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ABSTRACT: In the operation management of hydropower stations, uneven scheduling often leads to 
issues such as resource wastage and unequal energy distribution; big data technology offers a new approach 
for optimizing the scheduling of hydropower stations in the information era. Taking the X Hydropower 
Station Group as a case study, this paper explores data acquisition, cleaning, clustering analysis, and the 
formulation of seasonal scheduling strategies to enhance the efficient utilization of hydropower resources 
and ensure the stable operation of the power grid. K-means clustering analysis is applied to explore typical 
output curves of cascaded hydropower stations, revealing the relationships between water levels, inflow 
rates, and load rates. Furthermore, a grey prediction model is developed to forecast future load rates, 
providing robust data support for short-term operational scheduling plans. The research not only improves 
monitoring and decision-support capabilities but also enhances the adaptability and response speed to 
seasonal changes, ensuring the stability and reliability of the power supply. 

Keywords: Hydropower station operation management; Big data; Clustering analysis; Seasonal scheduling; 
Grey prediction model; Intelligent maintenance 
 

1. Introduction 

Hydropower, as a clean energy generation method, occupies a crucial position in the energy sector. 
Amidst the current trends towards intelligent and modernized development, hydropower station operation 
management models have demonstrated diverse characteristics, encompassing combined operation and 
maintenance management, contracted maintenance and management, as well as the Operation and 
Maintenance Integration (OMI) model [1]. 

Scholars have conducted in-depth research on the operation and management of hydropower stations. 
For instance, Mbeutcha studied long-term power dispatch issues in large hydropower systems, exploring 
strategies to balance current power sales revenue with reservoir energy storage savings for future benefits, 
thereby solving long-term dispatch problems [2]. Pereira proposed a computational scheme capable of 
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determining the most economical power generation decisions for power systems and hydropower stations 
at various stages, with results applicable to real-time generated weekly or monthly dispatch generation plans 
[3]. Chang introduced a short-term hydropower scheduling method based on Mixed Integer Linear 
Programming, used to determine the optimal or near-optimal scheduling of schedulable hydropower units 
in hydro-dominated systems [4]. Yamin provided a comprehensive review of power generation planning 
methods under regulated and deregulated power markets since 1951, covering a wide range of deterministic, 
meta-heuristic, and hybrid algorithms [5]. Juan presented a dynamic programming model to solve short-
term scheduling problems in hydropower stations in a power energy sales market, aiming for maximum 
revenue. This model has been applied in actual hydropower plants and has been proven capable of providing 
operational plans that maximize hydropower plant revenue while satisfying multiple different types of 
constraints [6]. Paredes-Arquiola proposed a heuristic method that can obtain rule curves for multi-
hydropower reservoir group scheduling systems, using optimization and simulation techniques to conduct 
extensive research on the operational laws of these systems [7]. Pathak stated that with the rapid increase 
in demand for high-quality products in the market, every organization should have a well-structured and 
planned management system to survive in a competitive world [8]. 

However, for a long time, the OMI model for hydropower stations has relied heavily on operators’ 
personal experience, rigid scheduling protocols, and basic data monitoring via Supervisory Control and 
Data Acquisition systems [9]. This traditional model gradually reveals its limitations when facing 
increasingly complex power grid demands, variable climatic conditions, and the challenges posed by aging 
equipment. First, the phenomenon of data silos is severe: Production, equipment, maintenance, hydrological, 
meteorological, and other data within hydropower stations are scattered across different business systems, 
forming data silos that hinder effective correlation analysis and comprehensive utilization [10–12]. Second, 
decision-making is highly subjective: Many critical decisions, such as unit start-stop operations and load 
distribution, depend heavily on dispatchers’ experience-based judgment and lack support from precise data 
models, making it difficult to achieve global optimization [13]. Third, the equipment maintenance model 
is outdated: Traditional periodic maintenance or post-failure repair models cannot accurately predict 
potential equipment failures, potentially leading to unnecessary maintenance costs and unplanned 
downtime losses [14]. Fourth, the operational efficiency is not fully tapped: Due to the inability to conduct 
in-depth analysis of massive operational data, the optimal operating conditions of units and the potential 
for refined utilization of water resources are difficult to fully explore, resulting in the waste of hydropower 
resources [15]. 

