process, reduces' flleg;lelfgsztt ;?Z?EZSO;); tlltslssuz)s(s:fgg
GLUCOSE pathway inflammatory responses, and extracellular matrix to be delivered locally via inhalation

(Global inhibition)deposition . . .
or nanoparticle carriers, or used in

combination therapy rather than

monotherapy [34]

Clinical safety has been established,
Reduces mitochondrial ATP production, increases preclinical studies have shown

PFKFB3 the AMP/ATP ratio, activates AMPK, thereby antifibrotic effects both alone and in
METFORMIN (AMPK/mTOR  inhibiting mTOR and PFKFB3-mediated combination with pirfenidone,
pathway) glycolysis, and decreases collagen synthesis in ~ supporting its potential for further
fibroblasts investigation in pulmonary fibrosis
[36]

2.4. Conclusion and Prospect

Glucose metabolic reprogramming is a key driver of fibroblast activation and extracellular matrix
deposition in pulmonary fibrosis, with lactate serving as a critical mediator of profibrotic signaling.
Targeting glycolysis through enzymes such as PFKFB3 and LDHA, or via metabolic sensors such as
AMPK, has shown robust antifibrotic effects in preclinical models (Figure 1). However, clinical translation
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is hindered by uncertainties regarding the causal role of aerobic glycolysis in fibrosis initiation, off-target
toxicity, and efficient delivery to fibrotic lung tissue. Advanced strategies, including inhalable formulations
and fibroblast-targeted nanoparticles, may improve tissue specificity and safety. Furthermore, the interplay
between glucose metabolism and other pathways, such as lipid and one-carbon metabolism, remains largely
unexplored and may uncover novel therapeutic vulnerabilities. Integrating metabolic interventions with
approved anti-fibrotics—such as combining AMPK activators with pirfenidone or nintedanib—could
enhance efficacy through synergistic effects. Future studies should emphasize longitudinal in vivo
metabolic tracing, single-cell metabolic profiling, and biomarker-driven patient selection to optimize
therapy. By addressing mechanistic gaps, improving delivery, and combining metabolic modulation with
existing treatments, targeting glucose metabolism holds promise as a precision strategy for clinically
translatable antifibrotic interventions.

- Fibroblast Activation -
Fibroblast Myofibroblast
Glucose
HK2
2-DG
. [ PFKFB3 Glycolysis — Lactate Production
FX11 .
~—— [LDHA ECM Deposition

Abbreviations

HK2: Hexokinase 2

PFKFB3: 6-Phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3
LDHA: Lactate dehydrogenase A

ECM: Extracellular matrix

2-DG: 2-Deoxy-D-glucose

FX11: LDHA inhibitor FX11

Figure 1. Glucose metabolic reprogramming in lung fibrosis. Fibroblasts in fibrotic lungs exhibit enhanced glycolytic activity,
leading to increased lactate production. Upregulation of key glycolytic enzymes, including hexokinase 2 (HK2), 6-phosphofructo-
2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3), and lactate dehydrogenase A (LDHA), supports fibroblast activation and
extracellular matrix (ECM) deposition. Representative glycolytic inhibitors investigated in preclinical models are indicated.

3. Lipid Metabolism in Pulmonary Fibrosis
3.1. Pathological Basis of Abnormal Lipid Metabolism

Pulmonary fibrosis is increasingly recognized as a disorder involving not only glucose metabolic
reprogramming but also profound alterations in lipid metabolism. Under physiological conditions, AEC2
cells rely on fatty acid oxidation (FAO) and cholesterol homeostasis to maintain surfactant production and
cellular integrity. In IPF patients and experimental models, AEC2 cells exhibit enhanced de novo
lipogenesis (DNL), reduced FAO [37], and disrupted cholesterol metabolism, resulting in lipid
accumulation, mitochondrial dysfunction, and heightened cellular stress [1].

