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ABSTRACT: Driven by global energy transition goals, the large-scale development of offshore wind 
power imposes rigid requirements for professionalism, standardization, and timeliness on feasibility study 
reports (FSR). Traditional manual compilation and existing automated methods fail to meet these 
requirements due to interdisciplinary complexity, poor process controllability, and insufficient domain 
adaptation. To address these challenges, this paper proposes a configurable and interpretable offshore wind 
FSR generation system built on a three-tier framework that encompasses “data support, process 
orchestration, and quality assurance”. The system integrates a YAML-based workflow architecture, multi-
level prompt engineering, and a comprehensive evaluation system. Notably, the introduced “Cyclic 
Aggregation Mode” enables the iterative generation and logical summarization of multi-subproject data, 
effectively distinguishing this system from traditional linear text generation models. Experimental results 
demonstrate that the proposed “Retrieval-Augmented Generation (RAG) + Large-scale Language Model 
(LLM) + Workflow” system outperforms baseline models with key metrics including semantic consistency 
(0.6592), information coverage (0.3908), structural compliance (0.5123), and an overall score (0.5965). 
Ablation studies validate the independent contributions of the RAG and Workflow components, thereby 
establishing the “RAG + LLM + Workflow” paradigm for intelligent professional document generation. 
This work addresses core challenges related to controllability, accuracy, and interpretability in high-stakes 
decision-making scenarios while providing a reusable technical pathway for the automated feasibility 
demonstration of offshore wind power projects. 

Keywords: Offshore wind power; Feasibility study report generation; Large language models; Retrieval-
augmented generation; Workflow; Prompt engineering 
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1. Introduction 

Driven by global energy transition goals, the accelerated scaling of offshore wind power development 
imposes stringent requirements on the professionalism [1–3], standardization, and timeliness of feasibility studies: 

(1) Professional expertise must precisely integrate multi-disciplinary technical parameters, policy 
standards, and engineering experience to meet cross-disciplinary validation needs [4]. (2) Standardization 
necessitates unified chapter frameworks, data definitions, and terminology systems to accommodate diverse 
applications such as approvals and credit assessments [5]. (3) Timeliness demands responsiveness to 
dynamic shifts in policy, market conditions, and technology, enabling rapid compilation and flexible 
updates [6]. 

Traditional manual compilation struggles to meet these concurrent demands, with core bottlenecks 
concentrated in two areas: 

First, regarding professionalism, offshore wind projects involve highly complex, multi-disciplinary 
knowledge spanning meteorology, marine engineering, electrical systems, and economic evaluation. 
However, in practice, it is difficult for a single manual compiler to possess “comprehensive professional 
capabilities” across all these domains. Consequently, reliance on individual expertise inevitably leads to 
friction points—such as the disconnect between engineering parameter updates and financial valuation 
models—resulting in potential issues like policy standard confusion and gaps in interdisciplinary 
knowledge integration, which significantly undermines report credibility [7]. Second, insufficient 
timeliness: manual collaborative compilation cycles are lengthy. When data updates or plan adjustments 
occur, extensive time is required for cross-chapter modifications, and issue tracing lacks clear pathways, 
making it difficult to support rapid decision-making needs [8]. These pain points fundamentally stem from 
the lack of structured knowledge accumulation, standardized compilation processes, and automated 
modeling capabilities. There is an urgent need to leverage technological means to achieve efficient 
knowledge reuse, automated process operation, and collaborative data flow. 

Automated document generation technology has evolved through multiple stages: Early template-
filling mechanisms only enabled static content assembly, lacking semantic understanding and dynamic 
logic control, and failing to meet the interdisciplinary requirements of offshore wind reports [9,10]. 
Subsequent rule-based engine approaches improved generative logic control but suffered from poor 
scalability and high maintenance costs, struggling to keep pace with rapid policy and technological 
iterations in the offshore wind sector [11]. In recent years, large language model-driven professional text 
generation has made progress in fields like law and medicine [12]. However, in offshore wind feasibility 
study scenarios, quality issues such as parameter confusion, data inconsistencies, and loose logic persist, 
failing to meet requirements for multi-module collaboration and compliance verification [13,14]. 

To address the procedural management challenges of AI applications, workflow frameworks like 
LangChain and Llama Index [15], alongside low-code platforms such as Dify and Coze [16], have emerged. 
These enable visual workflow orchestration through declarative languages like YAML. The selection of a 
YAML-based workflow is specifically driven by its interpretability and accessibility for non-technical 
domain experts, allowing engineers to visually orchestrate complex generation logic and templates without 
requiring deep coding expertise [17]. Concurrently, existing research has established generic frameworks 
leveraging the structural characteristics of feasibility reports, providing domain knowledge support [18]. 
However, significant gaps remain in the automated generation of offshore wind power feasibility reports: 
existing systems predominantly focus on isolated stages, lacking end-to-end modeling from data input to 
report output. They struggle to integrate multi-source heterogeneous data and enable cross-chapter logical 
coordination, and crucially, fail to establish comprehensive quality control mechanisms across the entire 
workflow. The generation process remains a “black box”, lacking interpretability and human intervention 
interfaces, making quality issue tracing difficult. No universal paradigm has emerged that balances 
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controllability, professionalism, quality reliability, and reusability. This prevents systematic validation to 
avoid quality defects such as parameter confusion, data inconsistencies, and information gaps, and hinders 
adaptation to quality standards under personalized requirements. 