Big data technology, as one of the emerging technologies, brings new opportunities to hydropower 
station operation management. The significant roles of big data technology are reflected in establishing 
hydropower station big data management libraries, intelligent production, equipment maintenance, 
intelligent inspection and control, and safety management. However, the in-depth application of big data in 
the hydropower sector still faces numerous challenges. At the technical level, issues related to data quality 
and standardization remain bottlenecks that constrain the effectiveness of upper-layer applications [16,17]. 
The “black box” nature of advanced artificial intelligence algorithms (such as deep learning) has raised 
significant concerns regarding their interpretability in critical decision-making applications [18]. 
Additionally, the complexity and high costs associated with multi-system integration pose further 
challenges. At the management level, promoting the application of big data necessitates corresponding 
organizational restructuring and business process reengineering. There is a severe shortage of composite 
talents who possess both expertise in hydropower operations and data science. Moreover, big data projects 
involve substantial investments and long cycles, and the quantitative evaluation system for return on 
investment remains imperfect. At the standardization level, the industry still lacks unified data standards, 
interface specifications, and widely recognized benchmarks for measuring the performance and application 
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benefits of big data systems [19,20]. These issues, to a certain extent, hinder the large-scale promotion of 
technologies and the benchmarking improvements across the industry. 

In the operation and management of hydropower stations, load rate serves as a pivotal performance 
indicator, directly influencing the supply-demand balance and operational efficiency of the power system. 
To gain a deeper understanding of the seasonal variations in load rate and their implications for the power 
system, this paper primarily aims to address two core questions. (1) How can we analyze the trends in load 
rate across different seasons or months and identify the key factors influencing it, thereby providing data 
support for power system planning and energy strategy formulation? And (2) how can we establish a grey 
prediction model based on historical data to forecast future changes in load rate, enhancing the dispatch 
capabilities of hydropower stations and the stability of power supply? 

2. Methods 

This paper proposes a method for optimizing the operational management of hydropower stations by 
integrating K-means clustering with a grey prediction model, with the framework underpinned by big data 
technology. First, we integrated historical operational dispatch data—including water levels, inflow rates, 
and power generation output—and employed a hierarchical clustering approach to group the diverse 
influencing factors of cascade hydropower stations. This process generated clustering curves that delineate 
data characteristics across different seasons and operational states. Next, we established a grey prediction 
model tailored to variations in hydropower station load factors, which facilitates the forecasting of optimal 
power generation plans. This integrated model delivered robust data support and a reliable decision-making 
framework for the operational management of hydropower stations. 

2.1. K-Means Clustering Algorithm 

The K-means clustering algorithm is a classic distance-based, non-hierarchical clustering method. 
Operating on the principle of minimizing an objective error function, the algorithm partitions a dataset into 
a predefined number of clusters (denoted as K), with the silhouette coefficient serving as its primary 
evaluation metric. A core tenet of this approach is that smaller distances between two data points imply 
higher inter-sample similarity. Within the K-means framework, sample similarity is quantified using the 
Euclidean distance, denoted as [𝑑ሺ𝑖, 𝑗ሻ]. The distance between an individual sample and a cluster is defined 
as the distance from that sample to the cluster’s centroid [𝑑ሺ𝑒𝑖, 𝑥ሻ], while the distance between two clusters 
is represented by the distance between their respective centroids [𝑑ሺ𝑒𝑖, 𝑒𝑗ሻ]. 