Single-cell transcriptomic analyses have shown significant downregulation of FAO-related genes and
upregulation of fatty acid synthesis genes in AEC2 cells of IPF lungs [38], indicating a metabolic shift from
oxidation to synthesis [3]. Reanalysis of single-cell RNA-seq databases further unraveled novel molecular
mechanisms underlying lipid metabolic dysregulation in IPF, highlighting cell-type-specific lipid metabolic



Fibrosis 2026, 4(1), 10004. doi:10.70322/fibrosis.2026.10004 7 of 20

signatures that contribute to epithelial dysfunction and fibroblast activation [39]. In addition to key enzymes
involved in lipid synthesis and fatty acid oxidation, such as fatty acid synthase (FASN) and carnitine
palmitoyltransferase 1A (CPT1A), downregulation of HMGCS2 [40] in AEC2 cells has also been identified
as a key mediator of lipid metabolic alteration, which promotes pulmonary fibrosis by activating fibroblasts
[41]. Moreover, dysregulation of fatty acid profiles correlates with lung function decline in IPF patients,
emphasizing the clinical relevance of lipid metabolic abnormalities in disease progression [42]. This
reprogramming impairs AEC2 regenerative capacity, increases endoplasmic reticulum (ER) stress and
reactive oxygen species (ROS) accumulation, and promotes epithelial apoptosis [43], collectively hindering
tissue repair [44,45].

In interstitial compartments, activated fibroblasts also display abnormal lipid metabolism, including
enhanced fatty acid synthesis that supplies energy and lipid precursors for collagen production [46,47].
Accumulated lipid droplets and cholesterol derivatives can further act as signaling molecules, activating
the TGF- pathway and exacerbating fibrosis [1].

3.2. Key Molecular Pathways and Mechanisms of Action

De novo lipogenesis (DNL): fatty acid synthase (FASN) and stearoyl-CoA desaturase 1 (SCD1) are
upregulated in fibrotic tissues. Excessive fatty acid synthesis leads to ER stress, apoptosis, and impaired
epithelial repair, while saturated fatty acids activate the TLR4/NF-kB pathway to amplify inflammation [5].

Fatty acid oxidation (FAO): CPT1, the rate-limiting enzyme of FAO, is downregulated in AEC2 cells
of IPF patients [3]. Reduced FAO results in energy deficiency and lipid droplet accumulation, impairing
alveolar epithelial regeneration. Pharmacologic FAO activation can restore AEC2 function and promote
repair [48].

Cholesterol metabolism: Cholesterol and its derivatives modulate lipid synthesis and inflammatory
signaling through liver X receptor (LXR) and sterol regulatory element-binding protein (SREBP) pathways
[44,49]. Accumulation of cholesterol and oxysterols is linked to AEC2 injury, and LXR agonists may
improve lipid homeostasis, although they could also exacerbate inflammation [50].

Cross-cell metabolic crosstalk: Altered lipid metabolism in immune cells, particularly macrophages,
promotes a profibrotic phenotype through TGF-3 and vascular endothelial growth factor (VEGF) secretion
[47]. Fibroblasts and AEC2 may interact via free fatty acids or lipid-derived signals, forming a metabolic
network that sustains fibrosis.

3.3. Representative Targets and Drug Research
3.3.1. FASN Inhibitors

FASN is an enzyme that plays a key role in the process of fatty acid synthesis and is highly expressed
in I[PF fibroblasts [51]. In the bleomycin mouse model, studies have shown that FASN inhibition can restore
fibroblasts to a quiescent state and reduce collagen deposition [52]. Although current clinical evaluations
primarily focus on oncology, FASN inhibitors have potential for treating pulmonary fibrosis. These
inhibitors, such as TVB-2640, have demonstrated manageable safety profiles in clinical trials, with mild
gastrointestinal effects being the most common. When combined with targeted fibroblast delivery methods,
they can limit systemic toxicity, further supporting their therapeutic repurposing for lung fibrosis.

