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ABSTRACT: Given the extreme complexity of systems, the strategic importance of water resources, and the high ecological 
vulnerability in cold-region irrigation districts (CRIDs), research on the hydrological processes in these areas represents not only 
an interdisciplinary scientific endeavor, but also a critical practical challenge with direct implications for food security, water 
security, ecological safety, and sustainable regional development in high-altitude and high-latitude regions. The evolution of this 
field has progressed from early phenomenon identification to mechanistic analysis and, more recently, to multi-process and multi-
scale simulation frameworks. This paper provides a systematic review of hydrological processes in CRIDs. It first examines 
fundamental components such as precipitation, evaporation, snowmelt, and groundwater recharge, highlighting their distinct 
behaviors under the combined influence of freeze–thaw cycles and irrigation practices, and further discusses the interactions and 
coupling mechanisms among these processes. Irrigation not only alters soil moisture distribution and freeze–thaw dynamics but 
also, together with freeze–thaw processes, shapes the transient hydrological dynamics characteristics of water and energy transfer, 
thereby influencing system stability and agricultural productivity. Hydrological modeling has advanced from simplified empirical 
approaches to mechanistic frameworks that integrate multiple processes and scales, yet challenges remain in the representation of 
nonlinear freeze–thaw, the integration of irrigation management, and cross-scale consistency. Moreover, cold-region irrigation 
districts exhibit heightened sensitivity to extreme events, such as rapid snowmelt, severe droughts or heavy rainfall. Future research 
should deepen the integration of freeze–thaw mechanisms with crop models, advance multi-scale coupled simulations, enhance 
long-term monitoring and scenario analysis, and systematically incorporate water–carbon balance and ecological effects into 
hydrological assessments. These efforts will support sustainable management and precision regulation of water resources in cold-
region irrigation districts. 

Keywords: Cold-region irrigation districts; Freeze–thaw cycle; Irrigation; Hydrological processes; Multi-scale modeling; Climate 
changes 
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1. Introduction 

Cold-Region Irrigation Districts (CRIDs) specifically refer to agricultural districts located in mid-to-high latitude 
or high-altitude cold regions that rely on artificial irrigation to sustain agricultural productivity [1,2]. These districts are 
primarily distributed across Alaska and northern Canada, northern Europe, Siberia in Russia, as well as northeastern to 
northwestern China [3–5] Figure 1. 

CRIDs represent unique geographic units where cold climate and irrigation systems are coupled, and their 
hydrological processes are governed by complex interactions between hydrothermal dynamics, resulting in water 
cycling mechanisms distinct from those in conventional irrigation areas [6]. The hydrological processes in CRIDs 
fundamentally control the spatiotemporal distribution of water resources by regulating the storage and release of 
snowmelt, leading to the characteristic “spring flood–summer drought” paradox that defines regional water availability. 
Consequently, they directly determine the feasibility and productivity of agriculture in short growing seasons, as 
irrigation management is essentially an artificial intervention to realign this mismatched water supply with crop demand. 
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Simultaneously, these processes introduce significant agricultural and environmental risks, including soil salinization, 
non-point source pollution, and waterlogging [7,8]. 

 

Figure 1. Global distribution of Cold-Region Irrigation Districts. The global distribution was derived by integrating two publicly 
available and globally consistent datasets, using the software of ArcGIS 10.8. Cold regions were identified using the WorldClim 
v2.1 global climate dataset (1970–2000, 5-arc-minute resolution), based on areas with an annual mean temperature below 0 °C or 
at least one month having a mean temperature below 0 °C. Irrigated agricultural areas were obtained from the Global Map of 
Irrigated Areas (GMIA v5, circa 2015), using the percentage of each grid cell equipped for irrigation. 

Beyond water and agriculture, CRID hydrology creates profound feedback with the regional climate and 
environment. It alters local microclimates through enhanced evapotranspiration, threatens permafrost stability, and 
regulates the vitality of downstream ecosystems by controlling ecological water flows [9–11]. Ultimately, these 
interconnected hydrological functions act as a central nexus, governing the resilience and vulnerability of the entire 
socio-ecological system. A comprehensive understanding of these influences is therefore a foundational prerequisite 
for achieving sustainable water management, agricultural security, and ecological protection in cold regions [10]. 

Driven by the interaction between seasonal freeze–thaw cycles and irrigation practices, CRIDs exhibit distinct 
agricultural hydrological processes. In winter, infiltration pathways from the surface to the subsurface are blocked, 
thereby impeding groundwater recharge, while shallow soil moisture is retained in a frozen state [12]. In spring, as air 
temperatures rise, the active soil layer rapidly thaws, releasing large amounts of previously frozen water. This leads to 
sharp increases in surface runoff, soil temperature, and water–heat fluxes, along with a rapid rise in groundwater levels 
[13,14], ultimately reshaping regional hydrodynamic structures [15]. The overall hydrological cycle spans surface water, 
the vadose zone, and groundwater [16]. Compared with irrigation districts in temperate regions, CRIDs are strongly 
influenced by precipitation, irrigation, and freeze–thaw dynamics, resulting in pronounced seasonal transient 
hydrological behavior [17,18]. Here, “transient hydrological behavior” refers to physical transient processes rather than 
statistical non-stationarity. Additionally, water and heat transport are tightly coupled, and solute migration (particularly 
of salts) is highly active [19], posing significant challenges to agricultural and ecological adaptation. Due to the uneven 
spatiotemporal distribution of water resources and the limited capacity for natural regulation, CRID hydrological 
systems are susceptible to climate variability, irrigation practices, and shifts in freeze–thaw regimes [12]. Collectively, 
the hydrological processes of CRIDs can be characterized as exhibiting seasonal and transient hydrological dynamics, 
strong hydro-thermal-salt coupling, and systemic vulnerability [20]. 

Hydrological systems generally exhibit significant long-term uncertainties at multi-year scales, typically 
characterized by long-term persistence (LTP) of hydrological variables and the clustering of wet and dry years [21–23]. 
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Key components such as precipitation, runoff, groundwater recharge, and snow water equivalent often exhibit extended 
periods of above- or below-average conditions, which can significantly affect regional water resource availability and 
variability [21]. In cold regions, interannual fluctuations in snow accumulation, snowmelt, and seasonal freeze–thaw 
processes further amplify this long-term uncertainty, thereby increasing the complexity of water resource regulation 
and irrigation management [21]. 

The intensification of climate change is profoundly altering precipitation patterns, temperature regimes, and 
freeze–thaw cycles [12,15,24,25]. These changes interact with the unique hydrological mechanisms of CRIDs, 
amplifying the spatiotemporal extremes of water distribution, complicating surface–groundwater interactions, and 
increasing the risk of soil salinization [26–30]. The combined effects of climate change and non-stationary systems not 
only magnify existing instabilities but also introduce unprecedented challenges, thereby imposing higher demands on 
sustainable agricultural development and water resource management in CRIDs [31–33]. Against this backdrop, 
synthesizing research progress in this field holds significant theoretical and practical value. Such synthesis can deepen 
understanding of cold-region hydrological processes and provide scientific support for addressing water resource risks 
under climate change [34–36]. 

This review focuses on hydrological processes in CRIDs under freeze–thaw conditions, summarizing advances in 
five major areas: (1) the evolution of hydrological process research in Cold-Region Irrigation Districts (CRIDs); (2) 
hydrological processes under the interaction of freeze–thaw cycles and irrigation in CRIDs; (3) numerical modeling of 
hydrological processes in CRIDs; (4) hydrological response of CRIDs to climate warming and extreme events; and (5) 
challenges and perspectives in the study of hydrological processes in irrigated cold regions. The overarching aim is to 
provide theoretical insights and modeling references for hydrological process studies in CRIDs, and to support the 
sustainable utilization of agricultural water resources in cold regions [37–39]. 