To address these challenges, this paper constructs a configurable, explainable report generation system 
tailored for feasibility studies in the offshore wind power industry, enabling end-to-end document 
generation through structured data-driven approaches. This system specifically addresses the core challenge 
of “controllability”—defined in the context of Feasibility Study Reports (FSR) as the critical balance 
between algorithmic efficiency and the capability for human intervention, ensuring that the generation 
process is not a deterministic “black box” but a verifiable workflow. Key contributions include: 

(1) Proposing a YAML-based workflow-driven architecture supporting visual orchestration of complex 
analytical modules. 

(2) Designing a multi-level prompt framework to achieve precise data-to-text mapping. 
(3) Validating system effectiveness, generation efficiency, and content accuracy through real-world 

project implementation. 
(4) Exploring a new paradigm of intelligent document generation via “low-code platforms + large models”, 

providing a technical pathway for automating feasibility study validation in offshore wind projects. 

2. System Design 

To address the requirements for professionalism, standardization, and timeliness in preparing 
feasibility studies for offshore wind power projects, this chapter establishes a systematic design framework 
centered on “Data Support—Process Driven—Quality Assurance”. The focus is on designing the core 
workflow modules, with the system design structure detailed in Figure 1. 

 

Figure 1. System Architecture Design Diagram. 

Within the data preprocessing and knowledge graph construction module, multidimensional data 
cleansing and validation rules are established to provide high-quality structured data support for the 
knowledge graph, enabling the transformation and association of data into domain knowledge [19]. The 
declarative workflow engine serves as the system’s central hub, employing a three-tier architecture to 
construct the overall framework [20]. Based on YAML, it builds a visual workflow engine featuring three 
layered workflow modes: serial generation, conditional branching, and loop aggregation [21]. Combined 
with modular prompt engineering and robust variable management mechanisms, it supports full-process 
automation from data input to report output. Through the above design, the system ensures both accuracy 
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in data processing and completeness in knowledge association, while also possessing flexibility in process 
orchestration and efficiency in report generation. This lays the technical foundation for subsequent scenario 
applications and evaluations. 

2.1. Data Preprocessing and Knowledge Graph Construction 

This phase implements the “data support” step, with the core objective of transforming multi-source, 
heterogeneous policy and project data into high-quality, structured domain knowledge. This provides a 
solid factual foundation for subsequent LLM-generated report texts [22]. 

Structured Modeling and Knowledge Extraction 

The system’s data sources primarily consist of policy documents, specialized development reports, and 
project application materials published on official government websites at all levels, ensuring authority, 
standardization, and timeliness. We first perform report structure analysis on these raw data, defining the 
hierarchical logic and core content modules of the reports as “concept nodes” and “entity-attribute” 
mapping carriers within the knowledge graph. Through multidimensional data cleansing, logical validation 
(e.g., logical constraints, unit standardization), and data-to-text mapping mechanisms (defining semantic 
expression rules for converting numerical values into natural language), we ultimately construct a domain 
knowledge graph, achieving the transformation of data into inferable domain knowledge (see Figure 2 for 
the knowledge extraction process). This process ensures LLMs can accurately and professionally reference 
factual data during report generation. Serving as the foundation for Retrieval-Augmented Generation 
(RAG), it significantly enhances the factual accuracy of generated content. 

 

Figure 2. Data-to-Knowledge Graph Pipeline. 

Specifically, regarding the implementation configuration, the system constructs domain knowledge 
graphs using an “entity-relation-entity” triple schema, with the knowledge base scale dynamically adjusted 
based on project size. To balance retrieval precision and contextual coherence, we employ a Parent-Child 
chunking strategy, smaller child chunks are utilized for precise vector matching, while larger parent chunks 
provide broader context for the LLM. High-dimensional vector representations are generated by the Qwen-
text-embedding-v4 model. For retrieval, we employ a hybrid mechanism weighted at 0.6 (semantic 
similarity) and 0.4 (keyword matching). The system filters results using a relevance score threshold of 0.2 
and retrieves the Top-10 candidate segments for evidence injection. 

2.2. Workflow Design 

At this stage, the system executes the “process-driven” step within the “data-driven—process-driven—
quality-driven” framework. Report generation tasks typically involve complex collaboration across 
multiple stages, conditions, and roles. This necessitates an automated scheduling and intelligent decision-
making system powered by a structured, configurable, and traceable workflow engine. Therefore, our core 
objective is to build a YAML-based visual workflow engine. This engine models the report generation 
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process as a directed flowchart composed of “nodes-edges-variables-conditions”, utilizing a layered pattern 
to adapt to both standardized and customized scenarios. To enhance the professionalism and consistency 
of generated content, the system integrates a modular prompt engineering system with context-aware 
mechanisms. It dynamically injects domain-specific variables and few-shot examples to guide large 
language models in producing section content compliant with industry standards. Simultaneously, global 
variable management and intermediate state caching enable cross-node data sharing and fault recovery 
capabilities. This ensures stable, efficient, and traceable workflow execution under complex conditions, 
ultimately driving end-to-end automation from raw data to complete reports. 

