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ABSTRACT: Through the use of prebiotics and probiotics, fermented foods offer significant health benefits by enhancing host 
nutrition and microbiota composition while providing distinctive flavor profiles. Fermentation substantially alters the bioactive 
compounds in these foods compared to their natural state. Additionally, fermented foods contain probiotics that can modulate 
consumers’ gut microbiomes, which in turn regulate host biochemistry to help combat various metabolic diseases. Metabolic 
dysfunction-associated steatotic liver disease (MASLD) represents a growing global health burden. Gut microbiome dysbiosis, 
combined with unbalanced nutritional intake, is considered a primary driver of disease pathogenesis. Fermented foods can modify 
the bioavailability of micronutrients—including carbohydrates, polyphenols, and vitamins—thereby influencing host metabolism. 
Moreover, the probiotics present in fermented foods, along with their modulatory effects on the gut microbiota, contribute to both 
the management and prevention of MASLD. Modern fermentation approaches, leveraging synthetic biology, systems biology, and 
metabolic engineering, can further maximize these health benefits. This review summarizes the components, bioactive compounds, 
and mechanistic pathways by which fermented foods influence the pathogenesis of MASLD, and highlights the potential 
applications of modern fermentation technologies to enhance their health-promoting properties. 
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1. Introduction 

Fermented foods have historically played a central role in culinary traditions worldwide. Initially developed as a 
method for long-term food preservation, these foods have undergone continuous refinement, acquiring distinctive 
flavors and textures through microbial fermentation processes [1]. Such characteristics have contributed to their 
widespread popularity and recognition across diverse cultural contexts. Based on their primary raw materials, fermented 
foods can be broadly classified into fermented dairy products, vegetables, grains, legumes, and beverages. 

Studies on the spontaneous fermentation of foods using naturally occurring microbial consortiums from the food 
source, including probiotics and bioactive compounds they contain, combined with a deeper understanding of their role 
in regulating the gut microbiome, have led to advancements in certain fermented foods as functional foods with tangible 
health benefits [2]. Advances in synthetic biology have pushed the field of functional foods via engineering and 
modification of fermentation strains, such as lactic acid bacteria (LAB), Bacillus, and other probiotics, alongside 
improvements in fermentation processes, further enhancing the functional properties of these foods, thereby reinforcing 
their role in promoting health and supporting dietary interventions [3]. 

Naturally occurring microbes found on the surface of raw products often help in the spontaneous fermentation of 
these functional foods, imbuing these foods with health-benefiting properties. The main players that provide these 
health-benefiting properties are probiotics and prebiotics. Microbes are considered probiotics owing to the health-
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benefiting properties they confer to consumers by regulating intestinal flora, enhancing intestinal barrier function, and 
modulating immune responses [4]. Additionally, probiotics must survive the harsh environment of the gastrointestinal 
tract and do not naturally assimilate into the host microbiota [4]. Prebiotics, in contrast, are dietary compounds that 
resist digestion by the human host, typically in the form of indigestible fibers, which serve as substrates for probiotics 
in the gut, promoting their growth and activity and leading to the production of beneficial bioactive compounds [4]. The 
synergistic effect of probiotics and prebiotics, referred to as symbiotic, fosters a favorable intestinal environment 
increasingly recognized as crucial for metabolic health [4]. The emergence of engineered probiotics aims to deliver 
targeted health benefits beyond those provided by natural strains, offering new therapeutic functions and opening 
avenues for dietary and medical interventions. 

Studies have linked the gut microbiome to the pathogenesis of various metabolic disorders, including metabolic 
dysfunction-associated steatotic liver disease (MASLD) and its progression to metabolic dysfunction-associated 
steatohepatitis (MASH) [5]. Numerous studies have linked MASLD incidences to changes in dietary patterns within 
communities, especially in East Asian communities adapting Western dietary habits [6]. Dietary intervention remains 
the cornerstone for managing MASLD progression, even with FDA-approved medications available [7,8]. Strategies 
such as modulating the intestinal environment and metabolism via probiotics, limiting carbohydrate intake, and 
increasing consumption of bioactive substances, including short-chain fatty acids (SCFAs) and polyphenols, are 
considered effective in mitigating MASLD risk [9]. Engineered probiotics and next-generation fermented foods may 
further strengthen the efficacy of dietary interventions. 

This review provides a comprehensive overview of the impact of fermented foods on MASLD, emphasizing the 
health benefits conferred by probiotics and bioactive compounds. It discusses the nutritional composition, bioactive 
constituents, and the mechanisms through which probiotics influence liver metabolic processes and the intestinal 
microenvironment. Drawing upon this body of evidence, the review highlights current dietary strategies as practical 
approaches to improving liver health and metabolic outcomes, while offering a forward-looking perspective on the role 
of engineered probiotics and next-generation fermented foods in MASLD dietary management. 

2. The Role of Fermented Foods in Preventing MASLD Pathogenesis 

Currently, dietary habits, gut microbiome imbalance, and leaky gut are considered the predominant causes of 
MASLD, where MASLD patients manage the disease via lifestyle changes and dietary interventions [5,9]. Dietary 
habits that contribute to MASLD progression include overconsumption of calories, saturated fats, sodium, added sugars, 
and alcohol [5]. 

Historically, the dietary cultures are shaped by the available crops that grow readily in the region. The nutritional 
content of different foods varies, giving rise to different results in fermented foods and their attributed health-benefiting 
properties. Furthermore, the fermentation process itself can significantly alter the nutritional composition of fermented 
foods compared to the raw materials. For example, sauerkraut has a lower protein content than fermented soy products 
[10,11]. These fermentative bacteria use nutrients in the food to produce metabolites that improve the nutritional value or 
flavor profile of the food [2]. For instance, LAB fermentation of milk consumes basic sugars to produce lactic acid, calcium 
with better bioavailability, conjugated linoleic acids, and fat-soluble vitamins that are useful to the host body [12]. 