2. Evolution of Hydrological Process Research in Cold-Region Irrigation Districts 

Systematic research on hydrological processes in CRIDs dates to the 1950s and 1960s. In the early stages of the 
mid-to-late 20th century to the early 21st century, studies primarily focused on the regulatory role of seasonal freezing 
in the water cycle. Field observations revealed that frozen soil layers substantially restrict surface water infiltration, 
reduce winter groundwater recharge, and lead to rapid snowmelt runoff peaks in spring, thereby reshaping regional 
hydrodynamic structures [40,41]. During this stage, research was dominated by phenomenon identification, 
emphasizing hydrological indicators such as frozen-layer thickness, active-layer dynamics, and groundwater table 
responses [17,42,43]. However, most studies have concentrated on single-factor processes—for example, the effects of 
freeze–thaw cycles on heat distribution, infiltration, or groundwater fluctuations [44,45]—while the interactive 
feedback among processes received limited attention. In particular, systematic understanding of the dynamic interplay 
between artificial irrigation and freeze–thaw processes remained lacking [16]. 

As research on frozen-soil hydrology has advanced, investigations of hydrological processes in CRIDs have 
gradually evolved from single-process simulations to multi-process coupled modeling. Representative hydrological 
models, such as SWAT (Soil and Water Assessment Tool), MIKE SHE, and GSFLOW (Groundwater and Surface 
Water Flow Model), have been extended to incorporate freeze–thaw dynamics, soil hydrothermal processes, 
groundwater recharge, and crop water requirements [33,46–49]. These models can simulate soil temperature 
distributions, water fluxes, and groundwater variations under freeze–thaw conditions [46,50]. Despite these 
advancements in mechanistic representation, most models were originally developed for temperate or humid regions, 
primarily for natural ecosystems rather than agricultural landscapes. As a result, freeze–thaw processes are often 
oversimplified into binary “frozen/thawed” states, while irrigation scheduling, tillage disturbances, and crop 
physiological traits are insufficiently represented [35,36,51,52]. This limits their applicability in cold-region agricultural 
settings, particularly in capturing the coupled interactions among crop growth cycles, irrigation regulation, and 
groundwater responses. 

Since the beginning of the 21st century, research priorities have shifted toward integrated coupling mechanisms 
among irrigation regimes, climate change, and freeze–thaw dynamics. Notable progress has been achieved through the 
extension of hydrological models, such as VIC (Variable Infiltration Capacity Model) and HYPE (Hydrological 
Predictions for the Environment), which incorporate soil thermal modules and irrigation subsystems to simulate 
seasonal freeze–thaw transitions, irrigation demands, and basin-scale water balance [53–56]. For instance, the VIC–
CropSyst (Variable Infiltration Capacity–Crop System Model framework) framework has enabled explicit coupling 
between crop water use and hydrological fluxes, and has been applied in scenario-based assessments of agricultural 
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catchments in cold regions [57]. Concurrently, regional observations have revealed a characteristic “V-shaped” 
fluctuation in groundwater levels during freeze–thaw transitions—declining during freezing and rebounding rapidly 
upon thawing—governed by critical factors such as frozen-layer thickness, initial groundwater depth, and snowpack 
accumulation [12,58–60]. 

At present, simulations of hydrological processes in CRIDs are entering a new phase characterized by cross-scale, 
multi-system integration. On the one hand, models are incorporating more sophisticated physical mechanisms, such as 
nonlinear freeze–thaw phase-change dynamics and groundwater–vadose zone feedback [48,61–66]. On the other hand, 
increasing efforts are being made to integrate crop models that explicitly consider crop growth cycles, root-zone water 
uptake, and land cover evolution, thereby enhancing their applicability to agricultural settings and irrigation 
management [67–72]. 

Nevertheless, current models face three major challenges that require further breakthroughs: (1) the representation of 
nonlinear phase-change processes remains insufficient, with freeze–thaw often simplified into binary “frozen/unfrozen” 
states [73]; (2) the mechanisms linking land-surface crop cover and anthropogenic disturbances to hydrological responses 
are not yet fully developed, limiting their ability to reflect the dynamics of actual irrigation management [74,75]; and (3) 
regional-scale applications still lack sufficient integration of hydrological, meteorological, and ecological systems, 
constraining the quantitative assessment of model performance in regulation and management [76–80]. 

Overall, with the intensification of global climate warming, increasing agricultural water demand, and the growing 
complexity of irrigation-district ecosystems [81], research on hydrological processes in CRIDs has evolved from 
empirical observations to physically based modeling, and from single-factor descriptions to multi-process coupled 
simulations. This evolution not only deepens the understanding of hydrological mechanisms but also reflects continuous 
improvements in model conceptualization, coupling capabilities, and application accuracy [73,82–88]. 

3. Hydrological Processes under the Interaction of Freeze–Thaw Cycles and Irrigation 

3.1. Key Components of Hydrological Processes in CRIDs 

In irrigated cold-region basins, the hydrological regime exhibits pronounced transient behavior and complex 
spatiotemporal variability under the combined influence of seasonal freeze–thaw cycles and agricultural water 
application [89,90]. As shown in Figure 2, precipitation and irrigation water, runoff generation and routing, infiltration, 
evapotranspiration, and groundwater recharge–discharge are tightly coupled, forming a highly interactive, time-varying 
system [91]. Within this system, freeze–thaw dynamics exert first-order control on flow paths, fluxes, and the spatial 
distribution of soil water: the formation of a frozen layer suppresses vertical percolation, promotes near-surface water 
ponding, and consequently enhances Hortonian/impermeable-layer overland flow; during thaw, snowmelt inputs and 
the decay of the frost table enable rapid infiltration, preferential flow, and pulse-like recharge that redistribute soil water 
and modulate aquifer replenishment [92–95]. 

Irrigation, as an anthropogenic water addition, directly perturbs soil moisture states and the coupled water–energy 
balance. Winter (off-season) irrigation can elevate antecedent water content, delay frost penetration, and reconfigure 
the vertical distribution of unfrozen water, thereby altering freeze-up dynamics and promoting a stronger groundwater 
rebound during the thaw, which in turn benefits early-season crop water supply [96,97]. However, excessive or poorly 
timed irrigation can lead to persistently wet topsoil, higher non-productive evaporation, abnormal groundwater-level 
rise or, conversely, in some systems, long-term groundwater depletion and waterlogging or salinization risks that 
complicate allocation and root-zone management [98–100]. The net outcome of freeze–thaw–irrigation interactions 
therefore governs not only soil-water dynamics and groundwater recharge but also crop phenology and agricultural 
productivity across irrigated cold-region landscapes [101–103]. Figure 2 provides a conceptual illustration of these 
hydrological processes, highlighting the coupled dynamics of soil water, groundwater, and surface fluxes in cold-region 
irrigation districts. 

The hydrologic regime of irrigated cold regions constitutes a tightly coupled system in which the combined action 
of freeze–thaw dynamics and irrigation profoundly shapes the spatiotemporal distribution of water, drives fluctuations 
in the groundwater table, and constrains water allocation decisions. These cryo-hydrologic interactions modulate 
runoff–infiltration partitioning, vadose-zone storage, and recharge pulses, thereby propagating signals to the aquifer 
and surface networks [12,32,94,104]. Against the backdrop of global warming, climate change is altering seasonality 
in hydrologic processes, accelerating or shifting freeze–thaw rates, and reshaping irrigation demand—intensifying 
water-stress risks and management complexity [33,83,105–107]. These evolving forcings necessitate adaptive water-



Hydroecology and Engineering 2025, 2, 10017 5 of 26 

resources governance—integrating coupled surface–groundwater modeling under seasonal freezing, demand 
management, and allocation that safeguards environmental flows—to sustain agricultural productivity [108–110]. 

