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ABSTRACT: Fibrosis, characterised by the excessive deposition of extracellular matrix via activated 
fibroblasts, is a pathological feature of several chronic inflammatory disorders, which collectively 
contribute significantly to global morbidity and mortality. Despite this, current anti-fibrotic therapies are 
of limited efficacy. However, incretin-based therapies, primarily glucagon-like peptide-1 (GLP-1) receptor 
agonists, are now emerging as candidate drugs for modulating fibrotic signalling pathways. This review 
synthesises the growing body of preclinical and clinical evidence that incretin receptor agonists exert direct 
and indirect anti-fibrotic effects. We detail the molecular mechanisms and survey the promising data across 
hepatic, cardiac, renal, lung, and joint tissues, which underscore the potential for repurposing of this drug 
class as a therapeutic strategy for fibro-inflammatory conditions. 
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1. Introduction 

Fibrotic diseases, such as metabolic dysfunction–associated steatotic liver disease (MASLD), chronic 
kidney disease (CKD), heart failure, neoplasms, and pulmonary disease such as idiopathic pulmonary 
fibrosis (IPF), are estimated to account for around 35% of global deaths [1]. Furthermore, fibrotic 
remodelling within the synovial joint in rheumatoid arthritis and osteoarthritis [2,3] is considered a major 
driver of chronic pain and loss of mobility. 

The fibrotic process is a dysregulated wound-healing response, driven by the persistent activation of 
fibroblasts (or myofibroblasts), which results in the deposition of excessive extracellular matrix (ECM) 
proteins such as collagen [4], a key feature of pathological tissue remodelling in fibrotic disorders [5–8]. 
These activated fibroblasts also drive chronic persistent inflammation via the secretion and expression of 
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pro-angiogenic and pro-inflammatory cytokines and chemokines [9], which promote the recruitment of 
inflammatory immune cells [10]. 

Despite the profound impact of fibrosis, approved therapeutics that specifically target this pathology 
are limited. The anti-fibrotic drug pirfenidone [11] (which targets the key fibrotic cytokines TGF-β, TNF-
α, and IL-6) and the tyrosine kinase inhibitor nintedanib [12] are both effective in targeting lung fibrosis, 
such as in IPF. However, these drugs are limited: They slow but do not reverse fibrosis, they are poorly 
tolerated, and it remains to be established whether they are translatable to other fibrotic inflammatory 
disorders, highlighting the clinical unmet need for alternative targeted anti-fibrotic strategies. 

In seeking to identify existing drugs with anti-fibrotic potential that could be repurposed, incretin 
receptor agonists, namely the glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic 
polypeptide (GIP) receptor agonists, are emerging as candidates. The GLP-1 receptor agonists liraglutide 
and semaglutide are already well-established for their glucoregulatory and weight-loss effects in patients 
with type 2 diabetes (T2DM) and overweight/obesity [13–15]. However, emerging evidence suggests that 
their benefits extended beyond glycaemic control, with pleiotropic effects on multiple organ systems, 
including significant anti-fibrotic effects. Therefore, in this review we detail the direct and indirect 
molecular mechanisms by which incretin receptor agonists inhibit fibrotic signalling pathways, and 
critically appraise the evidence for their preclinical and clinical efficacy in fibrotic disorders across diverse 
tissues, including the liver, heart, kidney, lung, and joints (Table 1; Figure 1), ultimately culminating in an 
evaluation of their clinical potential for the treatment of fibrotic inflammatory disorders. 

 

Figure 1. Direct and indirect anti-fibrotic mechanisms of incretin agonists across organ systems.
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Table 1. Summary of preclinical and clinical evidence for the anti-fibrotic potential of incretin agonists across organ systems. 

Disorder Preclinical Evidence Clinical Evidence 

Liver fibrosis 
In vivo: Thioacetamide-induced mouse model; semaglutide reduced α-SMA, 
oxidative stress, and collagen deposition; downregulated TGF-β/Smad, upregulated 
SIRT1 and p-AMPK. 

MASLD/MASH patients: LEAN study—liraglutide reduced fibrosis progression; 
Phase 3 semaglutide trial—increased resolution of steatohepatitis and reduced 
fibrosis. Tirzepatide and semaglutide improved liver steatosis/inflammation. 