The fermentation of foods may play a pivotal role in reducing the risk of developing MASLD by altering the 
nutritional values of foods and providing consumers with better access to health-benefiting metabolites (Figure 1). 
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Figure 1. Regulatory role of fermented foods in the management of MASLD. Dietary intervention with fermented foods exerts 
regulatory effects on metabolic-associated steatotic liver disease (MASLD). Rich in prebiotics and probiotics, fermented foods 
modulate the complex metabolic networks underlying hepatic steatosis, inflammation, and fibrosis, thereby contributing to both the 
prevention and management of MASLD. AMPK, AMP-activated protein kinase; CGA, chlorogenic acid; ChREBP, carbohydrate 
response element-binding protein; Col1A1, collagen type I alpha 1 chain; DNL, de novo lipogenesis; IL-6, Interleukin-6; LPS, 
lipopolysaccharide; MASLD, Metabolic dysfunction-associated steatotic liver disease; NF-κB, nuclear factor-kappaB; Nrf2, 
nuclear factor erythroid 2-related factor 2; PAMPs, pathogen-associated molecular patterns; PPAR-α, peroxisome proliferator-
activated receptor α; SFAs, saturated fatty acids; SCFAs, short-chain fatty acids; SREBP-1c, Sterol regulatory element-binding 
protein-1c; TFA, trans fatty acids; TGF-β, Transforming growth factor-β; TLR4, toll-like receptor 4; UFAs, unsaturated fatty acids. 

2.1. Causes of MASLD: Disorders of Fat Metabolism and Inflammatory Pathways 

MASLD is a metabolic disease caused by multiple cumulative disorders of liver lipid metabolism, liver 
inflammatory pathways, and complex crosstalk between multiple related pathways [13]. The liver is an important organ 
for lipid metabolism, where approximately 25% of the systemic fatty acids are sequestered in the liver [14]. De novo 
lipogenesis (DNL), which also takes place in adipose and hepatic tissues, is an important biological process that 
produces endogenous triglycerides (TG) from dietary substrates, where unregulated processes can lead to excessive 
fatty acid metabolic pressure [15]. Upon breaching the upper threshold of fat metabolic pressure, lipotoxicity occurs, 
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resulting in a series of downstream reactions such as endoplasmic reticulum stress, mitochondrial dysfunction, and 
oxidative stress, leading to cell apoptosis, inflammatory response, and exacerbated liver cell damage. Reactive oxygen 
species (ROS) and lipotoxicity can also activate the c-Jun N-terminal kinase (JNK) pathway, increase the level of 
inflammatory factors, and induce insulin resistance, further aggravating fat accumulation. 

Perturbations in the gut-liver axis and impaired intestinal barrier function (i.e., leaky gut) can allow bacteria and 
their metabolites, such as lipopolysaccharide (LPS), to enter the hepatic portal vein, activating pathogen-associated 
molecular patterns (PAMPs) and releasing inflammatory mediators through the toll-like receptor 4 (TLR4) myeloid 
differentiation factor 88 (MYD88) nuclear factor-kappaB (NF-κB) pathway [14,16]. PAMPs and damage-associated 
molecular patterns (DAMPs) can also activate the NOD-like receptor family pyrin domain containing 3 (NLRP3) 
inflammasome pathway, which in turn enhances IL-1β and IL-18 levels through caspase-1, amplifying the immune 
response [17]. Overall, the inflammation in MASLD is the result of a multifactorial and multi-pathway interaction, 
including lipotoxicity-induced oxidative stress, gut-derived inflammatory stimulation, stress kinase activation, and the 
involvement of the NLRP3 inflammasome [18]. 

Notably, interventions with probiotics and prebiotics have been shown to ameliorate these deleterious processes. 
Probiotics can competitively inhibit colonization of pathogenic bacteria, upregulate the expression of tight junction 
proteins (including claudin, occludin, and zonula occludens-1), and enhance mucin secretion, thereby strengthening 
intestinal barrier integrity [19,20]. Prebiotics selectively stimulate the proliferation and metabolic activity of beneficial 
gut microbiota, leading to increased production of SCFAs such as acetate, propionate, and butyrate [21]. These SCFAs 
serve as an energy source for intestinal epithelial cells, modulate local immune responses, and, upon translocation to 
the liver via the portal circulation, regulate hepatic lipid metabolism and suppress inflammatory signaling [22]. 
Collectively, probiotics and prebiotics reduce the translocation of microbial products such as LPS, attenuate the 
activation of TLR4–MYD88–NF-κB and NLRP3 inflammasome pathways, and modulate gut–liver immune crosstalk, 
thereby exerting protective effects against the progression of MASLD [23]. 

2.2. Food Nutrients and the Regulatory Effects on MASLD 

The nutritional content of fermented foods may regulate MASLD through two main approaches. First, their unique 
nutritional and bioactive components regulate liver fat metabolism and inflammatory responses. Second, consuming 
fermented foods can significantly improve consumers’ gut microbiome, which also plays a significant role in regulating 
MASLD [24]. This section will comprehensively elaborate on the nutritional and bioactive components of fermented 
foods along with relevant clinical or preclinical studies on MASLD patients (Table 1). 

2.2.1. Fatty Acids 

Fatty acids involved in lipid metabolism can be categorized into saturated fatty acids (SFAs), unsaturated fatty 
acids (UFAs), and trans fatty acids (TFAs). During the fermentation of dairy products, lipases secreted by LAB can 
hydrolyze lipids, releasing free fatty acids and thereby increasing the levels of both SFAs and UFAs. Certain LAB are 
also capable of synthesizing unsaturated fatty acids, such as conjugated linoleic acid, during fermentation [25,26]. 
Moreover, SFAs can be metabolized by probiotic bacteria into SCFAs, including acetate and butyrate. From a 
pathophysiological perspective, SFAs are known to promote the development of metabolic dysfunction-associated 
steatotic liver disease (MASLD) by serving as substrates for DNL and significantly contributing to hepatic triglyceride 
accumulation [27]. Working synergistically with SFAs, TFAs have a stimulatory effect on MASLD. In contrast, UFAs 
have been shown to alleviate MASLD [27]. 