3.3.2. PPARy Agonist: Rosiglitazone

PPARy can regulate the formation of lipid droplets and also inhibit the transdifferentiation of
fibroblasts into myofibroblasts, which has been mentioned in relevant studies. In IPF, the expression of
PPARY has decreased, and this phenomenon of reduced expression has caused functional disorders in
adipocytes. Rosiglitazone can activate PPARy. Once PPARY is activated, it can promote the formation of
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lipid droplets and also restrict the differentiation of myofibroblasts, which is elaborated in the study. While
systemic side effects remain a concern, lung-targeted delivery could enhance therapeutic specificity.

3.3.3. Sphingosine-1-Phosphate (S1P) Receptor Antagonists: JTE-013, TY-52156

The S1P signal promotes the production of ECM by activating PI3K/Akt through sphingosine-1-
phosphate receptor 2 (S1P2R) and sphingosine-1-phosphate receptor 3 (S1P3R), which is mentioned in
relevant research literature [53,54]. In preclinical models, antagonists JTE-013 and TY-52156 can inhibit
downstream signal transduction. It leads to a decrease in the expression of collagen and fibronectin. For
future precision medicine strategies, patients with elevated S1P levels can be stratified, and then targeted
treatments can be carried out for these patients [55].

3.3.4. PCSK9 Inhibitor: Evolocumab

Proprotein convertase subtilisin/kexin type 9 (Pcsk9)-mediated LDL receptor degradation can cause
cholesterol accumulation and also trigger Wnt/B-catenin-driven epithelial-mesenchymal transition, which
has been studied in reference. Evolocumab can restore low-density lipoprotein receptor (LDLR) function
and reduce cholesterol deposition in the body. It can also suppress the Wnt signal [56]. Although
Evolocumab has been clinically approved for the treatment of hyperlipidemia, its therapeutic effect on
pulmonary fibrosis still needs to be verified.

3.3.5. ACSL4 Inhibitor: Liproxstatin-1

Acyl-CoA synthetase long-chain family member 4 (ACSL4) can promote lipid peroxidation in AEC2
cells and cause ferroptosis in AEC2 cells, which leads to epithelial damage [57]. Liproxstatin-1 can inhibit
ACSLA4, reduce the amount of lipid peroxides, and protect the vitality of AEC2 cells, targeting ferroptosis
[58,59]. It may also provide new treatment options for specific subtypes of pulmonary fibrosis [60].

3.3.6. Cholesterol Metabolism Modulators

LXR agonists and SREBP inhibitors have been explored for restoring cholesterol homeostasis, as
reported in references [61]. However, these agents exert dual effects on lipid regulation and inflammation,
and clinical studies have observed a risk of exacerbated inflammatory responses. To mitigate these effects,
strategies such as low-dose administration, combination therapy, or targeted lung delivery are being
investigated. Prior to clinical translation, detailed studies on cell-type-specific effects and safety profiles
are essential to ensure efficacy while minimizing systemic inflammatory risks [62] (Table 2).

Table 2. Summary of Lipid Metabolism Drugs.

COMPOUND TARGET MECHANISM OF ACTION RESEARCH STATUS
Inhibits fatty acid synthase (FASN), restores Clinical evaluations are mainly focused on the
FASN fibroblasts to a quiescent state, reduces oncology field; it is expected to be repurposed
FASN collagen deposition, and simultaneously for pulmonary fibrosis treatment, requiring
INHIBITORS . . . .. . .
alleviates endoplasmic reticulum stress and combination with fibroblast-targeted delivery to
epithelial cell apoptosis reduce systemic toxicity [63]
Activates PPARY, regulates lipid droplet There is a risk of systemic side effects; lung-
ROSIGLITAZONEPPARYy formation, 1.nh1b1ts the transformatlop of targe.ted. delivery can e.nh.anc.e therapellltlc
fibroblasts into myofibroblasts, and improves specificity; further optimization of delivery
lipofibroblast function methods is needed for clinical translation

Preclinical models have shown effectiveness; in
the future, stratified targeted therapy can be
performed for patients with elevated S1P levels
through precision medicine strategies [53,54]

Inhibit the PI3K/Akt signaling pathway
mediated by S1P receptors, reducing the
expression of collagen and fibronectin