Cardiovascular 
fibrosis 

In vitro: Isolated cardiomyocytes—GLP-1R agonists activated PI3K/Akt, AMPK, 
cAMP/PKA; reduced NOX4 oxidative stress. Primary cardiac fibroblasts—inhibited 
TGF-β signalling, COL1A1/COL3A1 expression. 
In vivo: Rodent diabetic or pressure-overload cardiomyopathy—dulaglutide reduced 
myocardial collagen (~35%) and improved diastolic function; obese HFpEF mouse—
semaglutide decreased collagen; MI models—liraglutide reduced adverse 
remodelling. 

Large CVOTs (liraglutide, semaglutide, dulaglutide)—reduced CV 
events/mortality; SELECT trial—semaglutide reduced HF risk. Smaller 
T2DM/obesity cohorts—improved diastolic function, LV mass index, exercise 
capacity (liraglutide, semaglutide). Fibrosis is not directly measured. 

Renal fibrosis/CKD 

In vitro: Tubular epithelial cells—Exendin-4 reduced TGF-β-induced 
fibronectin/COL1A1 and miR-192; Mesangial cells—GLP-1R agonists suppressed 
NF-κB/TGF-β, reduced ECM, proliferation via AMPK. 
In vivo: UUO model—liraglutide suppressed TGF-β/Smad3/ERK1/2, reduced 
collagen; STZ diabetic rats—liraglutide or Exendin-4 reduced α-SMA, collagen I, 
fibronectin, glomerulosclerosis, oxidative stress. 

CKD/T2DM patients (LEADER, SUSTAIN-6, REWIND, FLOW)—liraglutide, 
semaglutide, and dulaglutide improved renal outcomes (macroalbuminuria, eGFR, 
composite endpoints), but fibrosis was not directly measured. 

Pulmonary fibrosis 

In vitro: Alveolar macrophages—GLP-1R agonists suppressed NLRP3/IL-1β via 
histone lactylation; airway/alveolar epithelial cells—reduced IL-33, TSLP; 
pulmonary artery smooth muscle cells—liraglutide/exendin-4 reduced PDGF-BB-
induced proliferation/migration. 
In vivo: Bleomycin lung injury -semaglutide microparticles reduced α-SMA, Col1a1, 
TGF-β1, p-SMAD3; pulmonary hypertension rodent models—liraglutide/exendin-4 
reduced vascular remodelling, inflammation, hypertrophy. GLP-1R knockout 
reduced injury, highlighting context-dependence. 

Meta-analyses in T2DM (77,000+ pts)—lower incidence of pulmonary 
fibrosis/ILD with GLP-1R agonists; no trials with fibrosis-specific endpoints. 

Joint 
fibrosis/Osteoarthritis 

In vitro: Rodent primary chondrocytes—liraglutide inhibited IL-1β/AGEs-induced 
TNF-α, IL-6, iNOS; Human SW1353—dulaglutide inhibited AGEs/NFkB cytokine 
expression; human primary articular chondrocytes—lixisenatide reduced TNF-α, IL-
6, IL-7.  
In vivo: Murine MIA-induced OA—intra-articular liraglutide reduced synovitis and 
pain; Rat MIA & ACL-transection OA models—subcutaneous liraglutide reduced 
pro-inflammatory cytokines, cartilage degradation. Effects are partly independent of 
weight loss. 

Knee OA patients with obesity—semaglutide reduced pain (WOMAC); Chinese 
cohort with T2DM—GLP-1 agonists (liraglutide, semaglutide) reduced cartilage 
volume loss over 2 years.  
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2. Molecular Mechanisms of Incretin Receptor Agonism in Fibrosis 

The anti-fibrotic actions of incretin receptor agonists are likely mediated through a combination of 
direct receptor-mediated signalling and indirect systemic effects. 

2.1. Direct Anti-Fibrotic Mechanisms 

In considering the direct anti-fibrotic mechanisms, it is important to note that the expression of incretin 
receptors is not confined to the pancreatic islets. In humans, immunohistochemistry using a monoclonal 
antibody showed that the GLP-1 receptor protein is expressed in the pancreas, in smooth muscle cells of 
the kidney, lung, and gastrointestinal (GI) tract, and in myocytes of the heart [16]. Furthermore, GLP-1 
receptor mRNA and protein have been reported in the brains of adult rodents and macaques [17]. Expression 
of the GIP receptor appears to be more ubiquitous, with Protein Atlas (proteinatlas.org; accessed on 5 
December 2025 [18]) indicating expression of both mRNA and protein across multiple tissue types 
including brain, liver, kidney, heart, pancreas and gastrointestinal tissues. Furthermore, Protein Atlas 
indicates that GLP-1 receptor protein (but not mRNA) is present in skeletal muscle, whilst conversely GLP-
1 receptor mRNA (but not protein) is detected in adipose tissue. However, data on the expression of either 
receptor in fibroblasts across different organ systems has not been reported. 