Dietary SFAs are primarily palmitic acid and stearic acid. Palmitic acid is a substrate for DNL, which ultimately 
leads to TG accumulation and can contribute to the pathogenesis of MASLD [15]. Excessive intake of SFAs can lead 
to endoplasmic reticulum stress, mitochondrial dysfunction, and oxidative stress, leading to hepatocyte apoptosis [28]. 
SFAs can also exacerbate insulin resistance. Notably, excessive intake of SFAs impairs the absorption of fat-soluble 
vitamins A, D, E, and K, which are also thought to be involved in the regulation of MASLD [29]. In addition, SFAs 
can activate inflammatory pathways related to TLR4 signaling, beyond their effects on lipid metabolism [30,31]. TFAs 
exacerbate hepatic steatosis by increasing DNL, impairing beta-oxidation, and promoting inflammation; a diet high in 
TFAs induces features of steatohepatitis [32]. 

UFAs can be divided into monounsaturated fatty acids (MUFAs) and polyunsaturated fatty acids (PUFAs), which 
can alleviate MASLD by regulating lipid metabolism and inflammatory responses [33]. Oleic acid is a MUFA that is 
abundant in olive oil, which can reduce the severity of MASLD and is a key component of the Mediterranean diet [34]. 
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MUFAs affect signaling pathways by replacing SFAs in cell membranes, thereby improving insulin sensitivity and lipid 
profiles. PUFAs include omega-6 and omega-3 fatty acids. Omega-3 fatty acids include eicosapentaenoic acid (EPA) 
and docosahexaenoic acid (DHA), which can inhibit sterol regulatory element-binding protein-1c (SREBP-1c) by 
activating peroxisome proliferator-activated receptor α (PPARα) and suppress DNL [35]. In mouse models, omega-3 
PUFAs can alleviate high fat diet (HFD)-induced steatosis by stimulating the proliferation and differentiation of 
preadipocytes [36]. PUFAs can also reduce inflammatory responses in MASLD. Linoleic acid, an omega-6 fatty acid, 
can inhibit inflammatory responses by inhibiting the JNK pathway and NF-κB. EPA and DHA mediate anti-
inflammatory effects by activating GPR120 [37]. DHA also alleviates liver inflammation by inhibiting hepatic 
expression of CD14 and TLRs and consequently suppressing NF-κB [38,39]. In addition, DHA reduces the gene and 
protein expression of collagen type I alpha 1 chain (Col1A1) in hepatic stellate cells (HSCs) by attenuating transforming 
growth factor-β (TGF-β) signaling, thereby alleviating liver fibrosis [40]. Therefore, DHA has a better therapeutic effect 
than EPA. However, in clinical practice, the therapeutic effects of EPA and DHA are inconsistent [41–45]. 

2.2.2. Carbohydrates 

Dietary carbohydrates can be categorized into sugars (monosaccharides, disaccharides, and oligosaccharides) and 
dietary fiber. During food fermentation, the composition and concentration of carbohydrates undergo substantial 
alterations, largely determined by the metabolic characteristics of the fermenting microorganisms. In most LAB–
mediated fermentations, sugars are metabolized through glycolytic and heterofermentative pathways to yield lactic acid, 
ethanol, acetic acid, and, in some cases, carbon dioxide. The total dietary fiber content may decline during fermentation, 
primarily due to microbial enzymatic degradation. In legumes, for instance, soluble dietary fiber typically decreases, 
whereas the insoluble fraction remains relatively stable [46]. These fermentable fibers can be further utilized by 
probiotic microorganisms during fermentation process or within the gastrointestinal tract, leading to the production of 
SCFAs that exert beneficial effects on host metabolism and gut health. The monosaccharides fructose and glucose play 
a key role in the progression of MASLD [15]. Excessive intake of these sugars can lead to hepatic steatosis, insulin 
resistance, and systemic inflammation. 

While both glucose and fructose can increase DNL levels, their mechanisms are different. Glucose stimulates 
hepatic DNL primarily by enhancing carbohydrate response element-binding protein (ChREBP) and SREBP-1c [47,48]. 
High blood glucose levels are associated with insulin resistance, which in turn maintains the sensitivity of the SREBP-
1c pathway, leading to elevated SREBP-1c levels. DNL may produce diacylglycerol and ceramides, which promote 
insulin resistance, thereby creating a positive feedback loop and further exacerbating disease progression [49,50]. 
Fructose primarily activates ChREBP, but can also induce SREBP-1c activation in an insulin-dependent or -independent 
manner, or enhance DNL through the liver X receptor (LXR) and PGC-1β pathways involved in TG metabolism [51–
53]. In addition, excess fructose is metabolized to acetate by gut microbes in the small intestine, which is then converted 
to acetyl-CoA by ACSS2 and enters the TG production pathway of DNL as a new, independent substrate [54]. Therefore, 
the lipogenic effect of fructose is considered to be stronger than that of glucose. 

Various studies have been conducted to validate that excessive sugar intake exacerbates inflammatory responses. 
Murine models fed fructose showed TLR4 signaling activation, leading to inflammatory responses via increased 
expression of the inflammatory cytokines IL-6 and TNF-α [55,56]. Additionally, excessive fructose intake induces 
oxidative stress caused by both increased lipid metabolic pressure and the production of uric acid from fructose 
metabolism [57]. 

Dietary fiber, typically a non-digestible polysaccharide, is often added to foods as a prebiotic [58]. Gut microbes 
metabolize ingested dietary fiber to produce SCFAs that exert beneficial health effects [59]. Dietary fiber intake can 
improve hepatic fat metabolism, delay blood sugar absorption, reduce insulin spikes, inhibit lipogenesis, and promote 
lipolysis, which are beneficial for reducing fat accumulation in the liver [60]. Studies have shown that intake of total 
fiber, cereal fiber, fruit fiber, and plant fiber is negatively correlated with the risk of non-alcoholic fatty liver disease 
(NAFLD) [61]. Dietary fiber can also improve intestinal barrier integrity and reduce the translocation of inflammatory 
factors [60]. 

2.2.3. Vitamins 

Vitamins are essential micronutrients for human health, as humans cannot synthesize them or their precursors 
endogenously, and must acquire them through dietary intake. The alterations in vitamin content during fermentation are 
complex and depend on microbial activity and substrate composition. In general, fermentation enhances the levels of B 
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vitamins and vitamin K, which are synthesized as metabolic byproducts of fermenting microorganisms. For instance, 
increased concentrations of B vitamins have been observed in yogurt, fermented soy products, and kimchi, while 
vitamin K levels rise notably in natto [62]. In contrast, vitamin C, a water-soluble and chemically unstable compound, 
tends to degrade easily, although it may remain relatively stable during the early stages of vegetable fermentation [63]. 
Overall, fermentation processes generally improve the bioavailability and nutritional value of vitamins [62]. 