JTE-013, TY- S1P2R,
52156 S1P3R
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Inhibits PCSK9-mediated degradation of

LDL receptors, restores LDLR function, Already approved for the treatment of
EVOLOCUMAB PCSK9 reduces cholesterol deposition, and inhibits  hyperlipidemia; its antifibrotic efficacy in
Whnt/B-catenin-driven epithelial-mesenchymal pulmonary fibrosis still needs verification [56]
transition
Inhibits ACSL4, reduces lipid peroxidation
and ferroptosis, protects the viability of type
I alveolar epithelial cells (AEC2), and
alleviates epithelial damage

Provides a new therapeutic direction for specific
subtypes of pulmonary fibrosis; currently in the
preclinical research stage [58,59]

LIPROXSTATIN-1ACSL4

3.4. Conclusion and Perspective

Lipid metabolic reprogramming in pulmonary fibrosis is characterized by enhanced fatty acid synthesis,
reduced fatty acid oxidation (FAO), and disrupted cholesterol homeostasis(Figure 2). In AEC2 cells, these
changes impair epithelial repair, whereas in fibroblasts, altered lipid flux fuels extracellular matrix (ECM)
production. Preclinical studies targeting lipid metabolism—including FASN inhibitors, FAO activators,
PPARy agonists, and ACSL4 inhibitors—demonstrate promising antifibrotic effects. However, clinical
translation is limited by systemic toxicity, inefficient lung-targeted delivery, and insufficient patient
stratification. Key mechanistic questions remain unresolved, such as the temporal sequence of lipid
abnormalities and their causal role in fibrosis progression. Addressing these gaps will require longitudinal
studies and dynamic metabolomic profiling. Furthermore, crosstalk between lipid metabolism and pathways
such as inflammation, autophagy, and ferroptosis is incompletely understood, yet may reveal synergistic
targets for combination therapies [63]. Advances in pulmonary-targeted formulations, single-cell-guided
delivery, and precision medicine approaches could enhance therapeutic specificity and safety [64]. Ultimately,
robust evaluation of safety, pharmacodynamics, and biomarker-driven patient selection will be essential. By
integrating mechanistic insights with innovative delivery and combinatorial strategies, lipid-targeted
interventions hold potential as a precision therapy complementing glucose- and amino acid—focused
approaches in pulmonary fibrosis. Recent advances in fatty acid metabolic reprogramming in pulmonary
fibrosis have further highlighted novel targets and regulatory networks, providing additional support for lipid-
focused therapeutic strategies and emphasizing the need for further translational research [65].

<= ——— " Fibroblast Activation ———————————— ) -

Fibroblast Myofibroblast

Etomoxir TOFA
S S Myofibroblast differentiation SN
CPT1A Pro-fibrotic signaling (TGF-, IL-6) ==
Lipid synthesis ECM Deposition

Fatty acid oxidation (FAO) De novo lipid synthesis

Abbreviations

FAO: Fatty acid oxidation

CPT1A: Carnitine palmitoyltransferase 1A
ACC: Acetyl-CoA carboxylase

Etomoxir: CPT1 inhibitor

TOFA: 5-(Tetradecyloxy)-2-furoic acid
ECM: Extracellular matrix

Figure 2. Lipid metabolic reprogramming in lung fibrosis. Fibroblasts undergo lipid metabolic reprogramming characterized by
altered fatty acid oxidation (FAQ) and de novo lipid synthesis. Enhanced FAO, mediated by carnitine palmitoyltransferase 1A

(CPT1A), and increased lipid synthesis contribute to metabolic support of myofibroblast differentiation and profibrotic signaling.
Representative metabolic enzymes and inhibitors investigated in preclinical models are indicated.
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4. Amino Acid Metabolism in Pulmonary Fibrosis
4.1. Pathological Basis of Abnormal Amino Acid Metabolism