2.2.1. Overall Architecture of the Workflow System 

The system adopts a three-tier architecture with layered decoupling. Each tier supports end-to-end 
automated processing from data input to report output through clearly defined responsibilities and 
collaborative mechanisms. The system flowchart is shown in Figure 3 below. 

 

Figure 3. System Flow Chart. 

The Input Layer builds upon existing data collection, integration, and interaction capabilities by 
enhancing intent recognition and guided input functions. The language understanding module parses user 
input text, leveraging domain-specific dictionaries to extract core intent elements such as report section 
requirements, information supplementation needs, and formatting adjustments. These elements are 
precisely categorized to provide decision-making basis for subsequent workflow matching. Based on intent 
recognition results, the system automatically matches corresponding processing branches through a rule 
engine and dynamic routing table. For ambiguous or incomplete instructions, the system maintains 
contextual awareness through session state management and generates structured prompting scripts. This 
ensures supplementary information is accurately linked to the workflow node corresponding to the original 
instruction. Ultimately, the input layer evolves from a passive data receiver into an intelligent interaction 
hub, achieving precise alignment between user needs and system processing capabilities. This provides 
scenario-based, process-oriented input support for report compilation. 

As the core logical unit of the system, the processing layer adopts a microservices architecture to 
integrate the YAML workflow engine, AI capability invocation module, branch-embedded prompt 
engineering, and global variable keyword retrieval mechanism. The YAML workflow engine defines files 
for visual task orchestration and automated execution. The AI capability invocation module interfaces with 
large language model services via APIs to encapsulate and invoke atomic capabilities like text generation 
and semantic analysis. Building upon this, the branch-embedded prompt engineering provides precise 
prompt optimization solutions for each business process node, while the global variable mechanism 
supports keyword retrieval across different sections. Together, they enhance knowledge base association 
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and support for paragraph content. Modules collaborate through event-driven mechanisms to sequentially 
execute critical workflows: rule-engine-based anomaly handling, vector database-enhanced retrieval, and 
collaborative generation combining template engines with LLMs. 

The output layer centers on “diversified report delivery”, establishing an integrated system that 
consolidates execution results and adapts formats. This layer first aggregates outcomes from all business 
branches and standardizes them into the global variable storage space. It then systematically integrates 
content based on the structured data within these global variables, following a predefined chapter logic 
framework to generate standardized Markdown documents. This ensures logical coherence and content 
completeness in the output text. Subsequently, specialized format conversion modules enable precise 
mapping and efficient export from Markdown to Word office formats. 

2.2.2. YAML-Based Workflow Engine 

The processing layer, serving as the central hub for core system logic, relies on a YAML-based 
workflow engine to enable automated execution through visual workflow orchestration and end-to-end 
scheduling. This engine is deployed and configured via the Dify platform. The Dify platform offers a low-
code drag-and-drop interface, enabling users to rapidly complete visual workflow design, parameter 
configuration, and online debugging without requiring deep coding expertise. This significantly lowers the 
technical barriers and operational costs associated with process orchestration. 

The core structure of YAML workflows comprises four key elements that collectively support the 
structured definition and flexible execution of processes. The static functional diagram is shown in Figure 4: 

 

Figure 4. Static Structure Function Diagram. 

Conditional Expression: Serving as the core trigger for branching workflows, it evaluates variable 
values or node execution results to return Boolean values (True or False), enabling dynamic decision-
making for workflow direction. 

The engine incorporates two key node types to accommodate core business requirements: First, the 
Conditional Judgment Node branches the process into “condition met” and “condition not met” paths based 
on predefined conditional expressions. For example, it determines whether to trigger the “Large Project 
Specialized Analysis” branch based on the “Project Scale” variable. Second, AI Generation Nodes 
encapsulate large language model invocation logic. By receiving prompt templates and input variables, they 
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output AI-generated text tailored to specific scenarios (e.g., market analysis sections, financial evaluation 
conclusions), while supporting custom configuration of model parameters like temperature and max_tokens. 

2.2.3. Layered Workflow Model 

To fully unleash the flexible orchestration capabilities of the YAML workflow engine and 
accommodate diverse report generation requirements across different scenarios, the system employs three 
layered workflow modes to achieve precise alignment between scenarios and processes: Serial Generation 
Mode: Adopts an execution logic of “sequential chapter progression”, wherein each chapter generation 
node is rigorously activated in strict compliance with the standardized report structure, including Project 
Overview, Market Analysis, Financial Evaluation, Risk Analysis, and Conclusions and Recommendations. 
This mode suits conventional report generation scenarios with fixed structures and no special branching 
requirements. Linear execution ensures logical continuity and content integrity between chapters. 
Conditional Branching Mode: Enables differentiated branching based on “content feature variables”. 
Taking offshore wind power as an example, core variables like “project scale”, “development stage”, or 
“technical approach” dynamically match corresponding analysis modules, data dimensions, and chapter 
structures. This achieves refined, personalized content generation for specific scenarios, significantly 
enhancing report professionalism and relevance. Cyclic Aggregation Mode: For comprehensive reports 
encompassing multiple subprojects, this closed-loop process employs “subproject cyclic generation—result 
aggregation and summarization”. First, the loop node traverses all subproject data to generate dedicated 
analysis chapters for each subproject. Subsequently, the aggregation node integrates multiple chapters 
according to predefined rules (e.g., sorting by subproject ID, merging similar analysis conclusions) to form 
a unified comprehensive report, effectively avoiding redundant operations and data duplication. 

