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ABSTRACT: Driven by global energy transition goals, the large-scale development of offshore wind
power imposes rigid requirements for professionalism, standardization, and timeliness on feasibility study
reports (FSR). Traditional manual compilation and existing automated methods fail to meet these
requirements due to interdisciplinary complexity, poor process controllability, and insufficient domain
adaptation. To address these challenges, this paper proposes a configurable and interpretable offshore wind
FSR generation system built on a three-tier framework that encompasses “data support, process
orchestration, and quality assurance”. The system integrates a YAML-based workflow architecture, multi-
level prompt engineering, and a comprehensive evaluation system. Notably, the introduced “Cyclic
Aggregation Mode” enables the iterative generation and logical summarization of multi-subproject data,
effectively distinguishing this system from traditional linear text generation models. Experimental results
demonstrate that the proposed “Retrieval-Augmented Generation (RAG) + Large-scale Language Model
(LLM) + Workflow” system outperforms baseline models with key metrics including semantic consistency
(0.6592), information coverage (0.3908), structural compliance (0.5123), and an overall score (0.5965).
Ablation studies validate the independent contributions of the RAG and Workflow components, thereby
establishing the “RAG + LLM + Workflow” paradigm for intelligent professional document generation.
This work addresses core challenges related to controllability, accuracy, and interpretability in high-stakes
decision-making scenarios while providing a reusable technical pathway for the automated feasibility
demonstration of offshore wind power projects.
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1. Introduction

Driven by global energy transition goals, the accelerated scaling of offshore wind power development
imposes stringent requirements on the professionalism [ 1-3], standardization, and timeliness of feasibility studies:

(1) Professional expertise must precisely integrate multi-disciplinary technical parameters, policy
standards, and engineering experience to meet cross-disciplinary validation needs [4]. (2) Standardization
necessitates unified chapter frameworks, data definitions, and terminology systems to accommodate diverse
applications such as approvals and credit assessments [5]. (3) Timeliness demands responsiveness to
dynamic shifts in policy, market conditions, and technology, enabling rapid compilation and flexible
updates [6].

Traditional manual compilation struggles to meet these concurrent demands, with core bottlenecks
concentrated in two areas:

First, regarding professionalism, offshore wind projects involve highly complex, multi-disciplinary
knowledge spanning meteorology, marine engineering, electrical systems, and economic evaluation.
However, in practice, it is difficult for a single manual compiler to possess “comprehensive professional
capabilities” across all these domains. Consequently, reliance on individual expertise inevitably leads to
friction points—such as the disconnect between engineering parameter updates and financial valuation
models—resulting in potential issues like policy standard confusion and gaps in interdisciplinary
knowledge integration, which significantly undermines report credibility [7]. Second, insufficient
timeliness: manual collaborative compilation cycles are lengthy. When data updates or plan adjustments
occur, extensive time is required for cross-chapter modifications, and issue tracing lacks clear pathways,
making it difficult to support rapid decision-making needs [8]. These pain points fundamentally stem from
the lack of structured knowledge accumulation, standardized compilation processes, and automated
modeling capabilities. There is an urgent need to leverage technological means to achieve efficient
knowledge reuse, automated process operation, and collaborative data flow.

Automated document generation technology has evolved through multiple stages: Early template-
filling mechanisms only enabled static content assembly, lacking semantic understanding and dynamic
logic control, and failing to meet the interdisciplinary requirements of offshore wind reports [9,10].
Subsequent rule-based engine approaches improved generative logic control but suffered from poor
scalability and high maintenance costs, struggling to keep pace with rapid policy and technological
iterations in the offshore wind sector [11]. In recent years, large language model-driven professional text
generation has made progress in fields like law and medicine [12]. However, in offshore wind feasibility
study scenarios, quality issues such as parameter confusion, data inconsistencies, and loose logic persist,
failing to meet requirements for multi-module collaboration and compliance verification [13,14].

To address the procedural management challenges of Al applications, workflow frameworks like
LangChain and Llama Index [15], alongside low-code platforms such as Dify and Coze [16], have emerged.
These enable visual workflow orchestration through declarative languages like YAML. The selection of a
YAML-based workflow is specifically driven by its interpretability and accessibility for non-technical
domain experts, allowing engineers to visually orchestrate complex generation logic and templates without
requiring deep coding expertise [17]. Concurrently, existing research has established generic frameworks
leveraging the structural characteristics of feasibility reports, providing domain knowledge support [18].
However, significant gaps remain in the automated generation of offshore wind power feasibility reports:
existing systems predominantly focus on isolated stages, lacking end-to-end modeling from data input to
report output. They struggle to integrate multi-source heterogeneous data and enable cross-chapter logical
coordination, and crucially, fail to establish comprehensive quality control mechanisms across the entire
workflow. The generation process remains a “black box”, lacking interpretability and human intervention
interfaces, making quality issue tracing difficult. No universal paradigm has emerged that balances
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controllability, professionalism, quality reliability, and reusability. This prevents systematic validation to
avoid quality defects such as parameter confusion, data inconsistencies, and information gaps, and hinders
adaptation to quality standards under personalized requirements.