Signalling through GLP-1 and GIP receptors involves Gαs-coupled pathways, increasing intracellular 
cAMP, which, downstream, can modulate the expression and/or activity of several fibrosis effectors. For 
example, a key fibrotic effector pathway mediated by GLP-1 receptor agonists is AMPK signalling. AMPK 
activation suppresses key fibrotic signalling pathways, including TGF-β/Smad and NFκB, resulting in 
inhibition of fibroblast proliferation and reduced ECM protein production [19]. Several studies have 
demonstrated that the GLP-1 receptor agonists such as extendin-4 and liraglutide can activate AMPK 
signalling in multiple tissues and cell types, including cardiomyocyte hyperglycaemic [20] or cardiac 
hypertrophy models [21], in rat INS-1 pancreatic beta cells [22], and in L6 myotubes, resulting in the 
sensitisation of insulin-stimulated glucose uptake [23]. 

Notably, TGF-β is considered the master regulator of fibrosis, and its downstream signalling is 
transduced primarily through the phosphorylation and activation of receptor-associated Smads (R-Smads), 
Smad2 and Smad3. These activated Smads form a complex with Smad4, which translocates to the nucleus 
and promotes the expression of pro-fibrotic genes [24], such as Type I Collagen alpha 1 (COL1A1) and 
Fibronectin and Connective Tissue Growth Factor (CTGF). Importantly, GLP-1 receptor agonism has been 
demonstrated in several fibrotic models to lead to inhibition of TGF-β signalling. In rodent H9C2 
cardiomyocytes, liraglutide inhibited TGF-β signalling and reduced collagen production [25]. In a rat model 
of diabetes-induced testicular dysfunction, liraglutide reduced testicular TGF-β and Smad2 mRNA 
expression levels [26], whilst in HUVECs, liraglutide attenuated high glucose and IL-1β-induced TGF-β 
signalling (via inhibition of Smad2 phosphorylation), leading to reduced endothelial-to-mesenchymal 
transition (EndMT) marker expression [27]. 

2.2. Indirect Anti-Fibrotic Mechanisms 

Incretin agonists likely also exert anti-fibrotic activity by indirect mechanisms. Firstly, metabolically, 
both hyperglycaemia and hyperinsulinemia are potent pro-fibrotic stimuli. High glucose levels lead to the 
creation of advanced glycation end products (AGEs), which contribute to fibrotic tissue formation [28], and 
both AGEs and excess insulin can promote fibroblast proliferation and ECM production [29,30]. Thus, by 
improving glycaemic control and improving insulin resistance, incretin receptor agonists may reduce 
fibrosis indirectly. 

Secondly, significant weight loss and the resultant change in the inflammatory phenotype of obese 
adipose tissue would reduce the release into the circulation of key pro-fibrotic pro-inflammatory 
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cytokines/adipokines such as TNF-α, IL-6, leptin [31], visfatin and resistin, and increase levels of anti-
fibrotic adipokines such as adiponectin [32]. For example, resistin-stimulated cardiac fibroblasts show 
increased expression of ECM proteins, including α-smooth muscle actin (α-SMA), COL1A1, CTGF, and 
fibronectin [33]. Thus, incretin receptor agonist-induced weight loss would be expected to create a tissue 
environment that is less conducive to fibrosis [34]. 

3. Efficacy of Incretin Receptor Agonists in Tissue-Specific Fibrotic Inflammatory Disorders 

3.1. Liver Fibrosis 

Liver fibrosis, with activation of hepatic stellate cells (HSCs) driving ECM deposition and progressive 
pathological changes to the liver architecture, is a central determinant of morbidity and mortality in 
MASLD. Thus, therapeutic strategies that can slow, halt, or reverse fibrotic change are a major clinical 
priority. As such, liver fibrosis has been a major focus of incretin receptor agonist research. 

Several clinical studies have shown that GLP-1 receptor agonists, including semaglutide and liraglutide, 
and the dual GIP/GLP-1 receptor agonist tirzepatide, reduce liver steatosis and inflammation in MASLD 
patients [35]. In the LEAN clinical study in MASLD patients, liraglutide was found to reduce the incidence 
of fibrosis progression compared to placebo [36]. Similarly, in an ongoing phase 3 trial in patients with 
Metabolic Dysfunction–Associated Steatohepatitis (MASH; a subset of MASLD), resolution of 
steatohepatitis and reduction in liver fibrosis were reported in a greater proportion of patients in the 
semaglutide group compared to the placebo group [37]. 