2.2.4. Variable Management and State Transfer 

Whether it’s the fundamental scheduling of workflow engines or the differentiated execution of layered 
workflow models, both rely on consistent data flow across nodes and tiers. To this end, the system 
incorporates a robust variable management and state transfer mechanism, ensuring workflow execution 
stability and traceability through three dimensions: data storage, sharing, and fault tolerance: Context 
Object Design: Defines a global Context object as the unified variable storage container, categorizing 
variables by data attributes into three types: “Input Variables” (e.g., user-uploaded project foundation data), 
“Intermediate Variables” (e.g., post-cleaning investment amounts, AI-generated chapter text), and 
“Configuration Variables” (e.g., workflow ID, template version number). Each variable records creation 
time, modification history, and associated node information to support issue identification and process 
tracing. Cross-Node Variable Sharing Mechanism: Employs a dual-layer storage structure of “global 
variable pool + node-local variables”. Data in the global pool is accessible and modifiable by all nodes, 
while local variables remain valid only within their current node. Cross-node data access is enabled through 
“variable ID mapping”. For example, the “AI Generation Node” can directly reference “Standardized 
Financial Data” stored in the global variable pool by the “Data Cleansing Node”, ensuring efficient data 
flow. Intermediate Result Caching Strategy: For critical intermediate outputs during workflow execution (e.g., 
AI-generated chapter texts, data validation reports), a combined storage approach of local caching and 
scheduled backups is employed. Should the workflow abnormally terminate due to network failures or model 
invocation errors, restarting allows direct retrieval of completed intermediate results from cache without re-
executing the entire process. This significantly enhances system fault tolerance and execution efficiency. 
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2.2.5. Modular Prompt Engineering 

Building upon the foundational capabilities of the YAML workflow engine’s scheduling and variable-
passing mechanisms, the system has established a systematic modular prompt engineering framework to 
further enhance the professionalism, accuracy, and logical consistency of AI-generated content. This 
framework comprises three core components: a modular prompt template library, refined optimization 
strategies, and scientific parameter configuration. The Modular Prompt Template Library, categorized by 
report chapter types and functional scenarios, consists of three core template series: project background 
generation prompts, which include sub-templates such as “Industry Trend Analysis”, “Regional 
Development Needs Statement”, and “National Strategy Alignment Explanation” and dynamically generate 
background narratives highlighting the project’s strategic value by injecting variables like “Project 
Domain”, “Location Region”, “Policy Support Documents”, and “Energy Transition Goals”, market 
analysis generation prompts, which cover sub-templates such as “Industry Development Trend Analysis”, 
“Target Customer Positioning”, and “Competitive Landscape Assessment” and require variables including 
“Project Industry Attributes” and “Regional Market Data” for targeted generation; and risk analysis 
generation prompts, which encompass sub-templates like “Risk Identification & Assessment”, “Risk 
Management Solutions”, and “Technical Risk Mitigation” and require customization based on parameters 
such as “Project Domain” and “Risk Factor Weighting”. Complementing this template library, the Prompt 
Optimization Strategy employs two core methods to enhance generation quality: Context-aware Prompting, 
which dynamically embeds workflow variables into prompts to ensure AI-generated content maintains 
logical consistency with existing information while avoiding conflicts and redundancy, and Example-
driven Prompting, which incorporates 1–3 high-quality domain-specific examples into the prompt to guide 
the AI in learning professional expression patterns and industry terminology, thereby enhancing content 
expertise. The Model Parameter Configuration further balances diversity and accuracy through key settings: 
a temperature value of 0.2 enables low randomness control to prevent overly rigid or off-topic content, and 
a max_tokens limit of 512 restricts single-segment text length to avoid redundancy, precisely matching the 
length requirements of individual chapters or paragraphs. 

3. Scenario Application and Evaluation 

At this stage, the system implements the “Quality Assurance” step within the “Data-Driven—Process-
Driven—Quality Assurance” framework. This chapter focuses on the algorithmic principles underlying the 
four core indicators of the evaluation system. By integrating literature support and mathematical derivations, 
it clarifies the technical selection logic and domain-specific optimization strategies, providing theoretical 
underpinnings for the scientific rigor and reliability of evaluation outcomes. 

3.1. Semantic Consistency Evaluation: RCMD Algorithm Principles and Implementation 

The semantic consistency metric employs the Relaxed Contextualized Token Mover’s Distance 
(RCMD) algorithm [23]. This algorithm’s core advantage lies in addressing the issues of “ignoring 
contextual dependencies” and “token-level matching bias” inherent in traditional n-gram based metrics like 
BLEU [24] or ROUGE [25]. While these traditional metrics focus on surface-level lexical overlap, RCMD 
utilizes contextualized embeddings to measure semantic distance. This makes it particularly suitable for 
fact consistency detection in specialized domain texts, where preserving the meaning of technical 
parameters is more critical than matching exact phrasing. 

3.1.1. Core Logic of the Algorithm 

The RCMD algorithm achieves optimal matching of textual semantic distributions through a three-step 
process: “semantic embedding”, “distance matrix construction”, and “marginal distance calculation”. 
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(1) Token-level semantic embedding generation: Utilizes a pre-trained BERT model to perform token-
level encoding on baseline text Sb and generated text Sg, outputting a contextual semantic vector ℎ௜ ∈ ℝ଻଺଼ 
for each token (where i denotes the token index). This process leverages self-attention mechanisms to 
capture token dependencies, ensuring contextual relevance of semantic vectors. 