A key limitation of K-means is that clustering results are sensitive to the random selection of initial 
centroids, which can lead to significant deviations from the globally optimal clustering solution. In practice, 
to mitigate this limitation and improve result robustness, multiple initial centroid sets are typically tested, with 
the K-means algorithm executed repeatedly for a predefined number of iterations. For continuous datasets, 
the cluster centroid is calculated as the mean of all data points within that cluster. However, if some sample 
attributes are categorical variables, the mean is not a meaningful or well-defined metric for centroid 
calculation. In such instances, the K-modes algorithm is employed instead to identify the cluster centroid. 

With respect to data type handling and similarity measurement, continuous attributes are first subjected 
to zero-mean normalization prior to distance calculation. The data matrix for a dataset containing n samples 
and p attributes is expressed as follows: 

൥
𝑥ଵଵ ⋯ 𝑥ଵ௣
⋮ ⋱ ⋮
𝑥௡ଵ ⋯ 𝑥௡௣

൩ 

The Euclidean distance between two samples is formally defined as 

ඥሺ𝑥௜ଵ  െ  𝑥௝ଵሻଶ ൅  ሺ𝑥௜ଶ  െ  𝑥௝ଶሻଶ  ൅  ሺ𝑥௜௣  െ  𝑥௝௣ሻଶ. 
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The Sum of Squared Errors (SSE) serves as the objective function for evaluating clustering quality. 
Between two distinct clustering outcomes, the solution with the lower SSE value is selected as the optimal result. 

For continuous attributes, the SSE objective function is defined as ∑ ∑ 𝑑𝑖𝑠𝑡ሺ𝑒𝑖, 𝑥ሻଶ௫ா೔
௄
௜ୀଵ , where the 

cluster center 𝑒௜ of cluster 𝐸௜ is 
ଵ

௡೔
∑ 𝑥௫ா೔ ; and 𝑛௜ represents the number of samples in cluster number i. 

The solution workflow of the K-means clustering algorithm is illustrated in Figure 1 [21]. Step 1: 
Randomly select K objects from the n-sample dataset to serve as the initial cluster centroids. Step 2: 
Calculate the distance from each sample to every cluster centroid, then assign each sample to the nearest 
cluster. Step 3: After all samples have been assigned, recalculate the centroid for each cluster. Step 4: 
Compare the newly calculated centroids with those obtained in the previous iteration. If the centroids have 
changed, return to Step 2; if not, proceed to Step 5. Step 5: Terminate the algorithm when the centroids 
stabilize (i.e., no longer change) and output the final clustering results. 

 

Figure 1. Solution process for the K-means clustering algorithm. 

2.2. Grey Prediction Model 

To account for fluctuations in hydropower station load factors, this study first identifies and analyzes 
key influencing factors to extract their variation patterns, thereby enhancing our understanding of the 
stations’ operational dynamics. Using the processed dataset, this study develops a predictive model for 
fluctuations in hydropower station load factor and uses it to forecast monthly load factor values. Among 
the available predictive modelling approaches, the grey prediction model was selected for this application. 

The GM(1.1) model exhibits distinct advantages over traditional statistical models [22]. On the one 
hand, its predictive accuracy is independent of sample size, enabling high-precision forecasts even with a 
limited dataset. On the other hand, it delivers higher accuracy for predictions closer to the current time 
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horizon—a characteristic inherent to its fundamental operating principles. By analyzing these dynamic 
relationships, this study seeks to develop a continuous dynamic model that characterizes the system’s 
behavior over time. 

3. Materials 

3.1. Overview of the Case: X Hydropower Station Group (X HSG) 

The X Hydropower Station Group (X HSG), located in Province S, China, accounts for a relatively 
small proportion of the total installed hydropower capacity in this province. However, due to the nearly 30 
years of operation of some of its stations, it still plays a crucial role in ensuring the stable operation of the 
local grid and promoting the consumption of clean electricity in the province. The hydropower stations 
already in operation within the river basin of the X HSG demonstrate relatively inadequate regulation 
capabilities. A leading reservoir with significant storage capacity is situated upstream of this hydropower 
station group to optimize overall regulatory performance, while the downstream experiences considerable 
load fluctuations influenced by other basins and weather conditions. 