A growing number of preclinical studies suggest that incretin receptor agonists may modulate core 
pathways involved in hepatic fibrogenesis, though whether these effects are direct or secondary to 
metabolic improvements remains an area of active investigation. In vivo data from rodent fibrosis models 
support a potential anti-fibrotic action. For example, in a thioacetamide-induced mouse model, semaglutide 
reduced biochemical and histological markers of liver injury, attenuated α-SMA expression, decreased 
oxidative stress, and downregulated the canonical TGF-β/Smad signalling pathway while upregulating 
SIRT1 and phosphorylated AMPK. These changes were accompanied by a significant reduction in collagen 
deposition and overall fibrosis severity, suggesting that GLP-1 receptor agonism can modify established 
fibrogenic signalling cascades within the liver [38]. 

In contrast, cell-based studies in human hepatic stellate cells and hepatocytes provide a more nuanced 
picture. Using both immortalised and primary human cells, liraglutide, acyl-GIP, and a dual GLP-1/GIP 
receptor agonist (MAR709) failed to produce measurable effects on lipid accumulation, fibrogenic gene 
expression, or CREB phosphorylation at physiologically relevant concentrations. Importantly, these 
compounds did not prevent TGF-β-induced HSC activation or reduce expression of ECM genes, including 
α-SMA and COL1A1 [39]. Thus, these in vitro findings indicate that the beneficial effect of incretin 
receptor agonists on fibrosis progression in MASLD patients is likely to be mediated indirectly through 
improvements in body weight, inflammation, and insulin resistance, rather than through the direct action 
on hepatic parenchymal or non-parenchymal cells. 

In summary, incretin receptor agonists demonstrate consistent anti-fibrotic effects in vivo, reducing hepatic 
stellate cell activation, oxidative stress, and collagen deposition in animal models, and improving fibrosis 
outcomes in clinical MASLD and MASH studies. However, evidence from human cell-based experiments 
suggests that these benefits are unlikely to result from direct actions on hepatocytes or HSCs, instead reflecting 
indirect metabolic and anti-inflammatory mechanisms. Together, these data highlight the therapeutic potential 
of incretin receptor agonism in slowing or reversing liver fibrosis, while emphasising the need for further 
mechanistic studies in human-relevant systems to delineate direct versus indirect effects fully. 
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3.2. Cardiovascular Fibrosis 

Cardiovascular fibrosis is a hallmark of pathological cardiac remodelling and a key mediator of the 
progression from metabolic or ischemic injury to overt heart failure. Chronic stress signals, including 
hyperglycaemia, inflammation, neurohormonal activation, and mechanical overload, promote the activation 
of cardiac fibroblasts and the accumulation of extracellular matrix within the myocardium. This stiffening 
and structural distortion impair diastolic and eventually systolic function, making fibrosis a central 
determinant of adverse cardiovascular outcomes. As a result, interventions capable of attenuating or 
reversing fibrotic remodelling hold significant therapeutic promise in cardiometabolic disease. 

Clinical studies of incretin receptor agonists provide evidence of cardiovascular benefit, but they do 
not directly demonstrate anti-fibrotic effects, as fibrosis has not been measured as a primary outcome in 
major trials. Large cardiovascular outcome trials with liraglutide [40], semaglutide [41], and dulaglutide 
[42] have shown reductions in adverse cardiovascular events and cardiovascular mortality, while the 
SELECT trial demonstrated a reduction in heart failure with semaglutide [43]. Despite these benefits, these 
trials assessed cardiovascular clinical endpoints rather than myocardial structure or ECM collagen 
deposition, and thus do not establish a fibrosis-mediated mechanism. 

Smaller cohort mechanistic studies provide indirect evidence that is suggestive of favourable fibrotic 
cardiac remodelling. In a prospective study of T2DM patients, six months of liraglutide therapy improved 
diastolic function and reduced left ventricular mass index [44], while additional echocardiographic studies 
have reported improvements in global longitudinal strain and left ventricular mass with GLP-1 receptor 
agonists [45]. Similarly, in patients with obesity-related HFpEF (Heart Failure with Preserved Ejection 
Fraction), semaglutide produced substantial improvements in symptoms and exercise capacity [46]. These 
findings are consistent with reduced myocardial stiffness and remodelling, but remain surrogates rather 
than direct measurements of fibrosis. Moreover, liraglutide trials in patients with HFrEF provided no 
clinical benefit, underscoring that the efficacy of incretin receptor agonism does not uniformly extend 
across heart-failure phenotypes and that remodelling mechanisms may differ by disease context [47]. 