(2) Cosine Distance Cost Matrix Construction: Calculate the cosine distance between all token 
semantic vectors of Sb and Sg to construct the cost matrix. 𝑀 ∈ ℝ௅್ൈ௅೒, where Lb and Lg represent the token 
lengths of the two texts respectively. Matrix element Mij is defined by Equation (1). 
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The cosine distance formula is: 𝑀௜௝ ∈ ሾ0, 2ሿ. A smaller value indicates higher semantic similarity 
between two tokens. 

Marginal Distance Weighted Summation: Introduce token distribution vectors 𝑑ଵ ∈ ℝ௅್  and 𝑑ଶ ∈
ℝ௅೒  obtained by normalizing token frequency with TF-IDF weights. Calculate the optimal matching 
marginal distance between texts. The final semantic consistency scoring algorithm formula is given by 
Equation (2). 
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In the formula, min
௝
𝑀௜௝ denotes the optimal matching distance of the i token in Sb to Sg, and vice versa. 

After weighted summation, the average is calculated and normalized to ensure that the score positively 
correlates with semantic consistency. 

3.1.2. Domain-Specific Adaptation Optimization 

To enhance the professionalism of feasibility study reports, the RCMD algorithm undergoes three 
optimizations: 

(1) Topic Consistency Penalty: calculates the thematic consistency between generated text and baseline 
text, applying a penalty to semantic consistency scores accordingly. (2) Pre-trained Model Fine-tuning: 
strengthens the model’s ability to capture semantic nuances of domain-specific terminology such as 
“project investment”, “technical parameters”, and “policy standards”. (3) Key Sentence Weight 
Enhancement: for key sentences in the baseline text containing core data or technical indicators, the 
distribution vector weight d1(i) of their tokens is increased by 1.5 times to emphasize the importance of 
matching core information. 

3.2. Information Integrity Assessment: BERT-NER Entity Retrieval Algorithm 

Information integrity is achieved through an optimized BERT-NER model, which adopts a two-stage 
architecture of “pre-training followed by fine-tuning”. This model achieves an F1 score of 0.91 on general 
entity extraction tasks, making it suitable for both academic research and engineering implementation. 

3.2.1. Core Principles of Entity Extraction 

The BERT-NER model employs a labeling strategy to transform entity extraction into a sequence 
labeling task (labeling system: B-ORG (organization), I-ORG, B-LOC (location), I-LOC, B-DATE (date), 
I-DATE, B-NUM (number), I-NUM, O (non-entity)). Its core workflow is as follows: 

(1) Text Encoding: Input text is processed through a BERT encoder to generate contextual semantic 
vectors, incorporating positional and segment encodings to distinguish text boundaries. 
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(2) Entity Decoding: Semantic vectors are mapped to the label space via a fully connected layer. A 
Conditional Random Field (CRF) model optimizes the plausibility of label sequences (e.g., preventing 
invalid annotations like “B-ORG” immediately followed by “B-LOC”). 

(3) Entity Filtering: Post-processes decoded results by filtering out entity fragments shorter than 2 tokens 
and merging consecutive entities of the same type (e.g., “2024” and ‘December’ are merged into 
“December 2024”). 

3.2.2. Core Principles of Entity Extraction 

Using the baseline text Sb and the key entity set Eb = {eb1,eb2,┄,ebn} extracted via BERT-NER as the 
reference, the entity set Eg = {eg1,eg2,┄,egn} extracted from the generated text Sg is defined. Information 
recall rate is defined as shown in Equation (3). 

| |

| |
g b

b

E E
Recall

E


  (3)

Eb′ represents the domain adaptation expansion set for Eb: Considering the diversity of entity 
expressions in the feasibility study report (e.g., “XX Co., Ltd.” may be abbreviated as “XX Company”), an 
entity synonym mapping table is constructed using the domain dictionary. Expressions synonymous with 
Eb entities in Eg are included in the matching scope to ensure the validity of recall rate calculations. 

3.3. Structural Compliance Assessment: Chapter Structure Tree Matching Algorithm 

Structural compliance is achieved by constructing a five-core chapter structure tree T = {t1,t2,┄,t5} 
encompassing “Objectives, Technology, Economics, Environment, Conclusions”. Each chapter tk 
corresponds to a set of domain-specific keywords, with compliance scores calculated using a keyword 
weight matching algorithm. 

Structure Tree Construction: Define hierarchical relationships and characteristic keywords for each 
section based on industry standards. Assign weight ωk to each keyword (set according to its distinctiveness 
within the section, e.g., “core technology” weight 0.8, “technical parameters” weight 0.5). 

Generated Text Chapter Identification: Segment the generated text into paragraphs and match them 
with keywords. Calculate the sum Wk of keyword weights matching each chapter tk. If Wk exceeds the 
threshold θ (set to 0.6 via cross-validation), the chapter is deemed present. 

Compliance Score Calculation: Define the compliance score as the ratio of matched chapters to the 
baseline total number of chapters, as expressed in Equation (4). 