 

Figure 2. Conceptual diagram of the hydrological cycle in cold-region irrigation districts. 

3.2. Water Input Processes Driven by Precipitation Phase Changes and Agricultural Irrigation 

In the hydrological cycle of cold-region irrigation districts, precipitation consistently plays a fundamental role, 
while agricultural irrigation constitutes another major source of water input, functioning in parallel with natural 
precipitation.: winter precipitation stored as snow functions as a seasonal natural reservoir, and the timing and 
magnitude of snow accumulation and melt directly control the tempo of springtime soil moisture recharge and the 
initiation of early-season runoff [111,112]. 

Warming-driven changes in precipitation phase are already reshaping these dynamics. In many headwater basins, 
including portions of the Upper Yellow River, observational and modeling evidence indicate a statistically significant 
decrease in snowfall fraction and an increase in winter rainfall frequency over recent decades, with attendant reductions 
in snowpack water equivalent that weaken the “snow reservoir” relied upon for spring replenishment [113–115], thereby 
increasing the dependence on irrigation water. 

There is a clear interaction between changes in natural precipitation and irrigation practices. During the winter freezing 
period, rainfall is impeded by the frozen soil layer and cannot infiltrate; irrigation applied at this stage faces a similar constraint, 
resulting in surface water stagnation and limited infiltration. During the spring thaw, rainfall combined with snowmelt can 
enhance soil moisture and deep recharge if irrigation is applied in an appropriate manner. However, improper superposition 
of rainfall and irrigation may lead to field waterlogging and increased drainage pressure. 

Therefore, under climate warming, changes in precipitation phase not only reshape the pattern of natural water 
inputs but also intersect with irrigation-driven inputs. Together, they determine the spatiotemporal distribution of water 
and soil freeze–thaw dynamics, and the effective spring recharge in cold-region irrigation districts, imposing new and 
more complex requirements on irrigation management. 
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3.3. Surface Runoff Generation and Infiltration 

Surface runoff generation and vertical infiltration are tightly coupled during freeze–thaw cycles and jointly regulate 
the exchange of water between the land surface and the soil column [91,102]. In winter, the development of a frozen 
layer substantially constrains vertical percolation, causing precipitation and meltwater to remain in the near-surface 
horizon and, in low-lying areas, to pond or form surface water bodies [116,117]. With the onset of spring warming and 
the progressive thawing of the frozen layer, the water previously detained at the surface or in shallow soil is released: a 
fraction is delivered as short-duration flood peaks while another fraction rapidly infiltrates to recharge deeper soil 
reservoirs [118,119]. The extent and rate of infiltration are not only a function of the freeze–thaw state but are also 
strongly mediated by soil texture and structure—frozen-induced macropores and thaw cracks in coarse-textured soils 
can enhance downward flow, whereas clayey soils with an intact frost barrier tend to produce disproportionately large 
surface-runoff fractions [98,120]. 

Observational and modeling studies from mountain catchments demonstrate the dominance of snowmelt and the 
suppressive effect of frozen ground on infiltration [121–123]. For example, in parts of the European Alps, spring 
snowmelt may account for the majority of annual river discharge, and the presence of a frost-impermeable layer causes 
many winter rainfall events to be routed almost entirely to surface runoff with little subsurface penetration. Similar field 
measurements in high-cold mountain systems, such as the Qilian Mountains, reveal characteristic “wet-above/dry-
below” soil moisture profiles during freeze–thaw transition periods: abundant surface or near-surface water that does 
not infiltrate into the root zone until thawing progresses to greater depths [124,125]. These responses are controlled by 
snowpack depth, frozen-soil thickness, and topographic slope, among other natural factors [91,121,126].  

By contrast, irrigated lowland fields are typically leveled and tilled, feature smaller microtopographic relief, and 
receive anthropogenic water inputs that modify surface–subsurface exchange [127]. In irrigated districts, the rapid 
springtime replenishment of soil moisture comprises meltwater and precipitation augmented by scheduled irrigation 
[121]. If irrigation is applied while the soil column remains partially frozen, water commonly accumulates in the shallow 
layer and is lost as surface runoff. Conversely, well-timed irrigation that coincides with sufficient thawing can markedly 
increase infiltration and alleviate moisture stress during crop greening [44]. Field practices in the Ningxia Yellow River 
diversion irrigation district, for instance, schedule winter irrigation within a narrow “freeze-initiation window” when 
surface temperatures approach 0 °C and soil temperatures remain below ~5 °C [128]; by controlling application depth 
and timing, the water becomes effectively “stored” within the forming frozen layer (the so-called “ice-bank” or “ice-
reservoir” effect), which then releases substantial moisture to the root zone upon spring thaw [129]. In other systems, 
such as the Hetao (Hohhot–Baotou) and upstream Hetao/Hetao–Huanghe irrigation areas, however, premature or 
excessive autumn/winter irrigation has been observed to raise groundwater tables beneath the frozen layer (reported 
increases on the order of decimeters in intensive cases) [130], induce surface waterlogging in the tilled layer, delay the 
thawing front, and impair early-season crop emergence [131].  

These examples illustrate that freeze–thaw modulation of runoff–infiltration partitioning sculpts the seasonal 
spatiotemporal pattern of soil moisture and ultimately governs irrigation water-use efficiency [132]. In mountainous 
environments, partitioning is primarily controlled by natural factors (snowpack, soil freezing depth, slope) [133,134]; 
in irrigated plains, partitioning results from the compound effect of frozen-ground hydraulics and irrigation management 
(method, timing, and volume) [135,136]. This coupled natural–anthropogenic control produces runoff and infiltration 
dynamics in cold-region irrigation districts that are distinct from those in purely high-altitude or non-irrigated 
landscapes and require irrigation strategies that explicitly account for soil thermal state and frozen-ground 
hydrodynamics [92,94]. 

3.4. Evaporation and Transpiration Processes 

Evapotranspiration (ET) represents a key output term in the water budget of irrigated cold regions, and its 
spatiotemporal dynamics are co-constrained by seasonal freeze–thaw processes and irrigation management. During the 
frozen season, low temperatures suppress soil liquid-water mobility and limit available energy, so both soil/surface 
evaporation and canopy transpiration remain at low flux levels; at the initial thaw, rapid snowmelt and abrupt increases in 
shallow-layer liquid water frequently trigger short-lived surges in surface evaporation that are subsequently transferred—
as vegetation leaf area and activity recover—into transpiration-dominated water use during crop green-up [104,137]. 

Flux-tower and integrative observational studies over cold temperate regions (e.g., Canadian prairies and high-
latitude sites) document this “thaw-driven ET jump”: energy and water fluxes rapidly shift from an input-limited or 
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potential-ET regime toward a state constrained by available moisture and canopy conductance after thaw, producing 
pronounced post-thaw ET peaks and strong seasonality in latent-heat release [138,139]. 

In irrigated oases and agricultural districts (for example, irrigated systems in Xinjiang), remote-sensing inversion 
and in-situ monitoring indicate that winter–spring irrigation raises early-season root-zone moisture and reduces crop 
water stress, thereby stabilizing transpiration during the tillering/elongation stages; however, excessive irrigation 
amplifies non-productive evaporation and lowers overall water-use efficiency, an effect quantified in recent regional 
assessments combining satellite ET retrievals and ground observations [140–142].  