Preclinical in vivo models have demonstrated anti-fibrotic effects of incretin receptor agonism in the 
heart. In rodent models of diabetic or pressure-overload cardiomyopathy, dulaglutide reduced myocardial 
collagen content by approximately 35% and improved diastolic function [48]. Semaglutide similarly 
decreased collagen deposition and improved diastolic indices in an obese mouse model of HFpEF [49]. In 
experimental myocardial infarction, liraglutide activated cardioprotective signalling pathways and reduced 
adverse ventricular remodelling [50]. 

In vitro studies provide mechanistic support for the anti-fibrotic actions of incretin receptor agonists in 
the cardiovascular system. In isolated cardiomyocytes, GLP-1 receptor agonists activated PI3K/Akt, 
AMPK, and cAMP/PKA pathways while reducing NOX4-mediated oxidative stress, signalling 
cardioprotective effects by alleviating ER stress-induced apoptosis [51]. Similarly, in primary cardiac 
fibroblasts, GLP-1R agonism inhibited TGF-β signalling activity and expression of ECM proteins, 
including COL1A1 and COL3A1 [25]. Together, these cellular studies highlight multiple convergent 
mechanisms, namely anti-inflammatory, anti-oxidative, pro-survival, and TGF-β/Smad inhibitory, through 
which incretin receptor agonists may modulate cardiac fibrogenesis. 

3.3. Renal Fibrosis and Chronic Kidney Disease 

Renal fibrosis is a major driver of progressive kidney function loss in CKD. Chronic metabolic, 
inflammatory, and hemodynamic stresses lead to myofibroblast activation, ECM deposition, and distortion 
of glomerular and tubulointerstitial architecture. As fibrotic scarring accumulates, nephron function 
declines irreversibly, underscoring the importance of targeting fibrosis as a central pathway in developing 
therapeutics for CKD. 
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Clinical evidence supporting the renoprotective effects of incretin receptor agonists primarily derives 
from large cardiovascular outcome trials, where kidney outcomes were secondary endpoints. These studies 
consistently report favourable renal outcomes (e.g., eGFR, macroalbuminuria, or serum creatinine levels) 
with GLP-1 receptor agonists. For example, in LEADER, liraglutide reduced the composite renal endpoint, 
driven mainly by a lower incidence of new-onset macroalbuminuria [52]. Similar findings were observed 
with semaglutide in SUSTAIN-6 [53] and dulaglutide in REWIND [54] clinical trials, where reductions in 
nephropathy events were reported. However, none included a direct assessment of renal fibrosis. Similarly, 
the recent FLOW trial demonstrated that semaglutide significantly reduced the risk of major kidney 
outcomes in patients with type 2 diabetes and CKD. However, these benefits were based on clinical 
endpoints and did not include direct measures of renal fibrosis, such as histology or fibrosis-specific 
biomarkers [55]. 

In contrast, preclinical in vivo studies provide more direct evidence that incretin receptor agonism 
attenuates renal fibrogenesis. In the unilateral ureteral obstruction model, liraglutide suppressed TGF-β 
expression and downstream Smad3 and ERK1/2 signalling, resulting in reduced tubulointerstitial collagen 
accumulation and improved histological fibrosis scores [56]. Similar anti-fibrotic effects of liraglutide have 
been reported in a streptozotocin (STZ)-induced diabetic model, where liraglutide reduced α-SMA, 
collagen I and fibronectin expression and altered the renal proteome consistent with decreased oxidative 
stress and attenuated ECM deposition [57]. In addition, Exendin-4 in STZ diabetic rats attenuated 
albuminuria and glomerulosclerosis by inhibiting the activation of NFκB and subsequent oxidative stress 
pathways [58]. Importantly, these effects were independent of the glucose lowering effect of the incretin 
receptor agonist. 

Furthermore, across several cellular models, incretin receptor agonists have been reported to suppress 
pro-fibrotic signalling pathways, including TGF-β/Smad signalling, and NFκB activation, leading to 
reduced expression of ECM proteins. For example, in tubular epithelial cells exposed to high glucose, 
Exendin-4 reduced TGF-β-induced fibronectin and COL1A1 expression and decreased secretion of the 
microRNA miR192, which is implicated in kidney fibrosis, pro-fibrotic microRNA-192, a mediator 
implicated in renal fibrosis [59]. Similarly, in mesangial cells, GLP-1 receptor agonists have been shown 
to suppress either high-glucose-induced or AGEs-induced pro-fibrotic signalling pathways, including NF-
κB activation and TGF-β1 expression, leading to reduced ECM deposition [60,61], and to suppress their 
proliferation via AMPK activation [62]. 