Amino acids are not only fundamental components in protein synthesis, but also key regulatory factors
in energy metabolism, antioxidant defense, and signaling pathways. In the case of pulmonary fibrosis,
amino acid metabolic reprogramming is increasingly regarded as a key driving factor for the continuous
development of the disease [66]. Among them, Glutamine cleavage, arginine metabolism, and the
serine/glycine pathway are the main aspects of research. Metabolomics analysis of lung tissue and serum
from IPF patients revealed that elevated levels of glutamine, arginine, and proline were related to the
severity of the disease [67]. The activation of fibroblasts relies on glutamine and arginine, as they are the
sources of carbon and nitrogen for the synthesis of collagen and ECM. Arginine metabolites promote the
differentiation of myofibroblasts. Make the fibrotic reaction more severe.

4.2. Key Metabolic Pathways and Mechanisms of Action
4.2.1. Glutamine Metabolism

Glutamine is the most abundant amino acid in lung tissue. It enters cells through the transport of solute
carrier family 1 member 5 (SLC1AS5), providing necessary substrates for mitochondrial metabolic processes
and antioxidant defense mechanisms. The expression of SLC1AS in IPF fibroblasts and AEC2 cells is
upregulated. This upregulation state has a certain correlation with the production of collagen. Glutamine is
converted into glutamic acid through Glutaminase 1 (GLS1), generating a-ketoglutaric acid. a-ketoglutaric
acid activates mTOR, and the activated mTOR can promote collagen synthesis and also support the
generation of mitochondrial NADPH, thereby enhancing the antioxidant capacity of cells. Notably, a two-
sample Mendelian randomization study confirmed a causal relationship between circulating glutamine
levels and IPF susceptibility, further supporting the pathogenic role of glutamine metabolic reprogramming
in disease initiation [68]. GLS1 is overexpressed in fibrotic lungs [69,70]. This overexpression can promote
the production of ECM by providing proline precursors and maintaining redox homeostasis.

4.2.2. Arginine Metabolism

The metabolism of arginine mainly occurs through two pathways. The first one is the nitric oxide
synthase pathway, in which arginine is converted into NO and citrulline. NO can act as a vasodilator,
inhibiting the activation of fibroblasts and regulating the polarization of macrophages towards an
antifibrotic phenotype. In the disease of pulmonary fibrosis, oxidative stress can reduce the activity of NOS
and also decrease the production of NO, thereby weakening its protective effect [71]. However, if
exogenous L-arginine is used or NOS is activated, the NO-mediated antifibrotic signal can be restored. This
point has been mentioned in the relevant literature [72]. The second one is the arginase pathway. In this
pathway, arginase converts arginine into ornithine, which is then processed by ornithine decarboxylase into
polyamines or by pyrroline-5-carboxylate synthase (P5CS) into proline. These substances can provide
substrates for collagen synthesis, which is described in references [73]. In cases of fibrosis, the activity of
arginase increases, which diverts arginine from the NOS pathway, promoting the differentiation of
myofibroblasts and the deposition of ECM.

4.2.3. Serine/Glycine Metabolism

Serine and glycine are beneficial for the synthesis of glutathione, which can maintain antioxidant
balance. Serine metabolism can provide a carbon unit for the synthesis of nucleotides and phospholipids,
while glycine is integrated into collagen tripeptides [74]. In IPF, the level of glutathione is decreased, while
the expression of enzymes such as phosphoglycerate dehydrogenase is upregulated. This indicates that
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fibroblasts will enhance the metabolism of serine and glycine to meet the demands of extracellular matrix
synthesis and alleviate oxidative stress.

4.2 4. Proline Metabolism

Proline accounts for approximately one-third of the amino acids in collagen. It is a rate-limiting factor
in the process of collagen synthesis. In cases of fibrosis, fibroblasts rely on the arginine-ornithine-proline
pathway to produce proline. In the lungs of IPF, the expressions of ornithine transaminase and pyrrolin-5-
carboxylic acid reductase 1 showed an increase. The activity of pyrroliin-5-carboxylate reductase 1 is
related to the expression of type I collagen. If pyrroliin-5-carboxylate reductase 1 is inhibited, the
availability of proline can be reduced, and the synthesis of collagen will also decrease [75]. Glutamine can
also promote proline production. It will establish the glutamine-proline axis, which supports the deposition
of extracellular matrix [76,77].