Non-irrigated cold ecosystems also exhibit a thaw-ET (or transpiration) transition, but the phenological and 
hydrological expression differs: in boreal and temperate agricultural or forest plots of Scandinavia and other cold 
temperate zones, the post-thaw energy balance evolves from sensible-heat dominance toward latent-heat dominance, 
yet ET there is tightly coupled to snowmelt supply and canopy phenology because of the lack of anthropogenic water 
inputs, limiting managerial leverage. Long-term observational and modeling studies have documented these land-cover 
dependent contrasts in water–energy partitioning across similar climatic envelopes [137,138,143]. 

By contrast, irrigated plains operating under the same climatic forcing can actively reshape thaw-period soil-
moisture boundary conditions and energy partitioning through human decisions on irrigation timing, method, and 
volume—i.e., irrigation timing, irrigation quotas, and application methods. These management controls can 
substantially alter the ratio and timing of evaporation versus transpiration during thaw, and regional hydrothermal 
assessments for inland river basins (e.g., the Hexi Corridor/Heihe and other arid inland catchments) show that ET in 
irrigated districts is jointly sensitive to climate and operational practice [144–146]. 

Synthesis of the controlling factors indicates that the principal drivers of these differences are: air temperature and 
radiation (which set thaw rate and potential ET), snow depth and melt timing (which define early-season available water 
and the temporal window of evaporation peaks), frozen-layer thickness and soil texture/structure (which regulate 
upward and downward water fluxes and evaporative supply), vegetation phenology and canopy structure (which 
determine transpiration capacity), and irrigation scheduling/quotas (which directly reset soil-moisture and surface 
energy boundaries). In unmanaged systems, these drivers are dominated by climate and substrate attributes, whereas 
the anthropogenic management dimension overlays and often dominates in irrigated systems, yielding higher 
controllability but also greater management dependence of ET signals [143,147]. 

3.5. Groundwater Recharge and Discharge 

Groundwater recharge constitutes the integrated expression of freeze–thaw–irrigation coupling, and its 
spatiotemporal variability is jointly regulated by seasonal soil freezing–thawing and irrigation management. During the 
frozen season, the formation of a frost layer strongly impedes vertical percolation and renders direct groundwater 
recharge minimal; water instead tends to accumulate in the near-surface horizon, increasing surface storage and routing 
to overland flow [34,148]. 

With the onset of thaw, however, rapid release of snowmelt and previously detained soil water promotes expedited 
percolation to depth and a characteristic, often sharp, rebound of the water table (a “V-shaped” response in many 
monitored sites). Preferential flow pathways through macropores and thaw-induced cracks can allow substantial 
recharge even while portions of the vadose zone remain frozen, producing short, pulse-like groundwater rises during 
spring melt [94,118]. 

When freeze–thaw dynamics interact with managed irrigation, recharge and leakage behavior depart from patterns 
observed in non-frozen or non-irrigated settings. Winter (off-season) irrigation increases antecedent soil moisture and 
alters the frozen-layer evolution, concentrating recharge during thaw and accelerating springtime groundwater recovery 
under moderate application regimes; field monitoring in several Yellow-River irrigated plains (e.g., Hetao, 
Yinchuan/Ningxia) reports faster post-thaw groundwater level recovery where winter irrigation is applied in controlled 
amounts [149,150]. 

Conversely, excessive or improperly timed winter irrigation can drive undesirable groundwater dynamics: 
anomalous groundwater rises beneath the frost table, prolonged soil waterlogging in the tilled horizon, delayed thaw 
propagation, and consequent impediments to spring sowing and seedling emergence. Intensive local studies and basin 
assessments from Xinjiang and other irrigated inland regions document cases in which significant winter flood-
irrigation events elevated shallow groundwater by decimeters, exacerbated drainage loads during thaw, and prolonged 
cold-season soil saturation [151,152]. 
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By contrast, non-frozen or non-irrigated regions show groundwater recharge regimes governed primarily by 
precipitation seasonality, soil hydraulic properties and topography; in temperate humid zones (e.g., parts of Europe) 
winter recharge is more evenly distributed because precipitation mainly falls as rain and frozen ground plays little or 
no role, while in tropical climates year-round infiltration maintains more stable recharge controlled by monsoon or 
convective rainfall patterns [153]. 

Therefore, the superposition of freeze–thaw processes and irrigation management produces pronounced seasonal 
variability and a degree of anthropogenic control over groundwater recharge in cold-region irrigation districts. 
Compared with the relatively stable recharge regimes of humid or tropical regions, cold-region irrigated systems are 
more sensitive to the timing, volume and method of irrigation; well-designed winter and spring irrigation schedules that 
account for soil thermal state can mitigate frost-barrier effects, accelerate groundwater recovery during thaw, and 
improve irrigation water-use efficiency [104,136].  

4. Multiscale Approaches and Modeling Frameworks for Hydrological Process Simulation 

The simulation of hydrological processes is a fundamental tool for water-resources management, agricultural 
irrigation optimization, and flood prevention. Depending on spatial scale, hydrological models can generally be 
categorized into field-scale models and watershed-scale models. Field-scale models focus on the soil–crop–atmosphere 
interactions of a single agricultural plot or small experimental area, enabling detailed representation of vertical soil-
water movement, root-water uptake, and crop transpiration; such models are widely used in irrigation design, crop 
water-requirement assessment, and field water-balance management. Representative examples include AquaCrop 
(Aquatic Crop Model) [154] and HYDRUS (Hydrus-1D/2D/3D Variably Saturated Flow Model) for variably saturated 
flow [155]. 

In contrast, watershed-scale models integrate spatial heterogeneity in topography, soils, vegetation, and land use, 
allowing simulation of precipitation–runoff generation and water-flux regulation across larger spatial domains. Such 
models are widely used in watershed water resource assessment, flood forecasting, and management planning. Classical 
examples include SWAT [156], HBV (Hydrologiska Byråns Vattenbalansavdelning Model) [157], and TOPMODEL 
(Topographic Wetness Index Model) [158]. Different model scales each have their strengths, and the optimal choice 
depends on research objectives, data availability, and computational demands. 

4.1. Field-Scale Soil Moisture Model 

Field-scale soil moisture models can be broadly classified into conceptual water-balance models and physics- or 
process-based numerical models. 

4.1.1. Conceptual Water Balance Models 

Conceptual models typically use the basic soil water balance equation as the core framework, which describes the 
change in soil water storage(ΔS) under precipitation (P), irrigation (I), evapotranspiration (ET), runoff (R), and deep 
percolation (D):  

∆𝑆 ൌ 𝑃 ൅ 𝐼 െ 𝐸𝑇 െ 𝑅 െ 𝐷  

These models feature a simple structure, low parameter requirements, and strong robustness, making them suitable 
for data-scarce regions or scenarios requiring rapid assessment. Typical models developed under this framework include 
the FAO (Food and Agriculture Organization of the United Nations) crop water requirement model, the Kc–ET₀ (Crop 
Coefficient–Reference Evapotranspiration) single-crop-coefficient approach, ISAREG (Irrigation Scheduling and 
Simulation Model), AquaCrop, and SMDualKc (Soil Moisture Dual Crop Coefficient Model).  