After years of capacity building in the basin, the midstream and downstream power generation projects 
of the X HSG are nearing completion. The current development model is anchored by a key hydropower 
station with notable storage and regulation functions, strategically positioned upstream, while downstream 
stations exhibit more moderate regulation performance, scattered along the river. This multi-layered 
development strategy aims to maximize the utilization of the extensive reservoir capacity of the leading 
hydropower station and the significant elevation drop across the entire basin, thereby efficiently tapping 
into and utilizing hydraulic energy resources. 

Currently, five power stations—A, B, C, D, and E—have been built and are operational within the 
basin where the X HSG is located. Among them, A to D are daily regulating stations, while E is an annual 
regulating station. Generally, the regulatory capacity of stations located further downstream is weaker. 
Consequently, stations A, B, C, and D, situated downstream of the X HSG, exhibit notable scheduling 
limitations, particularly in medium- to long-term basin management. Research in this area primarily focuses 
on urgent daily scheduling strategy planning. In the upstream region of the X HSG, due to the presence of 
a leading station with substantial reservoir capacity and installed generation scale, precise control of the 
water level in this leading station before the flood season can effectively partially regulate the flow during 
wet and dry seasons in the downstream basin, thereby achieving efficient utilization of water resources. 
Therefore, the core concern in optimizing the scheduling strategy for the X HSG lies in formulating a long-
term scheduling plan for this leading station. 

The X HSG case boasts strong sample representativeness, attributed to the following four aspects. First, 
X HSG adopts the typical structure of “an upstream annual regulating leading hydropower station + 
downstream daily regulating cascaded hydropower stations”, which reproduces the core scenario of 
cascaded coordinated dispatching in the industry. Second, some stations have been in operation for decades, 
confronting issues such as equipment aging, limitations of the traditional OMI model, and scattered data. 
These issues are the common pain points shared by existing hydropower stations worldwide. Third, 
constrained by both regional climate and power grid load fluctuations, X HSG faces challenges like 
seasonal supply-demand balance and load response speed, which are universal in global hydropower 
operations. Fourth, the combination of “daily regulating stations + an annual regulating station” is one of 
the standard models for cascaded dispatching in the industry, and its coordinated optimization is a core 
research topic in this field. 
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3.2. Data Preparation 

Historical scheduling information for the upstream cascade hydropower stations in the X HSG may 
include structured big data on water levels, inflow rates, power generation, etc. In this paper, MySQL is 
used as the underlying persistent database, and data acquisition tools such as Flume and Kafka, along with 
the OpenRefine data cleaning toolkit, are employed to extract and integrate historical scheduling 
information from various data sources. 

Kafka, a data stream processing tool, is used to acquire real-time operational data from hydropower 
stations. MySQL database management software is used to store and manage historical scheduling 
information. Python toolkits such as Scikit-learn, Numpy, and Pandas are used for data analysis and modeling. 

Data cleaning tools are used to clean and process historical scheduling information to ensure data 
quality and consistency. Based on Python data analysis toolkits such as Scikit-learn, this paper employs 
hierarchical clustering methods to analyze and obtain typical output curves for the daily output curves of 
hydropower stations. 

In the initial stage of data acquisition, preprocessing for data cleaning is crucial. Its core task is to 
correct, eliminate, or replace defects in the original dataset, such as missing values, outliers, and duplicates, 
to ensure data purity and thus make the results of model training more accurate. Data samples primarily 
consist of factors such as water levels, 96-point load (Table 1), inflow rates, dry and floods, etc., and 
scheduling decisions are heavily reliant on these data [23]. 

Table 1. Schematic illustration of a 96-point load curve data sample for a hydropower station on a day. 