4.3. Representative Targets and Drug Research

4.3.1. GLS1 Inhibitors: CB-839

CB-839 can inhibit GLS1. This inhibitory effect will reduce the production of glutamic acid and a-KG,
thereby limiting the activation of mTOR and the synthesis of proline, and inhibiting collagen deposition
[78]. Preclinical studies have shown that it has the potential for anti-fibrosis. Preliminary safety data have
also been obtained in tumor clinical trials. For clinical application, the dosage should be carefully optimized
due to potential adverse effects on immune function. Notably, pyruvate metabolism has been shown to
dictate fibroblast sensitivity to GLS1 inhibition during fibrogenesis, suggesting that combining GLS1
inhibitors with modulators of pyruvate metabolism may enhance therapeutic efficacy by overcoming
metabolic compensation [79].

4.3.2. Glutamine Transport Inhibitor: V-9302

V-9302 blocks SLC1AS-mediated glutamine uptake, inhibiting fibroblast mTOR activation and ECM
synthesis while improving AEC2 function in bleomycin models [80]. Its selective action on fibrotic cells
suggests high safety and translational potential [81].

4.3.3. NOS Agonist: L-Arginine

Exogenous L-arginine restores NO production in oxidative stress—impaired lungs, improving
pulmonary perfusion, inhibiting fibroblast proliferation, and modulating macrophage polarization [82,83].
Preclinical data are promising, but clinical evaluation in IPF is lacking.

4.3.4. Arginase 1 (ARG1) Inhibitor: BC1158

BC1158 competitively inhibits ARG1, reducing ornithine and proline production, collagen synthesis,
and fibroblast-to-myofibroblast transdifferentiation via TGF-/Smad pathway suppression [76,84]. In vitro
studies demonstrate efficacy, but in vivo and clinical studies are pending.

4.3.5. SHMT?2 Inhibitor: SHIN1

SHINTI inhibits one-carbon metabolism, reducing NADPH availability for prolyl hydroxylase and
limiting hydroxyproline formation, while decreasing glycine supply for collagen tripeptides [79,81]. In
preclinical fibrosis models, SHIN1 reduces lung collagen deposition, though effects on cellular antioxidant
capacity warrant caution [82](Table 3).
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Table 3. Summary of Amino Acid Metabolism Drugs.

COMPOUND TARGETMECHANISM OF ACTION RESEARCH STATUS
Preclinical studies support its antifibrotic
potential; clinical trials in the oncology field

Inhibits glutaminase GLS1, reduces the production
of glutamate and a-ketoglutarate (a-KG), thereby

B- LS1 . . . " h i limi fety data;
CB-839 GLS inhibiting mTOR activation and proline synthesis, av.e prov.lde(.i prefiminary sa ‘e y data; dosage
and suppressine collacen denosition optimization is needed to avoid impacts on
PP £ & P immune function [78,79]
BIO.CI.(S SLClAS—@edlgted glutamine uptake, . Exerts selective effects on fibrotic cells with
inhibits mTOR activation and extracellular matrix . . L
V-9302 SLC1AS .. . high safety and translational potential; in the
synthesis in fibroblasts, and improves AEC2 .
function preclinical research stage [80,81]

Serves as a substrate for NOS, restores NO

production in lungs impaired by oxidative stress,
L-ARGININE NOS improves pulmonary perfusion, inhibits fibroblast

proliferation, and regulates macrophage

polarization

Competitively inhibits ARG, reduces the

production of ornithine and proline, and decreases In vitro studies have shown effectiveness; in
BC1158 ARG1  collagen synthesis and the transformation of vivo and clinical studies have not been carried

fibroblasts into myofibroblasts by inhibiting the ~ out [76,84]