The FAO framework was first established in the late 1970s to standardize crop water requirement estimation 
worldwide [159]. Subsequently, the Kc–ET₀ approach was refined by Allen et al. [160] to address consistency issues in 
estimating crop evapotranspiration across diverse climate regions. During the 1990s–2000s, the ISAREG model 
integrated soil water balance with crop growth processes to support optimized irrigation scheduling [161]. Later, 
AquaCrop incorporated biomass production mechanisms into the water-balance structure to predict yield responses 
under conditions of climate variability and climate change [154]. More recently, the SMDualKc model improved the 
representation of soil evaporation and crop transpiration partitioning by coupling the dual crop coefficient method with 
soil water balance calculations [162]. 
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4.1.2. Physics-Based Models 

The physics-based models include Richards-equation-based unsaturated flow models, coupled heat–water–vapor 
transfer models, and preferential flow models. Physics-based models are commonly formulated using the Richards equation: 

∂𝜃
∂𝑡

ൌ ∇ ⋅ ሾ𝐾ሺ𝜃ሻሺ∇ℎ ൅ ∇𝑧ሻሿ  

where θ is volumetric water content, K(θ) is hydraulic conductivity, h is pressure head, and z is gravitational potential. 
This equation [163] describes water movement in the unsaturated zone and can be coupled—under either the h-form or 
mixed-form formulation—with the energy conservation equation, vapor diffusion processes, or dual-domain flow 
models; the pure θ-form is less commonly used because it handles the saturated–unsaturated transition poorly. 

These models offer clear physical interpretability and can explicitly represent vertical water redistribution, 
evaporation partitioning, root water uptake, and preferential flow. Typical models based on the Richards equation 
include HYDRUS, SWAP (Soil-Water-Atmosphere-Plant Model), SHAW (Simultaneous Heat and Water Model), 
COUPMODEL (Coupled Heat and Water Flow Model), and various dual-domain preferential flow models. 

The van Genuchten–Mualem model [164] proposed unified hydraulic functions for unsaturated soils, forming the 
theoretical foundation for contemporary soil water flow modeling. During the 1990s, the HYDRUS model family 
[155,165] used the finite-element method to solve the Richards equation, enabling simulations of variably saturated 
water flow, solute transport, and coupled heat–water–vapor processes, and has been widely applied in drip irrigation, 
salinity leaching, and vadose-zone studies. Contemporaneously, the SWAP [166] model integrated surface energy 
balance with root water uptake to analyze evaporation–transpiration partitioning, deep percolation, and crop–soil 
interactions. Meanwhile, the SHAW model [167] emphasized coupled water, heat, and freeze–thaw dynamics and has 
been extensively used in cold-region agro-ecosystems and frozen-soil hydrology. Entering the 2000s, COUPMODEL 
[168] extended coupled heat- and water-flow modeling by incorporating carbon and nitrogen cycles, enabling its use in 
high-latitude agricultural freeze–thaw processes and forest–crop system comparisons. Additionally, to represent rapid 
flow in macroporous, fractured, or swelling soils, Gerke & van Genuchten [169] introduced a dual-permeability/dual-
domain model that divides soil into matrix and macropore domains with exchange fluxes, and this approach has been 
widely applied in studies of rainfall-runoff generation and pesticide transport. 

Field-scale models provide high physical realism and predictive capability for complex hydrological processes, 
but consequently require more detailed parameters, boundary conditions, and computational resources. 

4.2. Watershed-Scale Hydrological Models 

Unlike field-scale models that focus on water dynamics within individual plots, watershed-scale hydrological 
models are capable of integrating spatial heterogeneity and capturing the influences of topography, soil variability, and 
land-use patterns on runoff generation and water regulation, thereby supporting flood forecasting, watershed 
management, and large-scale water resource assessment. Watershed-scale models can be broadly categorized into 
conceptual water-balance models and physics-based distributed models, with the former including lumped and semi-
distributed conceptual structures, and the latter including distributed soil-water–runoff models and high-resolution 
coupled hydrological models.  

4.2.1. Conceptual Models 

Conceptual models are generally built upon the watershed water-balance equation: 

𝑑𝑆
𝑑𝑡

ൌ 𝑃 െ 𝐸𝑇 െ 𝑄௦ െ 𝑄௚  

where S represents watershed water storage, P precipitation, ET evapotranspiration, Qₛ surface runoff, and Q𝗀 
groundwater runoff. This equation describes the overall hydrological relationship among precipitation inputs, 
evapotranspiration losses, changes in water storage, and both surface and subsurface flows at the watershed scale. 
Owing to their simple structure and modest data requirements—parameters can typically be estimated from watershed 
hydrological observations and meteorological datasets—these models are well suited for water-resource evaluation, 
flood forecasting, and climate-change impact analysis. Representative conceptual models include the HBV 
(Hydrologiska Byråns Vattenbalansavdelning Model) model developed in the mid-1970s [157], TOPMODEL, which 
introduced a topographic wetness index to simulate distributed soil-moisture and subsurface flow processes [170], the 
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SWAT model, whose conceptual structure divides the watershed into sub-basins and hydrological response units for 
long-term water-quantity and water-quality simulation [156], and the VIC model, whose conceptual version employs a 
multilayer soil-water and energy-balance framework suitable for large-scale climate-impact hydrology [171].  

Although computationally efficient and relatively straightforward to calibrate, conceptual models have limited 
capability in resolving micro-topographic variations, spatially explicit soil and land-surface heterogeneity, and 
nonlinear flow processes that strongly influence watershed hydrological responses. 

4.2.2. Physics-Based Hydrological Models 

Physics-based hydrological models are commonly based on fully distributed three-dimensional process equations. 
Surface-water flow (shallow-water/Saint–Venant equations): 

𝜕ℎ
𝜕𝑡

ൌ
𝜕ሺ𝑢ℎሻ
𝜕𝑥

൅
𝜕ሺ𝑣ℎሻ
𝜕𝑦

ൌ 𝑅 െ 𝐼  

where h is water depth, u and v are depth-averaged velocities in the x and y directions, and R is the source–sink term 
representing bed-slope forcing. 

Groundwater flow (Darcy’s law): 

𝒒 ൌ െ𝑲∇ℎ  

where q is the three-dimensional flow vector (m/s), K is the hydraulic-conductivity tensor (possibly anisotropic), and 
∇h is the hydraulic-head gradient. These models perform spatial–temporal simulation of watershed hydrological cycles 
by explicitly describing precipitation infiltration, soil-moisture dynamics, surface-runoff generation, channel flow, and 
energy fluxes. Common models include MIKE SHE, DHSVM (Distributed Hydrology Soil Vegetation Model), 
ParFlow (Parallel Flow Model), and SWAT-M.  

MIKE SHE [172] integrates the Richards equation, surface-water flow equations, and an energy-balance scheme 
to enable detailed watershed-scale hydro-thermal simulation. DHSVM [173] incorporates high-resolution topography, 
vegetation, and soil data, along with coupled energy–water fluxes, to simulate snow, soil-moisture, vegetation processes, 
and runoff generation in a unified framework. ParFlow [174] solves the three-dimensional Richards equation, along 
with surface-flow coupling formulations, enabling physically based simulation of variably saturated flow and surface–
subsurface interactions at large-watershed scales. MODFLOW(Modular Three-Dimensional Finite-Difference 
Groundwater Flow Model) [175,176], based on the 3-D groundwater-flow governing equation, can simulate aquifer 
hydraulic heads, recharge and discharge, stream–aquifer interactions, and pumping impacts. When coupled with SWAT, 
MIKE SHE, or other models, it is widely used for integrated surface–subsurface watershed modeling. Furthermore, 
improved models such as SWAT-M [177] introduce distributed soil-water and crop-transpiration modules into the 
original conceptual structure, increasing spatial detail while maintaining computational efficiency. 