00:15 00:30 00:45 01:00 01:15 01:30 01:45 02:00 
20 20 20 20 20 160 160 160 

02:15 02:30 02:45 03:00 03:15 03:30 03:45 04:00 
160 160 160 160 160 160 20 20 

04:15 04:30 04:45 05:00 05:15 05:30 05:45 06:00 
20 20 20 20 20 20 20 20 

06:15 06:30 06:45 07:00 07:15 07:30 07:45 08:00 
20 20 20 20 20 20 20 20 

08:15 08:30 08:45 09:00 09:15 09:30 09:45 10:00 
20 20 20 20 20 100 100 100 

10:15 10:30 10:45 11:00 11:15 11:30 11:45 12:00 
100 100 100 100 100 100 100 100 

12:15 12:30 12:45 13:00 13:15 13:30 13:45 14:00 
150 150 150 150 150 150 150 150 

14:15 14:30 14:45 15:00 15:15 15:30 15:45 16:00 
150 150 150 150 150 150 150 150 

16:15 16:30 16:45 17:00 17:15 17:30 17:45 18:00 
150 150 150 150 150 150 150 150 

18:15 18:30 18:45 19:00 19:15 19:30 19:45 20:00 
150 20 20 20 20 20 20 20 

20:15 20:30 20:45 21:00 21:15 21:30 21:45 22:00 
20 20 200 260 260 260 260 260 

22:15 22:30 22:45 23:00 23:15 23:30 23:45 0:00 
260 260 260 260 260 260 260 260 

Note: Odd-numbered rows represent the time of the day, and even-numbered rows represent the output (MW) of the station. 

Overall, scheduling data can be roughly divided into two categories: one is time-related, such as the 
seasonal characteristics of the locations of the hydropower stations. For example, the rainfall patterns in 
Province S significantly affect the load demand of hydropower stations. During the flood season, due to 
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abundant water sources, hydropower stations usually operate at full load and rarely participate in peak 
shaving. In the dry season, due to reduced flow, hydropower stations maintain higher water levels to 
maximize power generation potential. Although power generation is low, they play an important role in 
peak shaving, helping to smooth the overall load curve of the power grid. Therefore, to accurately reflect 
differences in scheduling strategies across seasons, model training should be conducted separately for the 
wet and dry seasons. 

The other category is numerical data, such as water levels, flow rates, and power station output loads. 
When collecting these data, sensors are typically relied upon. However, the data integrity is often 
challenged. For example, water level data is recorded hourly. If a sensor fails, it may result in several days 
of zero value recordings or sudden changes at the end of measurements. In the data cleaning stage, we need 
to fill in missing values by comparing historical similar situations and make reasonable inferences and 
corrections for sudden changes in water levels. The processing methods for flow data and power station 
output loads are similar and will not be detailed here. 

4. Results and Discussions 

4.1. Hierarchical Clustering of Output Curves for Cascade Hydropower Stations 

During flood seasons, the load of hydropower stations tends to be stable, whereas during dry seasons, 
it fluctuates significantly. This subsection employs K-means clustering to specifically analyze the output 
curves of upstream hydropower stations with poor regulation performance during the dry season, using data 
from January to May. The clustering process employs the group average method to measure the distance 
between clusters. 

The results are visualized in a three-dimensional space, where the position of each point is determined 
by its water level, inflow, and load rate. In Figure 2, each cluster is represented by a different color, allowing 
for the observation of data point aggregation patterns. The spatial distribution of clusters reveals the central 
tendency and dispersion patterns of data points, highlighting data variations across different periods. 
Overall, the model classifies records into internally homogeneous groups based on multidimensional data, 
offering valuable insights for water level and inflow management to support further analysis. In general, 
during the dry season, data values on the average water level axis are primarily concentrated between 1129 
m and 1130 m. During the flood season, these water level values are mainly between 1126 m and 1128 m, 
with a broader range due to greater water level fluctuations. For the average inflow axis, values during the 
dry season are mostly between 200 m3/s and 400 m3/s. During the flood season, they range from 200 m3/s 
to 1200 m3/s, indicating a substantial increase in inflow. As for the load rate axis, values during the dry 
season are primarily below 30%. During the flood season, they range from 40% to 100%, indicating a 
significantly higher load rate. 