To address these challenges, this paper constructs a configurable, explainable report generation system
tailored for feasibility studies in the offshore wind power industry, enabling end-to-end document
generation through structured data-driven approaches. This system specifically addresses the core challenge
of “controllability”—defined in the context of Feasibility Study Reports (FSR) as the critical balance
between algorithmic efficiency and the capability for human intervention, ensuring that the generation
process is not a deterministic “black box” but a verifiable workflow. Key contributions include:

(1) Proposing a YAML-based workflow-driven architecture supporting visual orchestration of complex
analytical modules.

(2) Designing a multi-level prompt framework to achieve precise data-to-text mapping.

(3) Validating system effectiveness, generation efficiency, and content accuracy through real-world
project implementation.

(4) Exploring a new paradigm of intelligent document generation via “low-code platforms + large models”,
providing a technical pathway for automating feasibility study validation in offshore wind projects.

2. System Design

To address the requirements for professionalism, standardization, and timeliness in preparing
feasibility studies for offshore wind power projects, this chapter establishes a systematic design framework
centered on “Data Support—Process Driven—Quality Assurance”. The focus is on designing the core
workflow modules, with the system design structure detailed in Figure 1.
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Figure 1. System Architecture Design Diagram.

Within the data preprocessing and knowledge graph construction module, multidimensional data
cleansing and validation rules are established to provide high-quality structured data support for the
knowledge graph, enabling the transformation and association of data into domain knowledge [19]. The
declarative workflow engine serves as the system’s central hub, employing a three-tier architecture to
construct the overall framework [20]. Based on YAML, it builds a visual workflow engine featuring three
layered workflow modes: serial generation, conditional branching, and loop aggregation [21]. Combined
with modular prompt engineering and robust variable management mechanisms, it supports full-process
automation from data input to report output. Through the above design, the system ensures both accuracy
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in data processing and completeness in knowledge association, while also possessing flexibility in process
orchestration and efficiency in report generation. This lays the technical foundation for subsequent scenario
applications and evaluations.

2.1. Data Preprocessing and Knowledge Graph Construction

This phase implements the “data support” step, with the core objective of transforming multi-source,
heterogeneous policy and project data into high-quality, structured domain knowledge. This provides a
solid factual foundation for subsequent LLM-generated report texts [22].

Structured Modeling and Knowledge Extraction

The system’s data sources primarily consist of policy documents, specialized development reports, and
project application materials published on official government websites at all levels, ensuring authority,
standardization, and timeliness. We first perform report structure analysis on these raw data, defining the
hierarchical logic and core content modules of the reports as “concept nodes” and “entity-attribute”
mapping carriers within the knowledge graph. Through multidimensional data cleansing, logical validation
(e.g., logical constraints, unit standardization), and data-to-text mapping mechanisms (defining semantic
expression rules for converting numerical values into natural language), we ultimately construct a domain
knowledge graph, achieving the transformation of data into inferable domain knowledge (see Figure 2 for
the knowledge extraction process). This process ensures LLMs can accurately and professionally reference
factual data during report generation. Serving as the foundation for Retrieval-Augmented Generation
(RAG), it significantly enhances the factual accuracy of generated content.
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Specifically, regarding the implementation configuration, the system constructs domain knowledge
graphs using an “entity-relation-entity” triple schema, with the knowledge base scale dynamically adjusted
based on project size. To balance retrieval precision and contextual coherence, we employ a Parent-Child
chunking strategy, smaller child chunks are utilized for precise vector matching, while larger parent chunks
provide broader context for the LLM. High-dimensional vector representations are generated by the Qwen-
text-embedding-v4 model. For retrieval, we employ a hybrid mechanism weighted at 0.6 (semantic
similarity) and 0.4 (keyword matching). The system filters results using a relevance score threshold of 0.2
and retrieves the Top-10 candidate segments for evidence injection.

2.2. Workflow Design

At this stage, the system executes the “process-driven” step within the “data-driven—process-driven—
quality-driven” framework. Report generation tasks typically involve complex collaboration across
multiple stages, conditions, and roles. This necessitates an automated scheduling and intelligent decision-
making system powered by a structured, configurable, and traceable workflow engine. Therefore, our core
objective is to build a YAML-based visual workflow engine. This engine models the report generation
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process as a directed flowchart composed of “nodes-edges-variables-conditions”, utilizing a layered pattern
to adapt to both standardized and customized scenarios. To enhance the professionalism and consistency
of generated content, the system integrates a modular prompt engineering system with context-aware
mechanisms. It dynamically injects domain-specific variables and few-shot examples to guide large
language models in producing section content compliant with industry standards. Simultaneously, global
variable management and intermediate state caching enable cross-node data sharing and fault recovery
capabilities. This ensures stable, efficient, and traceable workflow execution under complex conditions,
ultimately driving end-to-end automation from raw data to complete reports.

2.2.1. Overall Architecture of the Workflow System

The system adopts a three-tier architecture with layered decoupling. Each tier supports end-to-end
automated processing from data input to report output through clearly defined responsibilities and
collaborative mechanisms. The system flowchart is shown in Figure 3 below.
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Figure 3. System Flow Chart.