Watershed-scale models can accurately represent spatial heterogeneity and rapid hydrological responses. However, 
achieving high-precision physical-process simulation requires extensive data, numerous parameters, and substantial 
computational resources. Meanwhile, lumped or semi-distributed conceptual models still face limitations in capturing 
micro-topography and nonlinear hydrological responses within complex basins. 

Although hydrological models at field, watershed, and integrated scales have been widely developed and applied 
in various regions, their performance in cold-region irrigated areas remains generally limited or unsatisfactory. The 
main challenges arise from the difficulty of simultaneously representing freeze–thaw dynamics, soil water–heat 
interactions, irrigation management, and canal-network effects. As a result, models often fail to accurately capture soil 
moisture redistribution, crop–water interactions, groundwater–surface water exchange, and water-salt dynamics under 
cold irrigated conditions. This highlights a clear gap in current hydrological modeling, emphasizing the need for targeted 
adaptation, calibration, and long-term observational data to improve model reliability and decision support in cold-
region irrigated areas. 

4.3. Coupled Models for Hydrological Processes 

In many hydrological systems, precipitation infiltration, surface runoff, river–groundwater exchange, soil moisture 
movement, and three-dimensional groundwater flow are tightly interconnected; relying on a single model often fails to 
represent the full water cycle. To address these limitations, recent decades have seen widespread adoption of integrated 
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surface–vadose–groundwater coupling models that simulate the entire cascade—from overland flow to aquifer 
recharge—within a unified framework. 

A widely used example is SWAT+MODFLOW [178], which links a comprehensive land-surface/soil-plant-
atmosphere model with a fully distributed groundwater model to quantify recharge, soil–groundwater exchange, canal 
seepage, irrigation pumping, and stream–aquifer interactions under managed-watershed conditions. 

Another classical implementation is GSFLO [179], which integrates the PRMS precipitation–runoff model with 
MODFLOW, enabling simultaneous simulation of infiltration, overland flow, streamflow, baseflow, and saturated 
groundwater dynamics across entire watersheds. 

Extensions of these frameworks continue to appear. For instance, SWAT+gwflow [180] improves the 
representation of groundwater–surface water interactions within SWAT+, providing refined groundwater flow 
processes under irrigation and climate-variability conditions. 

Applications of SWAT–MODFLOW have also demonstrated the importance of coupled modeling in regions where 
pumping, irrigation, and land-use change strongly modify recharge and baseflow. 

Overall, these integrated coupling models provide [181] a unified representation of overland flow, infiltration, 
vadose-zone water redistribution, groundwater recharge and discharge, stream–aquifer exchange, and anthropogenic 
interventions. As a result, they are now widely applied in irrigation management, groundwater sustainability assessment, 
flood and drought prediction, land-use change evaluation, and climate-impact analysis. 

5. Hydrological Response of Cold-Region Irrigation Districts to Climate Warming and Extreme Events 

5.1. Characterizing Climate Change in Cold Regions 

In recent years, the trajectory of global warming has intensified. NOAA’s global monitoring indicates that May 
2025 registered the second-warmest May in the 176-year record (anomalies of +1.10 °C relative to the 20th-century 
mean). [182], and January–July 2025 ranks second-warmest for the year-to-date, just 0.10 °C below the 2024 record 
pace [183]. Consistent with these observations, the WMO Global Annual to Decadal Climate Update (2025–2029) 
projects the global mean near-surface temperature each year to be 1.2–1.9 °C above the 1850–1900 baseline, with an 
86% probability that at least one year in 2025–2029 will exceed 1.5 °C, and a 70% probability that the five-year mean 
will do so as well—posing a direct challenge to the Paris Agreement’s temperature goal. Independent coverage of the 
WMO update further underscores amplified Arctic warming, expected at >3.5× the global average and about +2.4 °C 
above the recent 30-year baseline in the coming winters [184]. 

Precipitation regimes and extremes are shifting in tandem. Canonical “wet-gets-wetter, dry-gets-drier” responses 
and increases in heavy precipitation and hydroclimatic extremes are assessed with high confidence in recent syntheses 
(IPCC AR6), reflecting a warmer atmosphere’s enhanced moisture-holding capacity and changing circulation [185]. 
Observationally, 2024–2025 featured widespread pluvial and drought episodes that stressed water-resource systems and 
agricultural irrigation demands, with sea-surface temperature and surface-air temperature anomalies reinforcing 
extreme hydrological loading [186]. High-latitude and cold-region basins emerge as particularly sensitive “hotspots” 
under warming, with projected increases in cool-season precipitation and a higher fraction of intense convective rainfall 
that challenge legacy flood-control and irrigation infrastructure [184]. 

Concurrently, extreme heat has become a hallmark of the evolving climate. During June–July 2025, Europe 
endured a severe heatwave; Portugal observed nation-leading maxima near 46–47 °C (e.g., 46.8 °C at Coruche and 
46.6 °C at Santarém), amid reports of substantial excess mortality linked to heat stress [105,184]. In South Asia, an 
April 2025 heat episode drove temperatures to ~48 °C in parts of India and Pakistan, with documented public health 
and agricultural impacts [187]. 

With global temperatures continuing to reach new records, the frequency and intensity of extreme climatic events 
are rising sharply, and precipitation patterns are becoming increasingly volatile. High-latitude and cold-region areas 
exhibit particularly strong sensitivity to extreme events—defined as the amplified response of hydrological systems to 
changes in the intensity, return period, or duration of extreme meteorological events such as extreme rainfall, drought, 
or heatwaves—which introduces greater instability into hydrological processes and irrigation management in cold-
region irrigation districts [184,188,189]. The frequent alternation of heatwaves, heavy rainfall, and drought is reshaping 
the mechanisms governing the formation and decay of frozen layers, as well as the timing and magnitude of water 
replenishment, bringing substantial uncertainty and challenges to agricultural water-resource regulation [190–194]. 
Data sources are presented in Table A1. 
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5.2. Response of Hydrological Processes in CRIDs to Climate Warming and Extreme Events 

With the intensification of global climate change, the increasing frequency of extreme weather events—including 
extreme precipitation (e.g., heavy rainfall, snow, and freezing rain), extreme temperature events (e.g., sudden thawing 
and rapid snowmelt), and extreme droughts—has introduced greater uncertainty into hydrological processes and 
irrigation management under freeze-thaw conditions [195,196]. The alternation of droughts and heavy rainfall 
exacerbates the volatility of hydrological processes in cold-region irrigation districts [31]. Extreme droughts lead to 
insufficient groundwater recharge, necessitating increased irrigation intensity; whereas extreme rainfall events can trigger 
large-scale surface runoff and soil erosion, reducing soil moisture retention capacity [197]. Under rapidly shifting freeze–
thaw conditions, the abrupt alternation between extreme drought and intense rainfall amplifies soil structural instability, 
because freeze–thaw cycles weaken soil aggregates and reduce infiltration capacity. This makes hydrological responses 
more volatile and difficult to predict, thereby increasing uncertainty in irrigation scheduling and agricultural production. 

In the spring of 2024, Heilongjiang Province experienced an extreme drought lasting two months, resulting in a 
drop in groundwater levels and severe soil moisture deficits, which adversely affected crop growth [179]. According to 
data from the agricultural department, wheat and maize yields decreased by 15% and 20%, respectively. However, in 
the summer of the same year, the region experienced heavy rainfall, leading to large-scale surface runoff and soil erosion, 
which affected the infiltration and retention capacity of soil moisture [195]. This “drought-rain” alternating extreme 
weather phenomenon has intensified the management challenges of irrigation systems [198]. Particularly under extreme 
climatic conditions, how to adjust irrigation strategies in a timely and accurate manner has become an urgent issue [199]. 