In the context of liver health, accumulating evidence indicates a strong association between vitamin deficiencies 
and liver disease. There is a synergistic relationship between vitamins and liver function, reflected by the intricate 
interplay between vitamins and the liver–adipose axis [64]. It was found that liver impairment leads to poor vitamin 
uptake, while vitamin deficiencies were found to worsen hepatic pathology. Corresponding, intestinal absorption of 
vitamins A, D, K, and C is impaired in patients with disrupted bile secretion [65]. While there is evidence supporting 
the vitamins and liver–adipose axis, it remains poorly understood and is currently an emerging area of clinical 
investigation [66]. 

Vitamins regulate hepatic metabolism and influence the progression of liver disease primarily through their effects 
on lipid metabolism. These vitamins include: 

 Vitamins A and K play a complex, reciprocal role in MASLD regulation. Vitamin A prevents lipid accumulation 
in white adipose tissue (WAT) and brown adipose tissue (BAT) [67]. Its metabolite, retinoic acid, exerts therapeutic 
effects in NAFLD by enhancing fatty acid oxidation and activating RAR-mediated thermogenic pathways, 
although these effects are not always liver-specific [68]. Conversely, NAFLD progression increases circulating 
levels of the vitamin A transporter RBP4, leading to chronically elevated vitamin A and impaired mitochondrial 
lipid oxidation [69]. Vitamin K, as a fat-soluble nutrient, is prone to sequestration in excessive adipose tissue, 
resulting in deficiency [64]. Nonetheless, vitamin K may alleviate hepatic steatosis by modulating the AMP-
activated protein kinase (AMPK)/SREBP1/PPARα signaling cascade through GAS6 activation [70]. 

 B vitamins Evidence linking B-vitamins to NAFLD remains limited and occasionally inconsistent [66]. Niacin 
(vitamin B3), as a precursor of NAD and NADPH, modulates lipid metabolism, enhances hepatic redox balance, 
and reduces TG accumulation, although prolonged supplementation may impair insulin sensitivity [71]. Folate 
(vitamin B9) deficiency promotes hyperhomocysteinemia and hepatic lipid deposition, whereas supplementation 
may activate AMPK, thereby mitigating steatosis [72]. Vitamin B12 deficiency interferes with mitochondrial β-
oxidation via disrupted methylmalonyl-CoA metabolism, correlating with increased fibrosis severity [73]. 
Similarly, vitamin B6 deficiency elevates homocysteine levels, inducing endoplasmic reticulum stress and SREBP-
1c–driven lipogenesis [66]. Collectively, these findings highlight the potential metabolic and hepatoprotective roles 
of B-vitamins in NAFLD pathogenesis, though clinical evidence remains inconclusive. 

 Vitamin C reduces circulating and hepatic TG, enhances lipolysis, and decreases microsomal TG transfer protein 
(MTP) levels [74]. In addition, it promotes AMPK phosphorylation, inhibits nuclear translocation of LXR, and 
suppresses DNL [75]. 

 Vitamin D plays a critical role in lipid homeostasis, and its deficiency promotes macrophage infiltration into WAT, 
thereby driving fibrosis and aggravating MASLD [76]. Supplementation with vitamin D has been shown to 
attenuate WAT-associated inflammation and hepatic steatosis [77,78]. 

 Vitamin E exerts robust protective functions in MASLD. Specifically, α-tocopherol inhibits DNL through its 
antioxidant capacity and lipid solubility [79]. Various isoforms of vitamin E also demonstrate synergistic activity 
and may represent therapeutic targets for reducing lipid deposition and inflammation in both adipose tissue and 
liver, in part by suppressing NF-κB signaling and activating PPARα [80]. 

2.2.4. Polyphenols 

Polyphenols constitute a structurally diverse class of plant-derived bioactive compounds with antioxidant, anti-
inflammatory, and metabolic regulatory properties [81]. 

Polyphenols constitute a structurally diverse class of plant-derived bioactive compounds endowed with potent 
antioxidant, anti-inflammatory, and metabolic regulatory activities [81]. In food matrices, phenolic compounds are 
frequently present in conjugated or macromolecular-bound forms, such as complexes with glycosides, cellulose, starch, 
or proteins, which substantially limit their bioaccessibility and bioavailability. During fermentation, microorganisms 
not only engage in the metabolic transformation of substrates but also secrete a wide array of enzymes with specific 
catalytic functions, including tannase, esterase, phenolic acid decarboxylases, and glycosidase [82]. These enzymes 
effectively hydrolyze or depolymerize bound polyphenols, thereby releasing free phenolic acids, flavonoids, and other 
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low-molecular-weight phenolics. Specifically, tannase catalyzes the depolymerization of complex high-molecular-
weight tannins into simpler phenolic acids or catechin derivatives; esterase cleaves ester linkages between 
hydroxycinnamic acid derivatives and macromolecules such as proteins, lignin, or cellulose; phenolic acid 
decarboxylases mediates the redox transformation of hydroxycinnamic acids, modifying their structural and antioxidant 
properties and generating volatile phenolic compounds; while glycosidase hydrolyzes glycosidic bonds between 
polyphenols and sugars, thereby enhancing the bioactivity and bioavailability of flavonoids [82]. Collectively, these 
enzymatic transformations increase the solubility and intestinal absorption of phenolic compounds, thereby augmenting 
the antioxidant, anti-inflammatory, and antimicrobial potential of fermented foods and ultimately improving their 
nutritional and health-promoting properties. 