5

1

( )

5

k
k

W
Compliance






I

 
(4)

where I (⸳) is an indicator function that takes the value 1 when the condition is satisfied and 0 otherwise. 

3.4. Expression Fluency Assessment 

Fluency is quantified using the “Qwen3-Max” model, which demonstrates high consistency with 
human experts in text quality evaluation tasks through its trillion-parameter pre-training. 

3.4.1. Evaluation Dimensions and Prompt Design 

The evaluation dimensions focus on the practical requirements of feasibility studies, encompassing 
three core indicators, each with clearly defined assessment criteria, as shown in Table 1. 



Mar. Energy Res. 2026, 3(1), 10001. doi:10.70322/mer.2026.10001 11 of 17 

 

Table 1. Prompt Scoring Dimensions Table. 

Scoring Dimension Evaluation Criteria Weights 

Grammatical Correctness 
No grammatical errors, accurate word choice, and standardized use of technical 
terminology 

0.3 

Sentence Coherence Natural paragraph transitions, complete logical chain, and no semantic discontinuity 0.4 

Professionalism 
Compliant with the formal register of feasibility study reports, precise technical 
expression, and no colloquial or ambiguous language 

0.3 

Design standardized prompt to ensure scoring consistency: “As a feasibility study review expert, please 
evaluate the following text on a scale of 0–100 based on three dimensions: grammatical accuracy, sentence 
coherence, and professionalism. Round scores to one decimal place and output the total score. Text: 
[Generated text content]”. 

3.4.2. Score Normalization 

Given that Qwen3-Max scores operate on an absolute scale of [0, 100], they are rescaled to the [0, 1] 
interval via min-max normalization, as defined in Equation (5). 

100
raw

norm

Fluency
Fluency   (5)

where Fluencyraw represents the raw score output by the API, and Fluencynorm ∈ [0, 1] denotes the 
normalized fluency metric. 

3.5. Comprehensive Scoring Algorithm 

The composite score employs a weighted sum model, with weights determined by the Analytic 
Hierarchy Process (AHP) based on the practical application scenarios outlined in the feasibility study report: 
Semantic Consistency (0.2), Information Completeness (0.3), Structural Compliance (0.3), and Expressive 
Fluency (0.2). The final composite score formula is Equation (6). 

0.2 0.3 0.3 0.2 normTotalScore Sim Recall Compliance Fluency         (6)

This weighting scheme emphasizes the central importance of “factual accuracy” while also balancing 
“format standardization” and “readability of expression”, thereby meeting the requirements for feasibility 
studies to serve as a basis for decision-making. 

4. Experimental Results and Discussion 

4.1. Experimental Setup and Evaluation Data 

This experiment compares three generative systems with distinct technical approaches: the “LLM_only” 
system relying solely on foundational language models, the “RAG + LLM” system integrating retrieval-
augmented generation technology, and the “RAG + LLM + Workflow” system incorporating workflow 
optimization. To ensure rigorous and diverse evaluation, the benchmark dataset comprises one primary core 
case and three supplementary test cases. The core assessment case employs a feasibility study report for a 
standard offshore wind power project with a total installed capacity of 1000 MW. Characterized by its large 
scale, high technical complexity, intricate chapter structure, and substantial volume of heterogeneous data, 
the project serves as a rigorous stress test for the system’s data processing and logical orchestration 
capabilities. Its performance is quantified through four core metrics, with detailed experimental data 
presented in Table 2. 
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Table 2. Evaluation Table of Experimental Results Across All Dimensions. 

Systems 
Semantic 

Consistency 
 

Information 
Coverage 

Structure 
Compliance 

Expression 
Fluency 

Overall 
Score 

LLM_only 0.1909  0.0500 0.1358 0.8950 0.2784 
RAG + LLM 0.6366  0.1594 0.3942 0.8950 0.4966 

RAG + LLM + Workflow 0.6592  0.3908 0.5123 0.8950 0.5965 
Note: Bold indicates the best performance in each category. 

4.2. Analysis of Results Across Dimensions 

4.2.1. Semantic Consistency Evaluation Results 

The semantic consistency metric results show that the “RAG + LLM + Workflow” system scored 
0.6592, demonstrating its advantage in semantic preservation. The “LLM_only” system scored 0.1909, 
potentially indicating issues such as topic deviation or inappropriate terminology usage, reflecting 
limitations in its professional semantic understanding. The “RAG + LLM” system’s score of 0.6366 
represents a significant improvement over the base model, demonstrating that the introduction of retrieval 
mechanisms contributes to enhanced semantic accuracy. 

4.2.2. Information Integrity Assessment Results 

The information completeness assessment based on the BERT-NER model indicates that in terms of 
information coverage, the “RAG + LLM + Workflow” system scored 0.3908, demonstrating its ability to 
comprehensively cover key information. The “LLM_only” system achieved a coverage rate of 0.0500, 
indicating its difficulty in autonomously ensuring the completeness of specialized content. While the “RAG 
+ LLM” system’s score of 0.1594 outperforms the baseline model, it still lags behind the workflow-
enhanced system, reflecting the workflow mechanism’s additional gains in information integration. This 
demonstrates that relying solely on language models without integrating domain knowledge retrieval 
struggles to ensure the informational completeness of professional documents. 