Meanwhile, climate warming has led to reduced freeze depth and shortened freeze-thaw cycles, making the 
responses of hydrological processes more frequent and rapid [200,201]. The acceleration of freeze-thaw cycles has, to 
some extent, promoted water migration efficiency, activated the hydrological cycle in irrigation districts, and facilitated 
the dynamic utilization and recycling of water resources. Recent observational data from Heilongjiang Province indicate 
that the average duration of the freeze-thaw cycle has shortened from 120 days to approximately 100 days, and the 
depth of frozen soil has decreased by 20–30% [202]. This change has accelerated the turnover rate of soil moisture and 
enhanced water migration efficiency, making the hydrological cycle in irrigation districts more active, and contributing 
to the dynamic utilization and recycling of water resources. In some areas, the shortening of the freeze-thaw cycle has 
even improved soil moisture conditions in spring, providing more adequate water support for crops. In the spring of 
2023, certain farmlands in Heilongjiang Province experienced an earlier release of meltwater, resulting in soil moisture 
levels approximately 10% higher than the long-term average, giving crops a favorable start [203]. 

However, shortening of the freeze–thaw cycle also introduces new challenges: the intensifying occurrence of 
extreme drought and heavy rainfall makes hydrological processes more volatile and increases uncertainty in irrigation 
management [204]. Observations from Alberta, Canada, show that, as the climate warms, the depth of frozen soil 
decreases year by year, and the earlier release of spring meltwater leads to insufficient soil moisture [205]. This results 
in a substantial rise in agricultural water demand, forcing farmers to increase irrigation intensity to compensate for the 
moisture deficit. 

At the irrigation-management level, different irrigation methods exhibit distinct responses to variations in climatic 
factors. Taking the Hetao Irrigation District in Inner Mongolia, China, as an example, the region’s traditional surface 
irrigation is strongly influenced by the freeze–thaw cycle and precipitation processes [133]. In early spring, lower 
temperatures and reduced evapotranspiration demand help minimize conveyance losses. However, under hot, low-
humidity conditions with strong evaporation, sprinkler and center-pivot irrigation—although capable of improving 
water-use efficiency—incur additional energy consumption due to pump operation. In contrast, the increasingly adopted 
drip irrigation is relatively less sensitive to changes in temperature, humidity, and evapotranspiration (ET), and can 
significantly reduce evaporative losses in dry years while increasing crop output per unit of water [206]. Therefore, air 
temperature determines evapotranspiration demand and energy load; humidity influences the level of evaporative loss 
under sprinkler irrigation; rainfall and snowfall determine the magnitude of spring irrigation supply; and ET provides 
the direct basis for regulating irrigation intensity across different irrigation systems. 

These interactions highlight that the synergy between irrigation practices and climatic conditions is particularly pronounced 
in cold regions, underscoring the need for adaptive irrigation-system research under changing freeze–thaw regimes. 

In the context of climate warming leading to reduced freeze depth, shortened freeze-thaw cycles, and increased 
frequency of extreme weather events, the agricultural production system in cold-region irrigation districts must enhance 
its adaptive capacity. Based on the changes in freeze-thaw and hydrological processes, scientifically formulating 
dynamic irrigation strategies is particularly important [207]. It is necessary to optimize and adjust planting structures 
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according to the temporal and spatial dynamics of soil moisture, scientifically develop irrigation plans to match the 
changes in soil moisture patterns, reduce water waste, and improve water use efficiency. Under different groundwater 
table depths and frozen soil conditions, differentiated irrigation strategies are crucial. For example, in areas with shallow 
groundwater tables, attention should be paid to the impact of elevated groundwater levels during the freezing period on 
root zone moisture conditions, while in areas with deep groundwater tables, fine-tuned irrigation techniques can be 
employed to reduce excessive interaction between surface water and groundwater, achieving steady-state regulation of 
the hydrological system [136]. 

In summary, integrating irrigation management with dynamic coupling analysis of freeze-thaw and hydrological 
processes is of significant guiding importance for enhancing the response capacity of cold-region irrigation districts to 
climate warming and extreme events, achieving sustainable water resource utilization, and ensuring stable agricultural 
production [19,25,32,33,207–210]. 

6. Challenges and Perspectives in the Study of Hydrological Processes in Irrigated Cold Regions 

As understanding of hydrological processes in cold-region irrigation districts has deepened, research has gradually 
shifted from single-factor observations toward integrated, multi-process and multi-scale simulation frameworks. 
However, constrained by the complexity of freeze–thaw mechanisms, the diversity of agricultural management, and the 
growing uncertainty of extreme climate conditions, substantial theoretical and technical challenges remain [211]. Future 
development, therefore, requires not only breakthroughs in hydrological mechanism research but also an expansion to 
an integrated agricultural–ecological–carbon perspective to support sustainable development of cold-region irrigation 
systems [212]. 

6.1. Major Challenges in Current Research 

There remain clear deficiencies in the physical representation of freeze–thaw phase change. Although some models 
have introduced energy-balance and three-phase transport formulations, many still treat freezing and thawing as a binary 
switch and cannot capture the nonlinear dynamics of ice content and microscopic migration processes; this limitation 
becomes especially evident under extreme events—for example, rapid snowmelt can induce characteristic “V-shaped” 
groundwater responses that many current models struggle to reproduce.  

Building on this, the interactive mechanisms between irrigation management and freeze–thaw cycles are also 
insufficiently represented. Most mainstream hydrological models were developed within natural-ecosystem frameworks 
and lack detailed modules for winter irrigation timing, amount allocation, and root-zone uptake processes; consequently, 
they fail to capture field-scale phenomena such as the “ice-bank” (or “ice-reservoir”) effect documented in some 
Chinese irrigation districts, weakening the models’ applicability to practical agricultural management.  

Looking further, multi-scale simulation of strongly transient hydrological dynamics systems remains a major 
bottleneck. Hydrological processes in cold-region irrigation districts span surface water, the vadose zone, and groundwater 
and display pronounced seasonal transient hydrological dynamics. Maintaining mechanistic consistency and comparability 
of results across plot–district–catchment scales remains a core challenge for model integration and upscaling. 

In cold-region hydrological modeling, long-term efforts have been constrained by the lack of critical observational 
data, especially during the freezing period and the early thaw. Core processes such as three-phase migration, 
groundwater recharge, and crop responses lack continuous, high-resolution monitoring—significantly increasing the 
uncertainty in model calibration and validation [213,214]. Meanwhile, parameterization in the Richards equation 
remains the main bottleneck limiting model applicability: direct parameterization—though more accurate—is expensive, 
poorly representative, and challenging to reflect the dynamic soil-structure changes caused by freeze–thaw [19]; indirect 
parameterization relies on empirical relationships, databases, or inversion methods, which may work at regional scale, 
but under freeze–thaw and three-phase coexistence conditions present high uncertainty and limited generality. Overall, 
the temperature sensitivity and structure-dependence of cold-region soil hydraulic parameters remain systematically 
quantified, and there is an urgent need to establish a parameterization framework that is transferable across scales. 