The Input Layer builds upon existing data collection, integration, and interaction capabilities by
enhancing intent recognition and guided input functions. The language understanding module parses user
input text, leveraging domain-specific dictionaries to extract core intent elements such as report section
requirements, information supplementation needs, and formatting adjustments. These elements are
precisely categorized to provide decision-making basis for subsequent workflow matching. Based on intent
recognition results, the system automatically matches corresponding processing branches through a rule
engine and dynamic routing table. For ambiguous or incomplete instructions, the system maintains
contextual awareness through session state management and generates structured prompting scripts. This
ensures supplementary information is accurately linked to the workflow node corresponding to the original
instruction. Ultimately, the input layer evolves from a passive data receiver into an intelligent interaction
hub, achieving precise alignment between user needs and system processing capabilities. This provides
scenario-based, process-oriented input support for report compilation.

As the core logical unit of the system, the processing layer adopts a microservices architecture to
integrate the YAML workflow engine, Al capability invocation module, branch-embedded prompt
engineering, and global variable keyword retrieval mechanism. The YAML workflow engine defines files
for visual task orchestration and automated execution. The Al capability invocation module interfaces with
large language model services via APIs to encapsulate and invoke atomic capabilities like text generation
and semantic analysis. Building upon this, the branch-embedded prompt engineering provides precise
prompt optimization solutions for each business process node, while the global variable mechanism
supports keyword retrieval across different sections. Together, they enhance knowledge base association
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and support for paragraph content. Modules collaborate through event-driven mechanisms to sequentially
execute critical workflows: rule-engine-based anomaly handling, vector database-enhanced retrieval, and
collaborative generation combining template engines with LLMs.

The output layer centers on “diversified report delivery”, establishing an integrated system that
consolidates execution results and adapts formats. This layer first aggregates outcomes from all business
branches and standardizes them into the global variable storage space. It then systematically integrates
content based on the structured data within these global variables, following a predefined chapter logic
framework to generate standardized Markdown documents. This ensures logical coherence and content
completeness in the output text. Subsequently, specialized format conversion modules enable precise
mapping and efficient export from Markdown to Word office formats.

2.2.2. YAML-Based Workflow Engine

The processing layer, serving as the central hub for core system logic, relies on a YAML-based
workflow engine to enable automated execution through visual workflow orchestration and end-to-end
scheduling. This engine is deployed and configured via the Dify platform. The Dify platform offers a low-
code drag-and-drop interface, enabling users to rapidly complete visual workflow design, parameter
configuration, and online debugging without requiring deep coding expertise. This significantly lowers the
technical barriers and operational costs associated with process orchestration.

The core structure of YAML workflows comprises four key elements that collectively support the
structured definition and flexible execution of processes. The static functional diagram is shown in Figure 4:
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Figure 4. Static Structure Function Diagram.

Conditional Expression: Serving as the core trigger for branching workflows, it evaluates variable
values or node execution results to return Boolean values (True or False), enabling dynamic decision-
making for workflow direction.

The engine incorporates two key node types to accommodate core business requirements: First, the
Conditional Judgment Node branches the process into “condition met” and “condition not met” paths based
on predefined conditional expressions. For example, it determines whether to trigger the “Large Project
Specialized Analysis” branch based on the “Project Scale” variable. Second, Al Generation Nodes
encapsulate large language model invocation logic. By receiving prompt templates and input variables, they
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output Al-generated text tailored to specific scenarios (e.g., market analysis sections, financial evaluation
conclusions), while supporting custom configuration of model parameters like temperature and max_tokens.

2.2.3. Layered Workflow Model

To fully unleash the flexible orchestration capabilities of the YAML workflow engine and
accommodate diverse report generation requirements across different scenarios, the system employs three
layered workflow modes to achieve precise alignment between scenarios and processes: Serial Generation
Mode: Adopts an execution logic of “sequential chapter progression”, wherein each chapter generation
node is rigorously activated in strict compliance with the standardized report structure, including Project
Overview, Market Analysis, Financial Evaluation, Risk Analysis, and Conclusions and Recommendations.
This mode suits conventional report generation scenarios with fixed structures and no special branching
requirements. Linear execution ensures logical continuity and content integrity between chapters.
Conditional Branching Mode: Enables differentiated branching based on “content feature variables”.
Taking offshore wind power as an example, core variables like “project scale”, “development stage”, or
“technical approach” dynamically match corresponding analysis modules, data dimensions, and chapter
structures. This achieves refined, personalized content generation for specific scenarios, significantly
enhancing report professionalism and relevance. Cyclic Aggregation Mode: For comprehensive reports
encompassing multiple subprojects, this closed-loop process employs “subproject cyclic generation—result
aggregation and summarization”. First, the loop node traverses all subproject data to generate dedicated
analysis chapters for each subproject. Subsequently, the aggregation node integrates multiple chapters
according to predefined rules (e.g., sorting by subproject ID, merging similar analysis conclusions) to form
a unified comprehensive report, effectively avoiding redundant operations and data duplication.