Collectively, while clinical trials of GLP-1 receptor agonists consistently demonstrate renoprotective 
effects, these studies have not directly assessed renal fibrosis. By contrast, preclinical in vivo and in vitro 
studies both indicate that incretin receptor agonism can attenuate fibrogenic signalling in models of kidney 
disorders, and thus the positive clinical trial data on kidney function outcome measures may, in part, be 
mediated by inhibition of fibrosis. 

3.4. Pulmonary Fibrosis 

Fibrosis of the lung disrupts alveolar architecture and impairs gas exchange, representing a central 
pathological feature of fibrotic interstitial lung diseases. Given the limited efficacy of current anti-fibrotic 
therapies and the substantial morbidity associated with progressive pulmonary fibrosis, identification of 
novel pathways capable of modulating fibroblast activation and ECM remodelling remains a major 
therapeutic priority. In this context, interest has emerged in incretin receptor agonists as potential 
modulators of pulmonary fibrotic pathways, although the supporting evidence remains preliminary. 

Clinical data directly evaluating the impact of incretin receptor agonists on pulmonary fibrosis are 
limited. In a meta-analysis of large randomized controlled trials of GLP-1 receptor agonists in type 2 
diabetes, the incidence of pulmonary fibrosis and interstitial lung disease events was lower in treated 
patients compared with controls, although absolute event rates were extremely low and differences did not 
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reach statistical significance [63]. A larger meta-analysis encompassing over 77,000 participants similarly 
reported a reduced overall risk of respiratory diseases with GLP-1 receptor agonist treatment, but 
pulmonary fibrosis was not analysed as a discrete outcome, and no fibrotic endpoints were prospectively 
assessed [64]. Importantly, none of these studies incorporated imaging, physiological, or histopathological 
measures of lung fibrosis, precluding conclusions regarding anti-fibrotic clinical efficacy of GLP-1 agonists 
in pulmonary fibrosis. 

Preclinical in vitro evidence for the efficacy of incretin receptor agonists is derived primarily from 
epithelial, immune, and vascular cellular models rather than from direct studies of lung fibroblasts. As such, 
the data suggest that incretin receptor agonists may modulate cellular pathways that initiate and amplify 
fibrotic remodelling in the lung. For example, in alveolar macrophages, GLP-1 receptor agonism 
suppressed activation of the NLRP3 inflammasome and reduced production of IL-1β [65], an effect in part 
mediated by the disruption of histone lactylation, a recognised regulator of pro-fibrotic gene expression 
[65]. In immortalised human airway epithelial cell lines (including bronchial epithelial cells) and human 
alveolar epithelial–like cells, GLP-1 receptor agonists reduced epithelial stress and inflammatory signalling, 
including downregulation of epithelial-derived cytokines, including IL-33 and thymic stromal 
lymphopoietin (TSLP), both of which are implicated in epithelial–mesenchymal crosstalk and fibroblast 
recruitment in fibrotic lung disease [66–68]. Additionally, liraglutide and exendin-4 inhibited platelet-
derived growth factor BB (PDGF-BB)-mediated proliferation and migration of pulmonary artery smooth 
muscle cells [69,70]. 

In vivo, studies directly modelling pulmonary fibrosis remain sparse and have shown converse results. 
In murine models of bleomycin-induced lung injury, genetic deletion of the GLP-1 receptor was associated 
with reduced inflammatory injury, and pharmacological GLP-1 receptor activation exacerbated pulmonary 
inflammation [71]. In contrast, multiple rodent pulmonary hypertension models demonstrate that GLP-1 
receptor agonists, including exendin-4 and liraglutide, reduce vascular remodelling, inflammation, and 
ventricular hypertrophy via endothelial nitric oxide signalling and suppression of endothelin-1 pathways 
[68,69,72,73]. Furthermore, a recent study using a dual-sensitive, gelatin-coated chitosan microparticle 
formulation for pulmonary delivery of semaglutide significantly attenuated bleomycin-induced lung 
fibrosis in vivo, with reductions in inflammatory signalling (TLR4/NF-κB), fibrogenic mediators (TGF-β1, 
p-SMAD3), and markers of ECM deposition α-SMA and Col1a1 [74]. 