More importantly, current hydrological-process research still clearly under-represents considerations of the carbon 
cycle and ecological effects. Existing studies show that winter irrigation and rapid snowmelt not only alter water-
quantity processes. However, they may also mobilize plant-derived carbon (for example, dissolved organic carbon 
produced by root respiration or litter decomposition, and biogenic CO2) via surface runoff or percolating water—and 
field observations in Heilongjiang’s irrigation districts have documented these pathways; see also broader analyses of 
irrigation runoff effects on stream DOC loads [215]. Such mobilization can alter ecosystem carbon budgets. In 
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permafrost-degrading regions (e.g., Siberia), accelerated thawing increases CO2 and CH4 emissions and produces 
substantial feedbacks to the climate system [216,217]. In Xinjiang’s irrigated areas, long-term large-scale flood 
irrigation, while improving soil moisture conditions, can promote coupled transport and redistribution of plant-derived 
carbon and salts—thereby affecting soil microhabitats, crop growth, and the region’s carbon-sink capacity. However, 
these “water–carbon trade-off” effects have not yet been systematically incorporated into hydrological modeling and 
management frameworks for cold-region irrigation districts. 

6.2. Future Research Directions 

Looking ahead, hydrological research in cold-region irrigation districts needs to achieve breakthroughs and 
expansions in the following areas: 

Deepening the Nonlinear Coupling Mechanisms of Freeze–Thaw–Water–Heat–Salt Processes: By improving the 
physical description of phase change processes and introducing microscopic-scale ice–liquid water migration 
mechanisms, models can better reproduce the advance of freezing fronts, latent heat release, and abrupt changes in 
water–heat fluxes. This will aid in explaining and predicting abnormal runoff and groundwater responses under extreme 
climate conditions [218,219].  

Developing Dynamic Modules for Crop Growth and Irrigation Management: Future models should not only 
represent natural processes but also integrate crop water demand curves, root distribution, and tillage disturbances to 
form a unified framework of “crop–irrigation–freeze–thaw”. For instance, the VIC–CropSyst model coupling irrigation 
scheduling with crop growth states can enhance model applicability in agricultural decision-making [55,220].  

Promoting Multi-Scale Observation and Model Validation: Conducting detailed field-scale observations, 
combined with remote sensing, big data, and groundwater monitoring, enables cross-scale integration from point to area. 
Hybrid models based on physical–data fusion (e.g., physics-constrained LSTM, data-driven Richards equation surrogate 
models) are expected to improve efficiency and accuracy in large-scale applications while maintaining physical 
consistency [221–224].  

Fourth, strengthen integrated studies on water–carbon–ecology processes. Future research should not be limited to 
“water use efficiency” but should be expanded to include “water–carbon trade-offs” and “water–ecology synergies”. 
On the irrigated-area scale, focus should be placed on how irrigation activities influence the flux and redistribution of 
plant-derived carbon (e.g., dissolved organic carbon from root respiration or litter decomposition, and biogenic CO2) 
within the hydrological cycle, and how this regulates carbon-sink potential; on the watershed scale, one needs to assess 
feedback mechanisms from hydrological process changes on wetland carbon budgets and biodiversity. For example, 
although winter irrigation in the Heilongjiang irrigation districts improves spring soil moisture, it may—via runoff or 
infiltration—carry plant-derived dissolved organic carbon into water bodies, thereby affecting regional fields [225–227]. 

Addressing Climate Change and Extreme Event Uncertainty: Climate warming reduces freezing depth and shortens 
freeze–thaw cycles, leading to alternating extreme droughts and heavy rains, thereby requiring future irrigation district 
management to be more adaptable. Dynamic early warning systems based on simulation–observation integration can 
support differentiated irrigation strategies, such as focusing on the impact of winter irrigation on water table elevation in 
shallow groundwater areas and reducing water–carbon loss through precision irrigation in deep groundwater areas [24,195].  

In summary, hydrological research in cold-region irrigation districts is transitioning from “hydrological process 
analysis” to a new stage of “water–carbon–ecosystem integrated assessment”. Only through the joint advancement of 
mechanism deepening, model enhancement, and interdisciplinary integration can coordinated and sustainable 
development of agriculture, water resource utilization, and ecological security in cold regions be achieved under the 
backdrop of intensified climate change and extreme events [135,228,229]. 
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Appendix A 

Table A1. Summary of All Climate Datasets and Statistical Characteristics Used in This Review. 

No. Dataset Name Data Source Variables Time Range 
Missing 

Value Ratio 

Zero Value 

Ratio 

Primary Statistics 

(Mean/SD/Skewness/

Kurtosis) 

Double-Period Statistics 

(Annual/Monthly) 

Cross-Correlation with 

Temperature/Precipitation 
Download Link 

1 

Global Land 

Surface 

Temperature 

(Global Mean) 

NOAA 

GlobalTemp 

v5 

Monthly 

temperature 

anomaly (°C) 

2000–2025 <0.1% 0% 0.82/0.19/–0.12/3.11 
Annual amplitude: ~0.21 °C; 

Monthly SD: 0.18 °C 

Weak negative r ≈ −0.20 to 

−0.35 (vs. precipitation; lag 0–1 

month) 

https://www.ncei.noaa.

gov/products/land-

based-temperature 

(accessed on 23 

November 2025). 

2 

Global Land 

Precipitation 

(GPCC v2023) 

GPCC 

Monthly 

precipitation 

(mm) 

2000–2025 0.5–1.2% 
3–7% (arid 

regions) 
78.5/41.3/1.81/5.92 

Annual amplitude: 24.6 mm; 

strongly monsoon-driven 

Weak negative r ≈−0.25 to −0.45 

(vs. temperature; lag 0–1 month) 

https://opendata.dwd.d

e/climate_environment

/GPCC/html/download

_gate.html (accessed 

on 23 November 

2025). 

3 
Reanalysis 2 m 

Air Temperature 
ERA5 

2 m temperature 

(°C) 
2000–2025 <0.01% 0% 12.3/13.6/0.29/2.87 

Diurnal amplitude: 7–14 °C; 

Seasonal amplitude: 20–

25 °C 

r ≈−0.15 to −0.30 (vs. 

precipitation; region-dependent) 

https://cds.climate.cop

ernicus.eu (accessed 

on 23 November 

2025). 

4 

Extreme 

Temperature 

Indicators 

(Heatwaves) 

ERA5/WMO 
Tx, heatwave 

days 
2000–2025 <0.01% 0% Tx: 21.1/8.2/0.71/4.62 

Annual cycle explains >90% 

of variance 

Positive r ≈ 0.40 to 0.60 (Temp 

vs. TXx) 

https://cds.climate.cop

ernicus.eu (accessed 

on 23 November 

2025). 

5 

High-

latitude/Arctic 

Climate Indicators 

ERA5/WMO 
Temperature, 

precipitation 
2000–2025 <0.01% 0% 

Arctic warming rate: 

+0.74°C/decade 

Strong seasonal contrast; 

summer precipitation 

increases 

r ≈ –0.30 to −0.55 (Temp vs. 

Precip) 

https://public.wmo.int 

(accessed on 23 

November 2025). 

6 

CMIP6 Multi-

Model Ensemble 

(Scenario 

Comparison) 

CMIP6 

Temperature, 

precipitation, 

extremes 

2000–2025 

(historical 

segment) 

Model-

dependent 
N/A 

Multi-model ensemble 

statistics 

Used for inter-model 

consistency only 

N/A (not suitable for single-

series correlation) 

https://esgf-

node.llnl.gov/projects/

cmip6 (accessed on 23 

November 2025). 
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7 

Global Land 

Station Data 

(GHCN-Daily) 

NOAA 
TMAX, TMIN, 

precipitation 
2000–2025 0.5–5% 0–2% 

TMAX often right-

skewed; precipitation 

strongly skewed 

Strong seasonality; region-

dependent 

r ≈−0.10 to −0.30 (TMAX vs. 

precipitation) 

https://www.ncei.noaa.

gov/products/land-

based-station-data 

(accessed on 23 

November 2025). 
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