2.2.4. Variable Management and State Transfer

Whether it’s the fundamental scheduling of workflow engines or the differentiated execution of layered
workflow models, both rely on consistent data flow across nodes and tiers. To this end, the system
incorporates a robust variable management and state transfer mechanism, ensuring workflow execution
stability and traceability through three dimensions: data storage, sharing, and fault tolerance: Context
Object Design: Defines a global Context object as the unified variable storage container, categorizing
variables by data attributes into three types: “Input Variables” (e.g., user-uploaded project foundation data),
“Intermediate Variables” (e.g., post-cleaning investment amounts, Al-generated chapter text), and
“Configuration Variables” (e.g., workflow ID, template version number). Each variable records creation
time, modification history, and associated node information to support issue identification and process
tracing. Cross-Node Variable Sharing Mechanism: Employs a dual-layer storage structure of “global
variable pool + node-local variables”. Data in the global pool is accessible and modifiable by all nodes,
while local variables remain valid only within their current node. Cross-node data access is enabled through
“variable ID mapping”. For example, the “Al Generation Node” can directly reference “Standardized
Financial Data” stored in the global variable pool by the “Data Cleansing Node”, ensuring efficient data
flow. Intermediate Result Caching Strategy: For critical intermediate outputs during workflow execution (e.g.,
Al-generated chapter texts, data validation reports), a combined storage approach of local caching and
scheduled backups is employed. Should the workflow abnormally terminate due to network failures or model
invocation errors, restarting allows direct retrieval of completed intermediate results from cache without re-
executing the entire process. This significantly enhances system fault tolerance and execution efficiency.
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2.2.5. Modular Prompt Engineering

Building upon the foundational capabilities of the YAML workflow engine’s scheduling and variable-
passing mechanisms, the system has established a systematic modular prompt engineering framework to
further enhance the professionalism, accuracy, and logical consistency of Al-generated content. This
framework comprises three core components: a modular prompt template library, refined optimization
strategies, and scientific parameter configuration. The Modular Prompt Template Library, categorized by
report chapter types and functional scenarios, consists of three core template series: project background
generation prompts, which include sub-templates such as “Industry Trend Analysis”, “Regional
Development Needs Statement”, and “National Strategy Alignment Explanation” and dynamically generate
background narratives highlighting the project’s strategic value by injecting variables like “Project
Domain”, “Location Region”, “Policy Support Documents”, and “Energy Transition Goals”, market
analysis generation prompts, which cover sub-templates such as “Industry Development Trend Analysis”,
“Target Customer Positioning”, and “Competitive Landscape Assessment” and require variables including
“Project Industry Attributes” and “Regional Market Data” for targeted generation; and risk analysis
generation prompts, which encompass sub-templates like “Risk Identification & Assessment”, “Risk
Management Solutions”, and “Technical Risk Mitigation” and require customization based on parameters
such as “Project Domain” and “Risk Factor Weighting”. Complementing this template library, the Prompt
Optimization Strategy employs two core methods to enhance generation quality: Context-aware Prompting,
which dynamically embeds workflow variables into prompts to ensure Al-generated content maintains
logical consistency with existing information while avoiding conflicts and redundancy, and Example-
driven Prompting, which incorporates 1-3 high-quality domain-specific examples into the prompt to guide
the Al in learning professional expression patterns and industry terminology, thereby enhancing content
expertise. The Model Parameter Configuration further balances diversity and accuracy through key settings:
a temperature value of 0.2 enables low randomness control to prevent overly rigid or off-topic content, and
a max_tokens limit of 512 restricts single-segment text length to avoid redundancy, precisely matching the
length requirements of individual chapters or paragraphs.

3. Scenario Application and Evaluation

At this stage, the system implements the “Quality Assurance” step within the “Data-Driven—Process-
Driven—Quality Assurance” framework. This chapter focuses on the algorithmic principles underlying the
four core indicators of the evaluation system. By integrating literature support and mathematical derivations,
it clarifies the technical selection logic and domain-specific optimization strategies, providing theoretical
underpinnings for the scientific rigor and reliability of evaluation outcomes.

3.1. Semantic Consistency Evaluation: RCMD Algorithm Principles and Implementation

The semantic consistency metric employs the Relaxed Contextualized Token Mover’s Distance
(RCMD) algorithm [23]. This algorithm’s core advantage lies in addressing the issues of “ignoring
contextual dependencies” and “token-level matching bias” inherent in traditional n-gram based metrics like
BLEU [24] or ROUGE [25]. While these traditional metrics focus on surface-level lexical overlap, RCMD
utilizes contextualized embeddings to measure semantic distance. This makes it particularly suitable for
fact consistency detection in specialized domain texts, where preserving the meaning of technical
parameters is more critical than matching exact phrasing.

3.1.1. Core Logic of the Algorithm

The RCMD algorithm achieves optimal matching of textual semantic distributions through a three-step
process: “semantic embedding”, “distance matrix construction”, and “marginal distance calculation”.
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(1) Token-level semantic embedding generation: Utilizes a pre-trained BERT model to perform token-
level encoding on baseline text S» and generated text S, outputting a contextual semantic vector h; € R768
for each token (where i denotes the token index). This process leverages self-attention mechanisms to
capture token dependencies, ensuring contextual relevance of semantic vectors.