  

Figure 2. K-means clustering of load rate, water level, and inflow for power stations A, B, C, D, and E. 
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The use of the average calculation method aims to reduce data dimensionality to facilitate effective 
clustering analysis and data visualization. In the original dataset, features shown in Figure 2 consist of 
multiple columns. Directly utilizing these multi-column data for clustering would lead to high-dimensional 
data processing, which increases computational complexity and poses difficulties for visualization. By 
computing the average value for each feature column, data dimensionality is effectively reduced, rendering 
clustering results more distinct and visualization more intuitive and comprehensible. This method not only 
simplifies data processing but also improves the operability and interpretability of data analysis. 

From this clustering analysis, various operational states of the hydropower stations can be inferred. For 
instance, high water levels and high inflow (observed at Hydropower Station C) indicate peak power 
generation potential, while lower water levels and inflow (observed at Hydropower Station A) may 
correspond to maintenance periods or low-power generation periods. The temporal dimension reveals 
potential seasonal variations in water levels and inflow, which are crucial for the operation and management 
of hydropower stations. 

By comparing the clustering plots of the dry and flood seasons, patterns of changes in inflow and water 
levels can be identified. Inflow and water levels are significantly higher during the flood season than during 
the dry season, which is an important consideration for hydropower station operation and management. 
Particularly during the flood season, hydropower stations need to respond to potential extreme weather 
events and schedule operations reasonably to ensure a safe and stable power supply. 

4.2. Short-Term Scheduling Method for Cascaded Hydropower Stations Based on Big Data 

Utilizing big data methods to construct a rational and precise scheduling strategy for cascaded 
hydropower stations can effectively improve the efficiency of day-ahead planning in power systems. This 
subsection analyzes load rates across different time periods each day, which are often influenced by various 
factors such as temperature variations, seasonal demands, and industrial production activities. Therefore, 
analyzing the load rates for 96 time periods per day facilitates a better understanding of how these 
influencing factors affect power system operations. By leveraging a grey prediction model, load rate data 
for each time period in the upcoming month are accurately forecasted. This series of work provides support 
for designing an innovative strategy to establish effective short-term operational scheduling plans for 
cascaded hydropower stations. 

4.2.1. Data Analysis 

The load rate refers to the ratio of the load in a power system within a specific period to its rated 
capacity, serving as a crucial indicator for assessing the operational status and supply-demand balance of 
the power system. Load rates are influenced by various factors, including temperature changes, seasonal 
demands, and industrial production activities, across different seasons and months. To ensure efficient 
operation and management of hydropower stations and a stable power supply, it is essential to conduct in-
depth analyses of the seasonal factors affecting load rates. Through such analyses, variation patterns of load 
rates can be identified and predicted, thereby providing a scientific basis for the planning, operation, and 
scheduling of power systems. Furthermore, this analysis not only helps reveal the impact of seasonal 
demand changes on power systems but also assists stakeholders in formulating more precise and adaptable 
energy strategies. Therefore, this work explores the significance of studying load rates for power system 
planning and management, as well as their variations across different months. 

First, variations in load rates across different months reflect differences in seasonal demands. For 
instance, in summer, rising temperatures lead to increased use of electrical devices such as air conditioners, 
resulting in higher power demand and a corresponding rise in load rates. In winter, the increased use of 
heating equipment similarly affects load rates, albeit with potentially opposite trends compared to summer. 
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Thus, analyzing load rate variations across different months helps understand the impact of seasonal 
demands on power systems. 

Second, analyzing load rates for different months supports the planning and management of power 
systems. By understanding load rate trends across various months, energy suppliers, government agencies, 
and businesses can formulate corresponding energy production and consumption strategies to meet monthly 
power demands and optimize the efficiency of energy resource utilization. Additionally, analyzing load 
rates enables the prediction of future energy demands, providing a reference for the operation and 
scheduling of power systems to ensure the stability and reliability of the power supply. 