In summary, evidence supporting a therapeutic role for incretin receptor agonists in pulmonary fibrosis 
is promising but inconclusive. Clinical studies suggest a favourable respiratory safety profile and a possible 
reduction in fibrotic events, but lack fibrosis-specific endpoints. Preclinical data indicate modulation of 
inflammatory and pro-fibrotic signalling pathways relevant to lung fibrosis, yet direct demonstration of 
reduced fibroblast activation or collagen deposition in established pulmonary fibrosis models is currently 
lacking. Therefore, further targeted in vivo and human-relevant mechanistic studies are required to determine 
whether incretin receptor agonism can meaningfully modify fibrotic progression in pulmonary disease. 

3.5. Osteoarthritis and Synovial Joint Fibrosis 

The potential for incretin receptor agonists as therapeutics for disease modification and/or pain in OA 
is supported by epidemiology and by both clinical and preclinical studies, which suggest direct and indirect 
mechanisms of efficacy. Firstly, epidemiologically, obesity is an established risk factor for the development 
of OA; individuals with obesity are 3–5 times more likely to develop OA [75], and most OA patients 
undergoing total joint replacement surgery for end-stage OA have obesity or are overweight [76]. 

In clinical studies, once-weekly administration of the GLP-1 agonist semaglutide in knee OA patients 
with obesity reduced patient-reported pain scores (WOMAC) over 68 weeks compared with placebo. With 
both groups receiving counselling on physical activity and a reduced calorie diet [77]. Furthermore, a 
retrospective analysis of a Chinese cohort of knee OA patients with type 2 diabetes, those patients who had 
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been prescribed a GLP-1 agonist (including liraglutide, semaglutide or other), exhibited reduced cartilage 
volume loss after 2 years, compared to those patients who had not been prescribed a GLP-1 agonist [78]. 
Given that both of these studies were in patients with OA of the knee (a load-bearing joint), it is likely that 
a significant proportion of the efficacy observed was due to the significant loss of body weight, reducing 
pathological joint loading. Indeed, diet-induced weight loss in knee or hip OA patients has previously been 
shown to slow disease progression, improve joint function, and reduce joint pain [79]. Furthermore, the 
reduction in adipose tissue mass likely reduced obesity-associated systemic inflammation by reducing the 
release of pro-inflammatory adipokines, which can drive cartilage degeneration [80] and abnormal 
subchondral bone remodelling [81]. 

However, emerging evidence suggests that incretin receptor agonists may also have direct effects on 
the activity of diseased synovial joint cells. Historically, OA was considered purely a “wear and tear” 
degenerative disease of the cartilage. However, in recent years, it has been increasingly recognised as a 
disease involving significant synovial inflammation (synovitis) [82,83]. In OA, the synovial joint lining 
tissue (synovium) undergoes a fibrotic transformation, with TGF-β a key regulator driving an influx of 
inflammatory immune cells and the activation of resident synovial fibroblasts. Latent and active forms of 
TGF-β are detected in OA synovial fluid [84], but are present at much lower levels, or are undetectable, in 
healthy non-arthritic synovial fluid [85]. Intra-articular injection of C57Bl/6 mice with an adenovirus vector 
overexpressing active TGF-β [86] or repeated in-articular injections of recombinant TGF-β induced 
hyperplasia of synovium with increases in inflammatory immune cells, including macrophages [87]. 
Interestingly, the activated fibroblast phenotype, which is more proliferative and pro-inflammatory, is 
particularly pronounced in OA patients with obesity [88–90], even in non-load bearing joints i.e., hands 
[91]. This inflammatory synovial fibroblast phenotype exacerbates cartilage degeneration, via the induction 
of matrix metalloproteases (MMPs) and aggrecanases (ADAMTS4/5), and sensitises the growth and 
activity of joint nociceptors [92–94]. Thus, synovial fibrosis is likely a central mediator of both progression 
in the loss of joint integrity, and patient’s perception of joint pain. 

Critically, preclinical evidence supports direct benefits of incretin receptors in modulating OA synovial 
fibrosis. In vivo, in a murine monoiodoacetate (MIA)-induced model of OA, a single intra-articular injection 
of liraglutide reduced synovitis severity, whilst weekly intra-articular injections attenuated behaviour pain 
responses [95]. Importantly, no difference in weight was observed between the liraglutide and vehicle 
control groups. In a rat MIA model, Que et al. [96] found that sub-cutaneous administration of for 28 days 
liraglutide reduced pro-inflammatory cytokines in cartilage, whilst in a surgically induced (ACL transection) 
rat model of OA, subcutaneous Liraglutide reduced histological signs of cartilage degradation [97]. 