TGF-B/Smad pathway

Inhibits serine SHMT?2, reduces the production of

one-carbon metabolites, decreases NADPH
SHIN1 SHMT?2 availability and glycine supply, thereby inhibiting

hydroxyproline formation and collagen tripeptide

synthesis

Preclinical data show promising prospects, but
clinical evaluation in IPF patients is lacking [82]

Can reduce pulmonary collagen deposition in
preclinical fibrosis models; its impact on cellular
antioxidant capacity needs careful evaluation;
currently in the preclinical research stage [82]

4.4. Conclusion and Prospect

Amino acid metabolic reprogramming is a central driver of pulmonary fibrosis, with glutamine,
arginine, and serine/glycine pathways supplying fibroblasts with energy, redox equivalents, and essential
substrates for collagen synthesis. Among these pathways, glutamine catabolism and its downstream
products—such as a-ketoglutarate and proline—play a particularly prominent role in sustaining fibroblast
activation and extracellular matrix (ECM) production [85] (Figure 3). GLS1 inhibitors therefore, represent
the most advanced candidates for clinical translation, while arginase blockers and serine/glycine pathway
inhibitors continue to show encouraging preclinical efficacy. However, the temporal dynamics and cell-
type-specific contributions of these pathways remain incompletely defined, underscoring the need for
integrated single-cell omics and metabolic profiling to map metabolic dependencies across fibroblasts,
epithelial cells, and immune populations.
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Figure 3. Amino acid metabolism in lung fibrosis. Dysregulated amino acid metabolism contributes to fibrotic lung remodeling
through altered arginine and glutamine utilization. Arginine metabolism is partitioned between nitric oxide synthase (NOS)—
mediated nitric oxide (NO) production and Arginase 1 (ARG1)—dependent pathways generating polyamines and proline. In
parallel, enhanced glutamine metabolism via glutaminase (GLS) provides substrates for collagen synthesis and supports
myofibroblast differentiation. Representative metabolic enzymes and inhibitors investigated in preclinical models are indicated.

Several challenges hinder therapeutic development. Systemic inhibition of amino acid metabolism
risks disrupting immune cell function and normal tissue homeostasis, necessitating strategies such as
pulmonary-targeted delivery, precision dosing, or tissue-selective transport inhibitors to improve safety and
specificity. Additionally, compensatory activation of parallel metabolic pathways may limit the efficacy of
single-target approaches; therefore, rational combination therapies—such as simultaneous inhibition of
glutamine uptake and proline synthesis—may yield synergistic antifibrotic effects.

Beyond metabolism alone, the interactions between amino acid pathways and broader cellular
networks—including mTOR signaling, redox regulation, epigenetic remodeling, and ferroptosis—remain
underexplored but may reveal new therapeutic vulnerabilities [86]. Clinical translation will also require
robust pharmacodynamic markers and biomarker-driven patient stratification to identify individuals most
likely to benefit from amino acid—targeted interventions [87]. At the same time, Lung-targeted delivery
strategies, including inhalation-based administration or nanoparticle-mediated delivery, may enhance drug
accumulation in fibrotic lung tissue while minimizing systemic exposure.

By addressing these mechanistic and translational challenges, amino acid—focused therapies have the
potential to complement glucose- and lipid-directed strategies, collectively expanding the landscape of
precision metabolic interventions for pulmonary fibrosis.

5. Future Perspectives

Despite growing evidence that metabolic reprogramming contributes to pulmonary fibrosis, several
conceptual and translational challenges remain. A major unresolved issue is the pronounced spatiotemporal
heterogeneity of metabolic alterations across lung cell types and disease stages [88]. Most current studies
rely on bulk tissue analyses or static in vitro systems, which are insufficient to distinguish initiating
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metabolic drivers from secondary adaptive responses [89]. Defining cell-specific and stage-dependent
metabolic vulnerabilities in vivo will be essential for prioritizing therapeutic targets with true disease-
modifying potential.