Time series diagrams were plotted to display daily load value changes for each hydropower station 
intuitively. Then, by identifying curves with significant fluctuations in daily load rate data, the most 
representative typical dates were selected for further analysis (Figure 3). By comparing load characteristics 
across different hydropower stations, similar load fluctuation patterns emerged. 

 

Figure 3. Fluctuation in load rate for typical output curves. 

In Figure 3, the load rate of Hydropower Station A starts at 60% and shows a slight upward trend over 
time, reaching nearly 70% at noon before stabilizing. This pattern indicates that Hydropower Station A 
maintains a relatively high operational load for most of the day, potentially reflecting stable electricity 
demand throughout the day. The load rate of Hydropower Station B fluctuates around 50%, with a slight 
increase before noon, a decrease in the afternoon, and subsequent stabilization. The small fluctuations in 
the load rate of Hydropower Station B may imply relatively balanced power output and good adaptability 
to load changes. The load rate of Hydropower Station C remains around 50%, with a sudden drop at noon 
and rapid recovery, reflecting a temporary adjustment in scheduling operations or load demand. Overall, 
the load rate of Hydropower Station C is relatively stable. The load rate of Hydropower Station D starts at 
a low level, gradually increases over time, peaks in the evening, and then drops sharply. This pattern 
indicates that Hydropower Station D is significantly affected by daily demand variations, increasing output 
during the day to meet peak demands and reducing output at night due to lower demand. The load rate of 
Hydropower Station E consistently ranges between 60% and 70%, indicating minimal load variation and 
high stability in load demand. Among all stations, Hydropower Station E exhibits the most stable operating 
mode, consistent with its role as a leading station. 

Figure 4 demonstrates the load rate variations of Hydropower Station A across different seasons. 
Although the overall load rate trends in both figures show some similarities, notable differences exist in 
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load rate levels, amplitude of variation, and specific time points. Compared to the flood season, the initial 
load rate is lower in the dry season. However, the daytime peaks are similar in both figures, indicating that 
despite lower early-morning demand, the maximum daytime demand is comparable. Additionally, the load 
rate changes more rapidly in the dry season, particularly in the early morning and late evening, suggesting 
that the hydropower station requires faster response capabilities and more flexible scheduling strategies to 
adapt to these rapid changes. In contrast, the load rate in the flood season sustains at higher levels for a 
longer duration. In the dry season, by contrast, the load rate quickly reaches its peak and stabilizes within 
a shorter period, reflecting two distinct operational and demand patterns. 

 

Figure 4. Fluctuation in load rate for the typical output curve of power station A. 

4.2.2. Application and Result Analysis of the Grey Prediction 

Taking Hydropower Station A as an example, this section presents the prediction results, i.e., the daily 
load rate values for the next 30 days. Furthermore, the Root Mean Square Error (RMSE) of the prediction 
model is calculated to evaluate its accuracy. With an RMSE of approximately 2.1333, the model 
demonstrates relatively high prediction accuracy. The specific prediction results are as follows: 

[96.12455528 96.00200606 95.89942237 95.81355147 95.74167053 95.68150033 
95.63113297 95.58897138 95.5536787 95.52413586 95.49940609 95.47870525 
95.46137697 95.44687179 95.43472976 95.4245659 95.41605792 95.40893605 
95.40297446 95.39798413 95.39380681 95.39031006 95.38738299 95.3849328 
95.38288179 95.38116492 95.37972777 95.37852475 95.37751773 95.37667477] 
As shown in Figure 5, the training data (orange line) shows a gradual increase in load rate from nearly 

60% to over 100% roughly between Day 0 and Day 40. Subsequently, the load rate remains relatively stable 
at around 100% with slight periodic fluctuations. The test data (dark blue line) starts at around 60% (around 
Day 60), experiences a sharp drop from 100% to below 80%, followed by a short period of stabilization 
and then a further decline. The prediction data (light blue line) starts at the end of the test data period, 
predicting a continued decrease in the future load rate and simulating a similar fluctuation pattern, albeit 
with a smoother curve. 
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Figure 5. Grey prediction curve for the load of power station A. 