In the field of MASLD research, curcumin, hesperidin, naringenin, genistein, catechin, and silymarin have 
demonstrated direct therapeutic potential against MASLD [83,84]. Specifically, curcumin reduces liver enzyme levels, 
TG, total cholesterol, and insulin resistance, while attenuating hepatic steatosis, inflammation, and fibrosis through 
modulation of AMPK, nuclear factor erythroid 2-related factor 2 (Nrf2), TGF-β, and IL-6 signaling pathways [85]. 
Silymarin lowers liver enzyme levels and diminishes hepatic lipid accumulation via the FXR pathway [86]. Catechins, 
abundantly present in tea, effectively mitigate TG levels and insulin resistance, where green tea extract-derived 
catechins confer hepatoprotective effects through activation of mitochondrial respiratory chain complexes, SIRT1, and 
AMPK [87–89]. Hesperidin enhances hepatic metabolic function via SIRT1/PGC1α activation, resulting in reductions 
in alanine aminotransferase (ALT) and aspartate transaminase (AST) levels and attenuation of inflammatory markers 
[90,91]. Resveratrol alleviates lipid accumulation and inflammatory responses by upregulating SIRT1 and AMPK, 
although its efficacy varies across studies [92–94]. 

Additionally, polyphenols indirectly modulate MASLD pathogenesis by altering the gut microbiota. Silymarin 
changes microbial composition and reduces liver stiffness through FXR-mediated mechanisms [95,96]. Fermented 
black buckwheat exhibits decreased rutin content, increased total phenolics (quercetin and kaempferol), and elevates 
populations of Lactobacillus, Faecalibaculum, and Allobaculum in murine models [97]. Fu brick tea polyphenol extracts 
ameliorate intestinal oxidative stress and inflammation, reinforce intestinal barrier integrity, and promote gut microbial 
diversity, thereby enhancing Akkermansia muciniphila, Alloprevotella, Bacteroides, and Faecalibaculum [98]. While 
most of these studies did not directly assess overall hepatic health, these studies established that the interplay between 
MASLD and the gut-liver axis suggests that these microbial alterations contribute to hepatic benefits. 

Despite their extensive bioactivities, polyphenols are characterized by limited oral bioavailability and a short 
biological half-life. Polyphenols with lower molecular weight or aglycone forms generally exhibit higher physiological 
activity. Probiotic fermentation enhances the bioactivity of polyphenols by converting high-molecular-weight 
compounds into smaller, more bioactive forms. Consequently, the polyphenol composition of fermented foods differs 
substantially from that of raw materials [82]. For instance, rutin and isoquercetin in fermented black buckwheat, jujubes, 
and sourdough bread are hydrolyzed to quercetin, whereas glycosyl glycosides (daidzin and genistin) in soybeans are 
reduced, with concomitant increases in aglycones (daidzein, glycitein, and genistein) [97,99,100]. These alterations in 
polyphenol composition confer functional advantages, as evidenced by the enhanced antioxidant activity and DNA-
protective properties of fermented soy products [101]. 

2.2.5. Polyamines 

Aliphatic polycations, commonly referred to as polyamines, play a critical role in the pathogenesis of MASLD by 
modulating cellular lipid accumulation, mitochondrial function, and fibrosis progression [102]. Polyamines can be 
synthesized endogenously through intrinsic metabolic pathways or acquired exogenously via the diet, with principal 
sources including whole grains, soy products, mushrooms, and fermented foods. During fermentation, polyamines 
undergo a series of dynamic transformations, encompassing microbial decarboxylation of amino acids—such as 
ornithine conversion to putrescine, lysine to cadaverine, and arginine to spermidine—followed by oxidative 
deamination and interconversion reactions [103]. These processes are tightly regulated by factors including the 
composition of the microbial community, fermentation duration, pH, and redox conditions, which collectively shape 
the polyamine profile of the final product [103]. Furthermore, commensal and probiotic gut microorganisms, including 
Fusobacterium and Bacteroides, are capable of synthesizing polyamines, with spermidine and putrescine concentrations 
in the intestinal lumen of healthy individuals typically ranging from 0.5 to 1 mM [104]. This evidence suggests that 
polyamines derived from both dietary intake and the gut microbiota contribute synergistically to the maintenance of 
host metabolic homeostasis. 
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Among them, spermidine has been the most extensively studied for its relation to MASLD. Preclinical studies 
indicate that spermidine ameliorates hepatic steatosis and inflammation in MASLD models by inducing autophagy and 
activating AMPK [105]. Dietary supplementation with spermidine reduces hepatic lipid accumulation, mitigates liver 
injury, and attenuates fibrosis by suppressing proinflammatory cytokines, including TNF-α and IL-1β [105]. 
Additionally, spermidine regulates lipid metabolism through activation of SIRT1 and inhibition of the mammalian target 
of rapamycin (mTOR), which contributes to improved hepatic insulin sensitivity and decreased oxidative stress [106]. 
Spermine has also been shown to confer hepatoprotective effects in preclinical models. Supplementation can attenuate 
acute liver injury by suppressing proinflammatory responses in liver-resident macrophages via an ATG5-dependent 
autophagy pathway [107]. In addition, spermine enhances liver barrier function, regulates amino acid transporter 
activity, and inhibits apoptosis, further supporting its protective role in hepatic homeostasis [108]. 

Direct clinical evidence regarding the effect of putrescine on MASLD progression is currently lacking. In animal 
models, putrescine supplementation has been shown to exert anti-inflammatory and antioxidant effects by inhibiting 
NF-κB and IL-6 signaling pathways, thereby alleviating hepatic injury [109]. Conversely, other studies have reported 
that elevated endogenous putrescine levels and increased ornithine decarboxylase activity are positively correlated with 
MASLD severity, with higher putrescine concentrations leading to enhanced CK-18 release [109]. 

2.2.6. Caffeine and Chlorogenic Acid 

Caffeine and chlorogenic acid (CGA), commonly present in coffee and tea, have been proposed to exert 
hepatoprotective effects in MASLD. Epidemiological evidence suggests an inverse association between caffeine and 
CGA intake and MASLD progression; however, findings are inconsistent, with some studies reporting contrasting 
results [110–112]. Some of these findings discovered that these compounds modulate hepatic lipid metabolism by 
suppressing DNL and enhancing fatty acid β-oxidation [113–116]. Despite accumulating evidence supporting a 
protective role of caffeine and CGA, the precise molecular mechanisms remain poorly understood. 