These findings are supported by in vitro studies using either murine or human cells. Predominantly, 
these studies have been conducted in chondrocyte cells rather than synovial fibroblasts. Nevertheless, the 
available data indicate that incretin receptor agonism exerts direct immunomodulatory effects, which would 
be expected to reduce synovial inflammation and fibrosis. In rodent primary chondrocytes, Liraglutide 
inhibited AGEs- or IL-1β-induced expression and release of pro-inflammatory cytokines, including iNOS, 
TNF-α and IL-6 [95,98]. Similarly, in the human chondrocyte SW1353 cell line, dulaglutide inhibited 
AGEs-induced activation of NFkB and the expression of pro-inflammatory cytokines [99], whilst in human 
knee OA primary articular chondrocytes, lixisenatide reduced mRNA ad protein expression of TNF-α, IL-
6 and IL-7 [100]. 

Therefore, incretin receptor agonists likely exert a multimodal therapeutic effect in OA. Although 
substantial weight loss can reduce pathological joint loading and systemic inflammation, the direct 
pharmacological effects on synovial fibroblasts—attenuating their inflammatory signalling and fibrotic 
activation may offer an additional, disease-modifying and analgesic mechanism that targets the local 
synovial environment, driving pain and structural progression. Collectively, these findings provide a strong 
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rationale for the therapeutic repurposing of incretin receptor agonists to address the unmet clinical need for 
treatments that modify disease and alleviate joint pain in OA patients. 

4. Conclusions and Future Perspectives 

The collective evidence positions incretin receptor agonists as a unique class of drugs with multi-organ 
anti-fibrotic potential, now extending to fibro-inflammatory diseases like osteoarthritis. Their ability to 
target both direct (TGF-β inhibition) and indirect (metabolic, inflammatory) drivers of fibrosis may provide 
a powerful, synergistic therapeutic approach. However, key knowledge gaps remain. The relative 
contributions of the direct effects of incretin receptor agonists on fibrosis versus the secondary effects of 
weight loss and systemic reductions in inflammation remain to be delineated. It is also unclear if specific 
incretin receptor agonists, for example selective GIP receptor and GLP-1 receptor agonists will possess 
different efficacies across tissue types. 

A critical challenge for future clinical studies will be the robust assessment of treatment effects on in 
situ fibrosis. Across organ systems, this will require incorporation of validated imaging modalities and 
circulating or tissue-based biomarkers of fibrogenesis and matrix turnover. In liver disease, non-invasive 
approaches such as transient elastography, magnetic resonance elastography (MRE), and serum fibrosis 
panels (e.g., ELF score, Pro-C3) can be readily applied in incretin-based trials. In cardiovascular disease, 
emerging cardiac MRI techniques, including T1 mapping and extracellular volume fraction, offer 
quantitative assessment of myocardial fibrosis, while circulating collagen turnover markers may provide 
complementary information. In chronic kidney disease, urinary and plasma biomarkers of fibrosis, together 
with functional MRI approaches, represent promising tools, although further validation is required. In 
pulmonary fibrosis, high-resolution CT combined with quantitative imaging analysis and circulating 
markers of epithelial injury and matrix remodelling may enable the detection of fibrotic change. In OA, 
contrast-enhanced MRI, ultrasound-based assessment of synovitis, and synovial fluid or serum biomarkers 
of fibrosis and inflammation could be leveraged to directly assess changes in synovial fibro-inflammatory 
pathology. Integration of such modalities into future trials will be essential to distinguish true anti-fibrotic 
effects from indirect improvements driven by weight loss or systemic metabolic changes. 

Future research should focus on designing clinical trials that use fibrosis regression or synovitis 
reduction as primary endpoints in diseases like osteoarthritis, employing advanced imaging or histological 
techniques. Additional priorities include evaluating incretin receptor agonists in fibrotic diseases where 
diabetes is not a major comorbidity, such as idiopathic pulmonary fibrosis or in osteoarthritis; exploring 
combination therapies with other anti-fibrotic or specific disease-modifying drugs; and deepening 
mechanistic investigations to clarify direct mechanisms of incretin receptor signalling in fibroblasts and 
immune cells across different tissue types. 

In conclusion, preclinical and emerging clinical evidence are changing the paradigm, viewing incretin 
receptor agonists solely as metabolic-based therapeutics for treating obesity and diabetes to recognising 
them as multifaceted agents with significant disease-modifying potential for inflammatory fibrotic 
disorders across different organ systems. By exerting direct effects that modulate key pro-fibrotic pathways 
and reduce drivers of inflammation, incretin receptor agonists offer a promising approach for treating a 
broad spectrum of fibrotic and fibro-inflammatory disorders. 
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