Another critical barrier to clinical translation is the lack of lung- and cell-selective targeting strategies
for metabolic interventions [90,91]. Because core metabolic pathways are indispensable for systemic
homeostasis, pharmacological inhibition often results in off-target toxicity in energy-demanding tissues
[92]. Advances in pulmonary-targeted delivery approaches may allow more precise modulation of
pathogenic metabolism while minimizing systemic exposure, thereby expanding the therapeutic window of
metabolic drugs that are currently limited by safety concerns.

Metabolic plasticity further complicates therapeutic development. Extensive redundancy and
compensatory flux within metabolic networks may compromise undermine the durability of single-pathway
inhibition [89]. This highlights the need for rational combination strategies, either targeting multiple
interconnected metabolic nodes or integrating metabolic modulation with established antifibrotic therapies
[93]. However, the optimal timing, sequence, and patient populations for such combinations remain poorly
defined and warrant systematic investigation.

Beyond energy metabolism, emerging evidence suggests that metabolic pathways intersect with
broader regulatory networks, including immune modulation, epithelial plasticity, redox balance, and
epigenetic control [92]. Metabolites such as lactate, lipids, and tricarboxylic acid cycle intermediates may
act as signaling molecules that influence gene regulation and cell fate decisions, positioning metabolism as
an upstream coordinator of fibrogenic programs rather than a passive consequence of disease [94,95].

Finally, progress toward clinical translation will depend on the development of robust metabolic
biomarkers to support patient stratification, target engagement, and therapeutic monitoring [96]. Integrating
metabolomic profiling with genetic approaches, imaging modalities, and clinical phenotyping may enable
the identification of metabolically defined subgroups of pulmonary fibrosis [97]. Such stratification could
facilitate more precise and durable interventions, moving metabolic targeting closer to personalized
antifibrotic therapy.

6. Conclusions

The metabolic reprogramming of glucose, lipids, and amino acids reflects the core pathological
biological markers of pulmonary fibrosis and provides a set of therapeutic targets with many mechanism
validations [98], such as key regulatory factors like PFKFB3, GLUT1, LDHA, FASN, S1P signaling, GLSI,
SLC1AS, and ARGI [99]. They regulate fibroblast activation, failed epithelial repair, immune cell
reprogramming, and ECM accumulation, demonstrating consistent antifibrotic potential in preclinical
systems [100,101]. These findings highlight that metabolism is a driving factor and a modifiable
determinant of fibrogenesis [102]. However, current research has some limitations. On the one hand, there
is insufficient understanding of cell-specific and stage-specific metabolic dependencies. On the other hand,
there is a lack of lung or cell-targeted delivery technologies. Moreover, compensatory metabolic
mechanisms have reduced the persistence of single-pathway interventions [103]. In addition, there are
relatively few metabolic biomarkers used for clinical translation. To address these limitations, three
coordinated strategies are needed. The first is to conduct high-resolution metabolic analysis, which includes
single-cell and spatial metabolomics. The second is to develop lung-targeted drug delivery systems that can
enhance specificity and reduce systemic toxicity [104]. The third is to carry out biomarker-guided early
clinical trials. This is to establish safety, metabolic target participation, and personalized treatment methods.
With the continuous integration of metabolomics, systems biology, biomaterials engineering, and
pharmacology, metabolic reprogramming is preparing to advance from the understanding of mechanisms
to therapeutic applications. Targeting metabolic susceptibility, whether alone or in combination with
existing antifibrotic drugs, it may provide a revolutionary approach for the precise and effective treatment
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of pulmonary fibrosis. A recent review further summarizes the core mechanisms of metabolic
reprogramming in IPF, integrating glucose, lipid, and amino acid metabolic abnormalities and supporting
the translational potential of targeting metabolic vulnerabilities [105].

Targeting metabolic pathways represents a promising therapeutic avenue in lung fibrosis, particularly
during early and potentially reversible stages of disease progression. However, effective clinical translation
will require careful consideration of disease heterogeneity, lung-specific drug delivery strategies, and safety
in vulnerable patient populations. Future studies integrating metabolic profiling with cell-specific and
stage-specific targeting approaches may enable more precise and durable antifibrotic therapies.
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