(2) Cosine Distance Cost Matrix Construction: Calculate the cosine distance between all token
semantic vectors of S» and Sg to construct the cost matrix. M € R»*La, where Ls and Lg represent the token
lengths of the two texts respectively. Matrix element Mj; is defined by Equation (1).

] e (1)

The cosine distance formula is: M;; € [0,2]. A smaller value indicates higher semantic similarity

M, =1

between two tokens.

Marginal Distance Weighted Summation: Introduce token distribution vectors d; € R and d, €
RLs obtained by normalizing token frequency with TF-IDF weights. Calculate the optimal matching
marginal distance between texts. The final semantic consistency scoring algorithm formula is given by
Equation (2).

_ & &
Slm(Sb,Sg)=1—5[;dl(l)-m}n1\/f,j+;d2(j)-nlj1n1\/f,j] )

In the formula, min M;; denotes the optimal matching distance of the i token in Sp to Sg, and vice versa.
j

After weighted summation, the average is calculated and normalized to ensure that the score positively
correlates with semantic consistency.

3.1.2. Domain-Specific Adaptation Optimization

To enhance the professionalism of feasibility study reports, the RCMD algorithm undergoes three
optimizations:

(1) Topic Consistency Penalty: calculates the thematic consistency between generated text and baseline
text, applying a penalty to semantic consistency scores accordingly. (2) Pre-trained Model Fine-tuning:
strengthens the model’s ability to capture semantic nuances of domain-specific terminology such as
“project investment”, “technical parameters”, and “policy standards”. (3) Key Sentence Weight
Enhancement: for key sentences in the baseline text containing core data or technical indicators, the
distribution vector weight di(7) of their tokens is increased by 1.5 times to emphasize the importance of
matching core information.

3.2. Information Integrity Assessment: BERT-NER Entity Retrieval Algorithm

Information integrity is achieved through an optimized BERT-NER model, which adopts a two-stage
architecture of “pre-training followed by fine-tuning”. This model achieves an F1 score of 0.91 on general
entity extraction tasks, making it suitable for both academic research and engineering implementation.

3.2.1. Core Principles of Entity Extraction

The BERT-NER model employs a labeling strategy to transform entity extraction into a sequence
labeling task (labeling system: B-ORG (organization), I-ORG, B-LOC (location), I-LOC, B-DATE (date),
[I-DATE, B-NUM (number), I-NUM, O (non-entity)). Its core workflow is as follows:

(1) Text Encoding: Input text is processed through a BERT encoder to generate contextual semantic
vectors, incorporating positional and segment encodings to distinguish text boundaries.
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(2) Entity Decoding: Semantic vectors are mapped to the label space via a fully connected layer. A
Conditional Random Field (CRF) model optimizes the plausibility of label sequences (e.g., preventing
invalid annotations like “B-ORG” immediately followed by “B-LOC”).

(3) Entity Filtering: Post-processes decoded results by filtering out entity fragments shorter than 2 tokens
and merging consecutive entities of the same type (e.g., “2024” and ‘December’ are merged into
“December 2024”).

3.2.2. Core Principles of Entity Extraction

Using the baseline text S» and the key entity set E» = {ens1,er2,-~,esn} extracted via BERT-NER as the
reference, the entity set £z = {eg1,e52,--",egn} extracted from the generated text Sg is defined. Information
recall rate is defined as shown in Equation (3).

Recall =—2——— 3)

Eb' represents the domain adaptation expansion set for Ep: Considering the diversity of entity
expressions in the feasibility study report (e.g., “XX Co., Ltd.” may be abbreviated as “XX Company”), an
entity synonym mapping table is constructed using the domain dictionary. Expressions synonymous with
E» entities in Eg are included in the matching scope to ensure the validity of recall rate calculations.

3.3. Structural Compliance Assessment: Chapter Structure Tree Matching Algorithm

Structural compliance is achieved by constructing a five-core chapter structure tree 7 = {t1,t2,-~~,t5}
encompassing “Objectives, Technology, Economics, Environment, Conclusions”. Each chapter
corresponds to a set of domain-specific keywords, with compliance scores calculated using a keyword
weight matching algorithm.

Structure Tree Construction: Define hierarchical relationships and characteristic keywords for each
section based on industry standards. Assign weight wx to each keyword (set according to its distinctiveness
within the section, e.g., “core technology” weight 0.8, “technical parameters” weight 0.5).

Generated Text Chapter Identification: Segment the generated text into paragraphs and match them
with keywords. Calculate the sum Wi of keyword weights matching each chapter . If Wi exceeds the
threshold 6 (set to 0.6 via cross-validation), the chapter is deemed present.

Compliance Score Calculation: Define the compliance score as the ratio of matched chapters to the
baseline total number of chapters, as expressed in Equation (4).

S0, 20)

4
Compliance == @

where I(.) is an indicator function that takes the value 1 when the condition is satisfied and 0 otherwise.