Current research on the mechanisms of caffeine and CGA has revealed that caffeine reduces hepatic TG 
accumulation by inhibiting SREBP-1c and ChREBP while upregulating PPARα and CPT1 [113]. It also activates 
AMPK signaling, resulting in decreased hepatic lipid content and improved insulin sensitivity. CGA attenuates hepatic 
steatosis by suppressing lipogenesis and enhancing fatty acid β-oxidation, and activates AMPK signaling, inhibits 
SREBP-1c and LXRα, thus reducing hepatic TG levels [117]. Both caffeine and CGA mitigate inflammation and 
fibrotic pathways through modulation of IL-6/STAT3 signaling [118]. Furthermore, CGA has been shown to slow 
fibrosis via the TGF-β1/Smad7 pathway [119]. 

The reported variability in the effects of caffeine and CGA on MASLD may stem from differences in experimental 
models, dosage, treatment duration, age, and sex of subjects [120]. Accordingly, further studies are warranted to elucidate 
the parameters and limitations of using caffeine and CGA to regulate MASLD and MASH pathogenesis and progression. 

2.2.7. Probiotics and Microorganisms 

The role of microorganisms in food fermentation relies heavily on their interaction with other microbes and the 
nutritional composition of the foods. While most microbes would not survive gastrointestinal passage, the metabolic 
products from the fermentation process and probiotic microbes within the fermentation communities exert their 
influence on MASLD pathogenesis. Studies of intestinal microbiota indicate that some bacterial populations may have 
complex or even detrimental effects on MASLD progression. 

Evidence indicates that gut microbiota composition changes progressively across MASLD and MASH stages [121]. 
At the phylum level, Bacteroidetes are consistently reduced, whereas Firmicutes and Proteobacteria are expanded [121]. 
At the family level, Enterobacteriaceae are enriched, while Rikenellaceae and Ruminococcaceae are depleted [121]. 
At the genus level, Escherichia, Dorea, and Peptoniphilus are increased, whereas Anaerosporobacter, Coprococcus, 
Eubacterium, Faecalibacterium, and Prevotella are reduced [121]. These shifts indicate a dysbiotic microbial 
community favoring pro-inflammatory and endotoxin-producing taxa [121,122]. 
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Table 1. Impact of dietary nutrients and bioactive compounds on MASLD metabolism. 

Category Effect on MASLD Metabolism References 
Fatty Acids   

SFAs DNL↑, insulin resistance↑, inflammation↑ [28–31] 

TFAs DNL↑, beta-oxidation↓, inflammation↑; hepatic steatosis↑ [32] 
MUFAs Insulin sensitivity↑, reduce the severity of MASLD [33,34] 

PUFAs 
EPA: DNL↓, inflammation↓ 

[35–45] 
DHA: DNL↓, inflammation↓, fibrosis↓ 

Carbohydrates   

Fructose DNL↑, insulin resistance↑, inflammation↑ [47,48,51–53] 
Glucose DNL↑, insulin resistance↑ [47–50] 

Dietary fiber Lipogenesis↓, lipolysis↑, improve gut barrier [58–60] 
Vitamins   

Vitamin A Fatty acid oxidation↑, prevents lipid accumulation in adipose [67–69] 
Vitamin K Hepatic steatosis↓ [70] 

Vitamin B 
Modulates lipid metabolism, TG↓, hepatic steatosis↓ 

[66,71–73] 
Vitamin B12 deficiency: fibrosis↑; Vitamin B6 deficiency: Lipogenesis↑ 

Vitamin C TG↓, lipolysis↑, DNL↓. [74,75] 

Vitamin D 
Deficiency: macrophage infiltration in WAT↑, fibrosis↑; 

[76–78] 
Supplementation: inflammation↓, hepatic steatosis↓ 

Vitamin E DNL↓, lipid deposition↓, inflammation↓, [79,80] 
Polyphenols   

Curcumin Hepatic steatosis↓, inflammation↓, fibrosis↓ [85] 
Silymarin Lipid accumulation↓ [86] 
Catechins TG↓, insulin resistance↓ [87–89] 
Hesperidin Inflammation↓ [90,91] 
Resveratrol Lipid accumulation↓, inflammation↓ [92–94] 

Polyamines   

Spermidine Lipid accumulation↓, Hepatic steatosis↓, inflammation↓, fibrosis↓ [105,106] 
Spermine Inflammation↓ [107,108] 
Putrescine Inflammation↓ [109] 

Others   

Caffeine TG↓, insulin sensitivity↑, inflammation↓, fibrosis↓. [113,118] 
CGA Lipogenesis↓, fatty acid β-oxidation↑, inflammation↓, fibrosis↓ [117–119] 

Probiotics Hepatic steatosis↓, inflammation↓, improve gut barrier [121–136] 

SFAs: saturated fatty acids, TFAs: trans fatty acids, MUFAs: monounsaturated fatty acids, PUFAs: polyunsaturated fatty acids, 
CGA: chlorogenic acid, MASLD: metabolic dysfunction-associated steatotic liver disease, DNL: De novo lipogenesis, TG: 
triglyceride, EPA: eicosapentaenoic acid, DHA: docosahexaenoic acid, WAT: white adipose tissue. (↑: upregulated metabolic 
processes or accumulation of metabolites; ↓: downregulated metabolic processes or depletion of metabolites). 

A key functional consequence of these changes is the altered production of SCFAs, which are critical for 
maintaining intestinal epithelial integrity, stimulating mucus secretion, and preventing bacterial translocation [123]. 
Specifically, Bacteroides are primary producers of acetate, while Firmicutes predominantly generate butyrate [124]. 
Reduced butyrate availability is associated with impaired barrier function and enhanced inflammatory signaling along 
the gut-liver axis [125]. 

Given these insights, probiotic interventions have been explored to restore microbial balance and mitigate liver 
injury. In mouse models of hepatic steatosis, four-week probiotic administration significantly reduced liver fat 
accumulation [126]. Multiple strains, including Lactobacillus casei, L. rhamnosus, L. bulgaricus, Bifidobacterium 
longum, and Streptococcus thermophilus, have demonstrated anti-inflammatory effects in the liver [127]. Long-term 
supplementation with B. longum combined with fructo-oligosaccharides (FOS) and lifestyle interventions significantly 
reduced TNF-α, C-reactive protein (CRP), AST, homeostasis model assessment of insulin resistance (HOMA-IR), and 
serum endotoxin levels, while improving hepatic steatosis and the MASH activity index [128]. In other models, 
Faecalibacterium prausnitzii supplementation restored intestinal barrier integrity, and four-week supplementation with 
Lactobacillus acidophilus NCFM® improved insulin sensitivity via reductions in LPS levels, modulation of TLR 
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signaling, and cytokine regulation [129,130]. Experiments with MIYAIRI 588, a butyrate-producing probiotic, in 
NAFLD rat models also demonstrated reductions in hepatic TG accumulation, insulin resistance, serum endotoxin levels, 
and markers of liver inflammation [131]. 