4.2.3. Structural Compliance Assessment Results 

In the structural compliance assessment, the “RAG + LLM + Workflow” system scored 0.5123, 
indicating greater reliability in adhering to standard documentation structure. The “LLM_only” system 
scored 0.1358, suggesting potential issues such as missing sections or logical inconsistencies. The “RAG 
+ LLM” system showed significant improvement in structural organization with a score of 0.3942, though 
it still falls short of the workflow system’s level. Although the “LLM_only” system achieved a basic fluency 
score of 0.8950, its structural compliance score was only 0.1358. Key issues include: (1) Disrupted chapter 
logic, with a lack of coherence between the technical solution and economic analysis sections. (2) Missing 
standard chapters, such as the complete omission of the critical “Risk Analysis and Countermeasures” 
section. This underscores the necessity of structured templates in professional document generation. 

4.2.4. Fluency Assessment Results 

In terms of expression fluency, the three systems scored identically, indicating comparable 
performance in linguistic coherence and naturalness of expression. This demonstrates that the introduction 
of retrieval-enhanced and workflow mechanisms did not compromise textual fluency, with each system 
capable of generating content of high linguistic quality. 
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4.3. Discussion on Overall Performance 

4.3.1. Validation of Technical Approach Effectiveness 

The comprehensive score indicates that the “RAG + LLM + Workflow” system significantly 
outperforms both “RAG + LLM” and “LLM_only” systems. This demonstrates that the combined strategy 
of “retrieval augmentation + workflow optimization” holds a distinct advantage in generating feasibility 
study reports. The retrieval mechanism provides domain-relevant knowledge to the model, while the 
workflow design further enhances content structuring and information organization capabilities, 
collectively driving the overall performance improvement. Crucially, the integration of the Knowledge 
Graph significantly mitigates the “hallucination” issues inherent in the “LLM_only” model. As evidenced 
by the NER analysis, the “LLM_only” system failed to recognize most of key entities, largely because it 
relied on probabilistic parametric memory which often fabricates technical parameters and economic 
indicators. In contrast, the Knowledge Graph anchors the generation process to a structured “factual 
foundation” derived from authoritative policy and project documents. This ensures that critical entities are 
retrieved and validated against the graph’s “entity-attribute” mappings before generation, thereby 
transforming the system from a creative probabilistic model into a reliable, evidence-based reporting tool. 
The observed performance enhancement stems primarily from: 

(1) The retrieval mechanism ensures accurate infusion of domain knowledge. 
(2) The workflow design guarantees standardized document structure. 
(3) Multi-stage quality control reduces semantic deviation.  

After weight adjustment, the importance of information completeness and structural compliance is 
highlighted, aligning more closely with the practical requirements of feasibility reports as decision-making 
reference documents. We excluded a standalone “LLM + Workflow” baseline because professional reports 
require strict factual grounding. Without retrieval-augmented domain knowledge, the workflow would 
merely organize hallucinations into a standardized format. Therefore, the “LLM_only” system suffices as 
the representative baseline for scenarios lacking external data support, confirming that accurate data 
retrieval is a prerequisite for effective workflow execution. 

4.3.2. Correlation Analysis of Various Indicators 

Based on the performance of each system, semantic consistency, information coverage, and structural 
compliance exhibit a positive correlation trend and align closely with the overall score. While expressive 
fluency remains consistent across systems, it does not serve as a key differentiator in system performance. 
This finding indicates that in professional document generation scenarios, content accuracy, information 
completeness, and structural standardization exert a more critical influence on overall quality. 

4.3.3. System Robustness and Adaptability Analysis 

To assess the system’s generalizability across diverse offshore wind scenarios, we conducted extended 
experiments on three distinct project types: standard fixed-bottom projects, complex floating projects, and 
small-scale (300 MW) projects. The corresponding experimental data are presented in Table 3. 

As evidenced by the comparative results, the “RAG + LLM + Workflow” system exhibits remarkable 
robustness, maintaining consistent high performance across heterogeneous scenarios. Specifically, the 
performance discrepancy between the primary case and the standard fixed-bottom case was negligible 
(<0.3%), underscoring the high stability of the workflow architecture when applied to standardized 
engineering templates. Furthermore, regarding adaptability to complexity, the system achieved a 
comprehensive score of 0.5836 even in floating offshore wind projects characterized by intricate 
hydrodynamic terminology. Notably, structural compliance in this complex scenario remained robust at 
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0.4600, significantly outperforming the “LLM_only” model. Conversely, in the 300 MW small-scale 
project category, the system demonstrated enhanced efficacy, achieving its peak overall score of 0.6278 
accompanied by an information coverage rate of 0.4768. 

Collectively, these findings corroborate that the proposed framework avoids overfitting to specific 
project templates. The workflow ensures structural integrity regardless of project variations, while the RAG 
module provides essential domain adaptability, jointly ensuring the system’s robustness across diverse 
engineering applications. 

Table 3. Quantitative Assessment of System Generalizability Across Distinct Offshore Wind Project Types. 