3.4. Expression Fluency Assessment

Fluency is quantified using the “Qwen3-Max” model, which demonstrates high consistency with
human experts in text quality evaluation tasks through its trillion-parameter pre-training.
3.4.1. Evaluation Dimensions and Prompt Design

The evaluation dimensions focus on the practical requirements of feasibility studies, encompassing
three core indicators, each with clearly defined assessment criteria, as shown in Table 1.
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Table 1. Prompt Scoring Dimensions Table.

Scoring Dimension Evaluation Criteria Weights
. No grammatical errors, accurate word choice, and standardized use of technical
Grammatical Correctness . 0.3
terminology
Sentence Coherence  Natural paragraph transitions, complete logical chain, and no semantic discontinuity 0.4
. . Compliant with the formal register of feasibility study reports, precise technical
Professionalism P & Y Y rep p 0.3

expression, and no colloquial or ambiguous language

Design standardized prompt to ensure scoring consistency: “As a feasibility study review expert, please
evaluate the following text on a scale of 0—100 based on three dimensions: grammatical accuracy, sentence
coherence, and professionalism. Round scores to one decimal place and output the total score. Text:
[Generated text content]”.

3.4.2. Score Normalization

Given that Qwen3-Max scores operate on an absolute scale of [0, 100], they are rescaled to the [0, 1]
interval via min-max normalization, as defined in Equation (5).

Fi
Fluencynorm = %

&)
where Fluencyraw represents the raw score output by the API, and Fluencynorm € [0, 1] denotes the
normalized fluency metric.

3.5. Comprehensive Scoring Algorithm

The composite score employs a weighted sum model, with weights determined by the Analytic
Hierarchy Process (AHP) based on the practical application scenarios outlined in the feasibility study report:
Semantic Consistency (0.2), Information Completeness (0.3), Structural Compliance (0.3), and Expressive
Fluency (0.2). The final composite score formula is Equation (6).

TotalScore=0.2xSim+0.3x Recall +0.3x Conpliance+0.2x Fluency . (6)

This weighting scheme emphasizes the central importance of “factual accuracy” while also balancing
“format standardization” and “readability of expression”, thereby meeting the requirements for feasibility
studies to serve as a basis for decision-making.

4. Experimental Results and Discussion
4.1. Experimental Setup and Evaluation Data

This experiment compares three generative systems with distinct technical approaches: the “LLM_only”
system relying solely on foundational language models, the “RAG + LLM” system integrating retrieval-
augmented generation technology, and the “RAG + LLM + Workflow” system incorporating workflow
optimization. To ensure rigorous and diverse evaluation, the benchmark dataset comprises one primary core
case and three supplementary test cases. The core assessment case employs a feasibility study report for a
standard offshore wind power project with a total installed capacity of 1000 MW. Characterized by its large
scale, high technical complexity, intricate chapter structure, and substantial volume of heterogeneous data,
the project serves as a rigorous stress test for the system’s data processing and logical orchestration
capabilities. Its performance is quantified through four core metrics, with detailed experimental data
presented in Table 2.
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Table 2. Evaluation Table of Experimental Results Across All Dimensions.

Systems Semantic Information Structure Expression Overall
Consistency Coverage Compliance Fluency Score

LLM only 0.1909 0.0500 0.1358 0.8950 0.2784

RAG +LLM 0.6366 0.1594 0.3942 0.8950 0.4966

RAG + LLM + Workflow 0.6592 0.3908 0.5123 0.8950 0.5965

Note: Bold indicates the best performance in each category.

4.2. Analysis of Results Across Dimensions
4.2.1. Semantic Consistency Evaluation Results

The semantic consistency metric results show that the “RAG + LLM + Workflow” system scored
0.6592, demonstrating its advantage in semantic preservation. The “LLM_only” system scored 0.1909,
potentially indicating issues such as topic deviation or inappropriate terminology usage, reflecting
limitations in its professional semantic understanding. The “RAG + LLM” system’s score of 0.6366
represents a significant improvement over the base model, demonstrating that the introduction of retrieval
mechanisms contributes to enhanced semantic accuracy.

4.2.2. Information Integrity Assessment Results

The information completeness assessment based on the BERT-NER model indicates that in terms of
information coverage, the “RAG + LLM + Workflow” system scored 0.3908, demonstrating its ability to
comprehensively cover key information. The “LLM only” system achieved a coverage rate of 0.0500,
indicating its difficulty in autonomously ensuring the completeness of specialized content. While the “RAG
+ LLM” system’s score of 0.1594 outperforms the baseline model, it still lags behind the workflow-
enhanced system, reflecting the workflow mechanism’s additional gains in information integration. This
demonstrates that relying solely on language models without integrating domain knowledge retrieval
struggles to ensure the informational completeness of professional documents.