Nonetheless, the clinical efficacy of probiotics remains controversial. While some trials suggest that combinations 
of Lactobacillus, Bifidobacterium, and Streptococcus are most effective, other studies have failed to replicate these 
findings [127,132]. Variations in probiotic formulations, dosage, treatment duration, and patient populations contribute 
to inconsistent outcomes. 

Overall, probiotic supplementation represents a promising adjunctive therapy for MASLD/MASH, yet well-
designed randomized controlled trials are required to determine optimal strains, combinations, and treatment regimens. 
Engineered probiotics have the potential to enhance the viability and therapeutic potential of beneficial strains. Next-
generation fermented foods can more effectively control microbial composition, thereby improving their impact on 
MASLD management. 

2.2.8. Engineered Probiotics 

Probiotics, including Lactobacillus and Bifidobacterium, have been shown to improve liver function parameters, 
attenuate hepatic steatosis, and modulate glucose, insulin, and lipid profiles in MASLD [133]. Engineered strains have 
emerged as novel therapeutic strategies beyond conventional probiotics. 

Preclinical studies demonstrate that IL-22, an IL-10 cytokine family member, delivered via engineered 
Lactobacillus reuteri, induces localized expression of the antimicrobial protein regenerating islet-derived 3-gamma 
(Reg3γ), effectively reducing bacterial translocation and mitigating ethanol-induced liver injury, steatosis, and 
inflammation [134]. 

Similarly, glucagon-like peptide-1 (GLP-1) delivered through engineered Escherichia coli Nissle 1917 or 
Lactobacillus gasseri enhances insulin secretion, decreases body weight, improves lipid profiles, and ameliorates liver 
biochemistry and histopathology [135,136]. These findings underscore the therapeutic potential of both conventional 
and engineered probiotics in MASLD. 

2.3. The Impact of Fermented Foods on MASLD 

Fermented foods confer multiple benefits for liver health. Firstly, microbial fermentation substantially increases the 
levels of bioactive metabolites within these foods. Secondly, certain nutrients such as fructose and glucose, which may be 
detrimental in MASLD, can serve as metabolic substrates for microbial growth and are converted into beneficial bioactive 
compounds, including PUFAs. Additionally, the fermentation process often breaks down large molecules into smaller, 
more bioavailable forms, such as polyphenols [82]. Enhanced bioavailability of polyphenols following microbial 
fermentation contributes to their health-promoting effects. Moreover, consumption of fermented foods frequently 
modulates the intestinal microbiome, and probiotics, such as LAB, are commonly incorporated into these products. 

2.3.1. Fermented Dairy Products 

Fermented dairy products—including yogurt, kefir, and cheese—are widely consumed, available in diverse forms, 
and have been extensively investigated as potential interventions for the management of MASLD [137–139]. Notably, 
kefir, a fermented dairy beverage containing diverse probiotics and yeasts, has been shown to reduce hepatic lipid 
accumulation, lower serum ALT levels, and attenuate inflammatory responses in preclinical MASLD models [140]. 
Another study further suggested that regular consumption of fermented dairy products improves insulin resistance and 
lipid profiles, thereby exerting protective effects [139]. The underlying mechanisms include bioactive peptides and 
SCFAs generated during LAB fermentation [141]. 
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2.3.2. Fermented Legume Products 

Fermented soy products are regarded as having numerous health benefits [142]. Fermentation enhances the 
bioavailability of key bioactive compounds, such as SCFAs, polyphenols, and antioxidant peptides, thereby improving 
their physiological effects [143,144]. Common fermented soy products, including natto, miso, and tempeh, have 
demonstrated benefits in the prevention and management of MASLD [145–147]. Evidence from animal studies 
indicates that miso and natto can attenuate hepatic steatosis and inflammation, primarily through modulation of the gut 
microbiota [147]. Although large-scale randomized controlled trials remain limited, current findings suggest that 
fermented soy products represent a promising dietary strategy for MASLD management [142]. 

2.3.3. Fermented Plant-Based Beverages 

Fermented beverages constitute another important category of fermented foods. While many fermented beverages 
traditionally contain alcohol, such as beer and red wine, a wide range of non-alcoholic alternatives—including 
fermented juices and teas—are also widely consumed. Although research in this area remains limited, existing studies 
indicate that fermented juices may exert protective effects against liver disease [148,149]. 

The effects of alcoholic fermented beverages, such as wine and beer, on MASLD remain inconclusive. Because 
excessive alcohol intake is a well-established cause of alcoholic liver disease, most studies investigating this topic are 
confined to moderate consumption levels (≤30 g/day for men and ≤20 g/day for women) [150]. Beer contains a variety 
of bioactive compounds, including polyphenols such as xanthohumol, isoxanthohumol, and phenolic acids, as well as 
bitter and α-acid derivatives derived from hops (humulones, lupulones, and isohumulones) [151]. Wine, in contrast, is 
particularly rich in polyphenolic constituents, comprising stilbenes (e.g., resveratrol), phenolic acids, and flavonoids 
(including flavan-3-ols, anthocyanins, and quercetin) [151]. These compounds have been reported to exert antioxidant, 
anti-inflammatory, and lipid metabolism–modulating effects. Nevertheless, it remains uncertain whether such bioactive 
components can counteract the hepatotoxic effects of alcohol itself [151]. Overall, the influence of alcohol consumption 
on MASLD is still controversial: the available evidence is limited, and findings across studies are inconsistent with 
respect to the significance and direction of this association [152]. 

Among non-alcoholic beverages, kombucha, a fermented tea that has gained global popularity, is notable for its 
abundance of polyphenols, organic acids, and water-soluble vitamins, as well as its documented antioxidant and anti-
inflammatory properties [153]. Evidence from murine models demonstrates that kombucha supplementation reduces 
hepatic steatosis, lowers TG levels, and decreases markers of liver injury [154]. Moreover, kombucha has been shown 
to modulate the gut microbiota, thereby potentially alleviating inflammatory stress along the gut-liver axis [155]. 
Collectively, these findings suggest that kombucha represents a promising adjunct to dietary interventions for the 
management of MASLD. 