Systems & Projects Semantic Consistency Information Coverage Structure Compliance Expression Fluency Overall Score 

LLM_only 

(standard fixed-bottom) 
0.1936 0.0136 0.2134 0.8950 0.2838 

RAG + LLM 

(standard fixed-bottom) 
0.6341 0.2600 0.3333 0.8950 0.5139 

RAG+LLM+Workflow 

(standard fixed-bottom) 
0.6667 0.4133 0.4600 0.8950 0.5950 

LLM_only 

(complex floating) 
0.1917 0.0077 0.2000 0.8950 0.2788 

RAG + LLM 

(complex floating) 
0.6369 0.2040 0.2333 0.8950 0.4779 

RAG + LLM + Workflow 

(complex floating) 
0.6619 0.3800 0.4600 0.8950 0.5836 

LLM_only 

(small-scale) 
0.1938 0.0135 0.1413 0.8950 0.2695 

RAG + LLM 

(small-scale) 
0.6338 0.1621 0.3467 0.8950 0.4871 

RAG + LLM + Workflow 

(small-scale) 
0.6590 0.4768 0.5401 0.8950 0.6278 

Note: Bold values indicate the data for the system with the best performance in each metric. 

4.3.4. Failure Mode Analysis 

The “LLM_only” system performed poorly across multiple metrics, indicating its difficulty in meeting 
professional document generation requirements without external knowledge support. The “RAG + LLM” 
system demonstrated significant improvements in most dimensions, yet still fell short of workflow-
integrated systems in terms of information coverage and structural compliance. This highlights the 
workflow mechanism’s role in further strengthening information integration and structural control. 

4.4. Limitations and Areas for Improvement 

Although the “RAG + LLM + Workflow” system demonstrates superior performance across multiple 
dimensions, its semantic consistency and information coverage still hold room for improvement. In terms 
of computational efficiency, the architecture inevitably introduces higher inference latency compared to 
single-pass LLM generation methods. The multi-step process, involving intent recognition, iterative 
knowledge retrieval, and cross-chapter logical validation, increases the time-to-output. However, this 
latency is acknowledged as a necessary trade-off to ensure the “controllability” and “accuracy” required 
for professional engineering reporting. 

Furthermore, when addressing highly novel or non-standard project structures, although technical 
specifications and regulations within the RAG module can be updated, the generation logic may still 
necessitate alignment with specific project characteristics. The system’s configurable YAML workflow 
addresses this issue by enabling engineers to rapidly adjust logical templates. This ensures that the system 
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can flexibly adapt to unique project requirements through low-code configuration, maintaining high 
generation quality even in non-standard scenarios. Future work can focus on the following areas: enhancing 
domain-adaptive retrieval mechanisms, optimizing multi-stage content quality control within workflows, 
and exploring more granular structural compliance modeling approaches. 

5. Conclusions 

Analysis of experimental results demonstrates that the ‘retrieval-augmented generation + workflow 
optimization’ technical approach exhibits significant advantages in the task of automatically generating 
feasibility study reports. The “RAG + LLM + Workflow” system achieved the best performance across key 
metrics including semantic consistency, information coverage, and structural compliance. Specifically, the 
“Cyclic Aggregation Mode” proved critical in handling complex report structures by enabling cross-chapter 
logical coordination and data aggregation for subprojects. Its overall score improved by approximately 114% 
compared to the baseline language model system, significantly outperforming the intermediate system that 
employed retrieval augmentation alone. Weight adjustments better reflect the dual requirements of feasibility 
studies as formal decision-making documents: demanding strict content accuracy (information completeness 
+ semantic consistency) while emphasizing standardized document structure (structural compliance + 
expressive fluency). Through scientific weight allocation and systematic experimental validation, this study 
provides a more practical methodological foundation for evaluating and optimizing professional document 
auto-generation systems. 

The evaluation results accurately reflect the core requirements of professional document generation 
tasks: while ensuring expressive fluency, the system should prioritize the accuracy of professional content, 
the completeness of information, and the standardization of document structure. Through multidimensional 
quantitative assessment and systematic comparison, this study validates the effectiveness of the composite 
technical approach in professional document generation, providing methodological references and practical 
foundations for optimizing related systems and their real-world applications. 

Beyond immediate performance metrics, this study aligns with the broader dynamics of technological 
innovation. As highlighted by Pazhouhan et al. [26]. in their patent landscape analysis of renewable energy, 
emerging technologies evolve through complex “innovation clusters” and distinct maturity stages. Our 
system serves as a critical digital adaptation to manage this growing technical complexity, bridging the gap 
between exploding information volumes and standardized engineering applications. 

Looking forward, we aim to extend the system’s applicability to more complex, high-demand scenarios. 
First, we plan to adapt the “Market Analysis” and “Technical Solution” modules to support the integration 
of high-load consumers, such as data centers. By incorporating methodologies for optimizing renewable 
consumption through computing-load migration and storage [27], the system can generate sophisticated 
strategies for “energy-computing” synergy projects. Second, to enhance the depth of the “Risk Analysis” 
module, we intend to integrate stochastic optimization models. Drawing on frameworks that handle 
composite uncertainty [28], future iterations will account for both exogenous and endogenous variables, 
thereby significantly improving the robustness of automated economic and technical feasibility assessments. 

Future research may further focus on adaptive optimization for specialized domains and deep 
consistency modeling for long document structures, thereby continuously enhancing the quality and 
practical value of automated professional document generation. 

Statement of the Use of Generative AI and AI-Assisted Technologies in the Writing Process 

In the preparation of this work, the authors utilized DeepSeek to assist with grammatical corrections 
of the manuscript. Following the use of this tool, the authors reviewed and edited the content as necessary 
and assume full responsibility for the publication’s content. 
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