4.2.3. Structural Compliance Assessment Results

In the structural compliance assessment, the “RAG + LLM + Workflow” system scored 0.5123,
indicating greater reliability in adhering to standard documentation structure. The “LLM_only” system
scored 0.1358, suggesting potential issues such as missing sections or logical inconsistencies. The “RAG
+ LLM” system showed significant improvement in structural organization with a score of 0.3942, though
it still falls short of the workflow system’s level. Although the “LLM _only” system achieved a basic fluency
score of 0.8950, its structural compliance score was only 0.1358. Key issues include: (1) Disrupted chapter
logic, with a lack of coherence between the technical solution and economic analysis sections. (2) Missing
standard chapters, such as the complete omission of the critical “Risk Analysis and Countermeasures”
section. This underscores the necessity of structured templates in professional document generation.

4.2.4. Fluency Assessment Results

In terms of expression fluency, the three systems scored identically, indicating comparable
performance in linguistic coherence and naturalness of expression. This demonstrates that the introduction
of retrieval-enhanced and workflow mechanisms did not compromise textual fluency, with each system
capable of generating content of high linguistic quality.
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4.3. Discussion on Overall Performance
4.3.1. Validation of Technical Approach Effectiveness

The comprehensive score indicates that the “RAG + LLM + Workflow” system significantly
outperforms both “RAG + LLM” and “LLM_only” systems. This demonstrates that the combined strategy
of “retrieval augmentation + workflow optimization” holds a distinct advantage in generating feasibility
study reports. The retrieval mechanism provides domain-relevant knowledge to the model, while the
workflow design further enhances content structuring and information organization capabilities,
collectively driving the overall performance improvement. Crucially, the integration of the Knowledge
Graph significantly mitigates the “hallucination” issues inherent in the “LLM_only”” model. As evidenced
by the NER analysis, the “LLM _only” system failed to recognize most of key entities, largely because it
relied on probabilistic parametric memory which often fabricates technical parameters and economic
indicators. In contrast, the Knowledge Graph anchors the generation process to a structured “factual
foundation” derived from authoritative policy and project documents. This ensures that critical entities are
retrieved and validated against the graph’s “entity-attribute” mappings before generation, thereby
transforming the system from a creative probabilistic model into a reliable, evidence-based reporting tool.
The observed performance enhancement stems primarily from:

(1) The retrieval mechanism ensures accurate infusion of domain knowledge.
(2) The workflow design guarantees standardized document structure.
(3) Multi-stage quality control reduces semantic deviation.

After weight adjustment, the importance of information completeness and structural compliance is
highlighted, aligning more closely with the practical requirements of feasibility reports as decision-making
reference documents. We excluded a standalone “LLM + Workflow” baseline because professional reports
require strict factual grounding. Without retrieval-augmented domain knowledge, the workflow would
merely organize hallucinations into a standardized format. Therefore, the “LLM_only” system suffices as
the representative baseline for scenarios lacking external data support, confirming that accurate data
retrieval is a prerequisite for effective workflow execution.

4.3.2. Correlation Analysis of Various Indicators

Based on the performance of each system, semantic consistency, information coverage, and structural
compliance exhibit a positive correlation trend and align closely with the overall score. While expressive
fluency remains consistent across systems, it does not serve as a key differentiator in system performance.
This finding indicates that in professional document generation scenarios, content accuracy, information
completeness, and structural standardization exert a more critical influence on overall quality.

4.3.3. System Robustness and Adaptability Analysis

To assess the system’s generalizability across diverse offshore wind scenarios, we conducted extended
experiments on three distinct project types: standard fixed-bottom projects, complex floating projects, and
small-scale (300 MW) projects. The corresponding experimental data are presented in Table 3.

As evidenced by the comparative results, the “RAG + LLM + Workflow” system exhibits remarkable
robustness, maintaining consistent high performance across heterogeneous scenarios. Specifically, the
performance discrepancy between the primary case and the standard fixed-bottom case was negligible
(<0.3%), underscoring the high stability of the workflow architecture when applied to standardized
engineering templates. Furthermore, regarding adaptability to complexity, the system achieved a
comprehensive score of 0.5836 even in floating offshore wind projects characterized by intricate
hydrodynamic terminology. Notably, structural compliance in this complex scenario remained robust at



Mar. Energy Res. 2026, 3(1), 10001. doi:10.70322/mer.2026.10001 14 of 17

0.4600, significantly outperforming the “LLM only” model. Conversely, in the 300 MW small-scale
project category, the system demonstrated enhanced efficacy, achieving its peak overall score of 0.6278
accompanied by an information coverage rate of 0.4768.

Collectively, these findings corroborate that the proposed framework avoids overfitting to specific
project templates. The workflow ensures structural integrity regardless of project variations, while the RAG
module provides essential domain adaptability, jointly ensuring the system’s robustness across diverse
engineering applications.

Table 3. Quantitative Assessment of System Generalizability Across Distinct Offshore Wind Project Types.