5. Conclusions 

5.1. Key Questions Addressed 

The strength of operational management directly influences the competitiveness of an enterprise and 
significantly impacts its development and economic benefits. Operational management plays a crucial role 
in the development of hydropower stations. Based on practical cases from the X HSG, this paper analyzed 
the application of big data technology in the operational management of hydropower stations and proposed 
corresponding optimization strategies. The research covered data collection, cleaning, cluster analysis, and 
the formulation of seasonal dispatch strategies, aiming to enhance the efficient utilization of hydraulic 
resources and the stable operation of the power grid. 

For question (1) raised in the Introduction, load rates in hydropower stations exhibit different trends 
across seasons or months. To address this issue, this study adopted the following methods. First, data 
collection and analysis: collect load rate data for 96 time periods each day, ensuring data accuracy and 
completeness; using statistical analysis methods, analyze the data to identify patterns and trends in load rate 
changes across the 96 time periods. Second, analysis of influencing factors: analyze potential factors 
affecting load rate changes in each time period, such as weather changes, seasonal demand, and industrial 
activities, to help understand the reasons behind load rate variations in each period. 

For question (2), establish a grey prediction model for monthly load rate changes in hydropower 
stations. First, data preparation: collect historical monthly load rate data from hydropower stations, ensuring 
data completeness and accuracy. Second, grey prediction model establishment: utilize existing historical 
data to establish a grey prediction model for monthly load rate changes in hydropower stations. This model, 
based on the grey relational degree function, can effectively predict future load rate trends. Third, model 
validation: validate the accuracy and reliability of the established grey prediction model using partial 
historical data, adjusting model parameters to improve prediction effectiveness. Fourth, future load rate 
change prediction: Use the established grey prediction model to predict future monthly load rate changes 
in hydropower stations. 

As the X HSG serves as a typical cascaded hydropower station cluster featuring “daily regulating 
stations + an annual regulating station”, its operational characteristics and the contradictions it faces are 
highly consistent with industry commonalities. Therefore, the big data optimization methods and 
dispatching strategies proposed in this study can be transferred and applied to other hydropower 
stations/clusters with similar structures or operational scenarios. 

5.2. Research Limitations 

This work also has some limitations. First, the data presented in this paper are only a sample from the 
watershed case study, and the hydrological conditions of the power stations in this watershed are relatively 
complex. However, since hydrological characteristics vary globally, the specific K-means clusters found 
here may not directly transfer to basins with different rainfall patterns. Second, the grey prediction model 
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is generally best for short-term forecasting with limited data. The model might be inaccurate for long-term 
(multi-year) strategic planning. Third, this study mainly focused on load rates and water levels, which 
means the work did not currently calculate the financial revenue impact of this optimized scheduling. 
Despite these limitations, this study aims to present an idea that can trigger discussions within the industry 
to explore other methods suitable for optimizing the dispatch of cascaded hydropower stations globally. 

5.3. Future Directions 

In future research, the following directions can be considered. First, according to the latest research 
[24], hydropower stations may leverage the spatial allocation of electrolysers to utilize surplus production 
capacity for hydrogen generation, thereby reducing wind power curtailment and optimizing transmission 
utilization. Second, given the potential changes in electricity consumption brought about by the large-scale 
deployment of electric vehicles and their charging infrastructure, future iterations of the grey prediction 
model should account for the complexity of such changes and bidirectional flexibility [25]. Third, when 
exploring demand-side coordination, the thermal inertia of downstream building complexes can be linked 
to upstream hydropower scheduling, such as by adopting a more comprehensive “source-load” flexibility 
system to alleviate distribution network congestion. Fourth, based on the methodology proposed in this 
paper, financial and operational risks associated with hydrological uncertainty can also be explored to 
further optimize management. 
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