Systems & Projects  Semantic Consistency Information Coverage Structure Compliance Expression Fluency Overall Score

LLM only
- 0.1936 0.0136 0.2134 0.8950 0.2838
(standard fixed-bottom)
RAG + LLM
0.6341 0.2600 0.3333 0.8950 0.5139
(standard fixed-bottom)
RAG+LLM+Workflow
0.6667 0.4133 0.4600 0.8950 0.5950
(standard fixed-bottom)
LLM only
-, 0.1917 0.0077 0.2000 0.8950 0.2788
(complex floating)
RAG + LLM
. 0.6369 0.2040 0.2333 0.8950 0.4779
(complex floating)
RAG + LLM + Workflow
. 0.6619 0.3800 0.4600 0.8950 0.5836
(complex floating)
LLM only
- 0.1938 0.0135 0.1413 0.8950 0.2695
(small-scale)
RAG + LLM
0.6338 0.1621 0.3467 0.8950 0.4871
(small-scale)
RAG + LLM + Workflow
0.6590 0.4768 0.5401 0.8950 0.6278

(small-scale)

Note: Bold values indicate the data for the system with the best performance in each metric.

4.3.4. Failure Mode Analysis

The “LLM_only” system performed poorly across multiple metrics, indicating its difficulty in meeting
professional document generation requirements without external knowledge support. The “RAG + LLM”
system demonstrated significant improvements in most dimensions, yet still fell short of workflow-
integrated systems in terms of information coverage and structural compliance. This highlights the
workflow mechanism’s role in further strengthening information integration and structural control.

4.4. Limitations and Areas for Improvement

Although the “RAG + LLM + Workflow” system demonstrates superior performance across multiple
dimensions, its semantic consistency and information coverage still hold room for improvement. In terms
of computational efficiency, the architecture inevitably introduces higher inference latency compared to
single-pass LLM generation methods. The multi-step process, involving intent recognition, iterative
knowledge retrieval, and cross-chapter logical validation, increases the time-to-output. However, this
latency is acknowledged as a necessary trade-off to ensure the “controllability” and “accuracy” required
for professional engineering reporting.

Furthermore, when addressing highly novel or non-standard project structures, although technical
specifications and regulations within the RAG module can be updated, the generation logic may still
necessitate alignment with specific project characteristics. The system’s configurable YAML workflow
addresses this issue by enabling engineers to rapidly adjust logical templates. This ensures that the system
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can flexibly adapt to unique project requirements through low-code configuration, maintaining high
generation quality even in non-standard scenarios. Future work can focus on the following areas: enhancing
domain-adaptive retrieval mechanisms, optimizing multi-stage content quality control within workflows,
and exploring more granular structural compliance modeling approaches.

5. Conclusions

Analysis of experimental results demonstrates that the ‘retrieval-augmented generation + workflow
optimization’ technical approach exhibits significant advantages in the task of automatically generating
feasibility study reports. The “RAG + LLM + Workflow” system achieved the best performance across key
metrics including semantic consistency, information coverage, and structural compliance. Specifically, the
“Cyclic Aggregation Mode” proved critical in handling complex report structures by enabling cross-chapter
logical coordination and data aggregation for subprojects. Its overall score improved by approximately 114%
compared to the baseline language model system, significantly outperforming the intermediate system that
employed retrieval augmentation alone. Weight adjustments better reflect the dual requirements of feasibility
studies as formal decision-making documents: demanding strict content accuracy (information completeness
+ semantic consistency) while emphasizing standardized document structure (structural compliance +
expressive fluency). Through scientific weight allocation and systematic experimental validation, this study
provides a more practical methodological foundation for evaluating and optimizing professional document
auto-generation systems.

The evaluation results accurately reflect the core requirements of professional document generation
tasks: while ensuring expressive fluency, the system should prioritize the accuracy of professional content,
the completeness of information, and the standardization of document structure. Through multidimensional
quantitative assessment and systematic comparison, this study validates the effectiveness of the composite
technical approach in professional document generation, providing methodological references and practical
foundations for optimizing related systems and their real-world applications.

Beyond immediate performance metrics, this study aligns with the broader dynamics of technological
innovation. As highlighted by Pazhouhan et al. [26]. in their patent landscape analysis of renewable energy,
emerging technologies evolve through complex “innovation clusters” and distinct maturity stages. Our
system serves as a critical digital adaptation to manage this growing technical complexity, bridging the gap
between exploding information volumes and standardized engineering applications.

Looking forward, we aim to extend the system’s applicability to more complex, high-demand scenarios.
First, we plan to adapt the “Market Analysis” and “Technical Solution” modules to support the integration
of high-load consumers, such as data centers. By incorporating methodologies for optimizing renewable
consumption through computing-load migration and storage [27], the system can generate sophisticated
strategies for “energy-computing” synergy projects. Second, to enhance the depth of the “Risk Analysis”
module, we intend to integrate stochastic optimization models. Drawing on frameworks that handle
composite uncertainty [28], future iterations will account for both exogenous and endogenous variables,
thereby significantly improving the robustness of automated economic and technical feasibility assessments.

Future research may further focus on adaptive optimization for specialized domains and deep
consistency modeling for long document structures, thereby continuously enhancing the quality and
practical value of automated professional document generation.

Statement of the Use of Generative Al and AI-Assisted Technologies in the Writing Process

In the preparation of this work, the authors utilized DeepSeek to assist with grammatical corrections
of the manuscript. Following the use of this tool, the authors reviewed and edited the content as necessary
and assume full responsibility for the publication’s content.
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