3. Applications and Technologies of Engineered Fermentative Bacteria 

With the advancement of the modern food industry, fermentation technology has evolved significantly. Progress 
spans from the selection and breeding of fermentative strains to their modification through genetic techniques and 
metabolic engineering; from naturally occurring multi-strain fermentations to single-strain fermentations for controlled 
quality; and to co-culture fermentations designed to enhance flavor and nutritional value [156]. The development of 
food fermentation is closely intertwined with advances in modern biotechnology, with contemporary fermentation 
emphasizing not only flavor and texture but also functionality and process controllability [157]. Figure 2 highlights the 
principal technological innovations that drive contemporary advances in fermentation. 
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Figure 2. Conceptual framework of modern fermentation. 

3.1. Comparison of Traditional and Modern Fermentation 

Traditional fermentation relies on natural bacterial flora or empirically selected strains, often resulting in 
substantial batch-to-batch variability and low process stability [158]. In contrast, modern fermentation typically 
employs standardized or engineered strains, allowing controlled fermentation through single-strain or co-culture 
approaches. The application of metabolically engineered strains of LAB, Bacillus, and yeast can increase yields of target 
metabolites, reduce undesirable byproducts, and inhibit the growth of harmful microorganisms [159,160]. 

Traditional methods of improving the fermentation process involve isolating strains that have undergone directed 
evolution over many iterations of fermentation [161]. This process can be observed in historically documented instances 
of starter cultures that have been maintained by selective brewers and fermentation experts, where certain starter cultures 
used in fermentation confer improved flavor profiles, color, aroma, and health-benefiting properties. This selection 
process represents the domestication of strains that have been conditioned to use a particular nutrient source over many 
generations of fermentation, allowing the microbial community to enhance their selected characteristics. These selected 
characteristics are often the result of genetic enhancements within the microbe, selected by evolutionary pressure to 
gain an advantage over other microbial counterparts. An overall comparative overview of the distinguishing features of 
traditional versus modern fermentation is presented in Table 2. 

Table 2. Comparison between traditional and modern fermentation. 

Feature Traditional Fermentation Modern Fermentation 

Strain type 
Natural microbial communities or 
empirically selected strains 

Standardized or engineered strains (e.g., LAB, Bacillus, yeast) 

Process control 
Difficult to control, dependent on natural 
selection/experience 

Highly controllable, employing single strains or co-culture 
methods 

Process stability 
Low, often leading to large batch-to-batch 
variability 

High, with predictable and standardized outcomes 

Product 
optimization 

Directed evolution through multiple 
fermentation cycles (time-consuming) 

Genetic technologies and metabolic engineering (rapid and 
efficient) 

Main advantages 
Development of unique flavors, colors, and 
textures 

Increased yield of target metabolites, reduced undesirable 
byproducts, and inhibition of harmful microorganisms 

Technical basis 
Accumulated empirical knowledge, strain 
domestication 

Modern biotechnologies (e.g., CRISPR, metabolic engineering, 
synthetic biology) 
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3.2. Applications of Engineered Bacteria in Fermentation 

Engineered strains are increasingly used to produce a variety of bioactive compounds to address unmet nutritional 
needs. PUFAs, for example, are natural products that are difficult to synthesize chemically [162]. Researchers have 
developed microbial production platforms, using prokaryotic and eukaryotic organisms with polyketide synthase (PKS) 
pathways, to synthesize DHA and EPA. Marine bacteria such as Colwellia psychrerythraea, Moritella marina, and 
Shewanella pneumatophori serve as microbial hosts for PKS-mediated PUFA biosynthesis [163–166]. The selection of 
these microbial chassis for engineering stems from the native ability of the microbe to generate sufficient CoA 
precursors needed to power the PKS catalysis. Biosynthesized DHA and EPA are now utilized as functional food 
additives [167]. 

LAB and Bacillus amyloliquefaciens are mature biological platforms suitable for engineering as fermentation 
strains [168]. CRISPR-based genetic toolkits enable rapid gene knockout and integration of functional genes in B. 
amyloliquefaciens, thereby enhancing its utility in food applications [169]. For instance, metabolic engineering has 
increased γ-poly glutamic acid (γ-PGA) production in fermented corn [170]. B. amyloliquefaciens also exhibits 
probiotic properties; feeding B. amyloliquefaciens strain SC06 to mice on a high-fat diet reduced fat accumulation, 
improved insulin sensitivity, and attenuated liver inflammation, along with decreased levels of inflammatory markers 
such as IL-6 and TNF-α [171]. Engineered LAB fermentation in dairy products has been used to enhance conjugated 
linoleic acid production, contributing to the mitigation of MASLD progression [172]. 

Similarly, CRISPR-based genetic engineering has been used extensively to remove competing pathways within 
microbial cells to enhance the production of targeted therapeutics and value-added chemicals within fermented foods 
[173]. Other approaches leverage the use of engineered microbes to ferment ingested unfermented foods within the 
gastrointestinal tract of the host, allowing the preservation of sensitive metabolites that would not otherwise survive the 
gastrointestinal passage [174]. 

3.3. Systems Biology and Synthetic Biology in Fermentation 

Modern fermentation has progressed from traditional methods using natural strains to highly efficient systems that 
integrate molecular biology, metabolic engineering, and synthetic biology. Synthetic biology enables precise design 
and reconstruction of microbial genomes, metabolic pathways, and regulatory networks, rendering fermentation 
processes more controllable, high-yielding, and functional. LAB and B. amyloliquefaciens serve as primary “biological 
chassis” in food fermentation, with gene editing technologies such as CRISPR-Cas facilitating insertion, deletion, or 
regulation of target genes to enhance production of PUFAs, polyphenols, SCFAs, and antioxidant peptides [175,176]. 
For example, by using CRISPR/Cas to reconstruct the expression architecture of the PUFA synthesis gene cluster in 
Yarrowia lipolytica, the researchers significantly increased the production of DHA, proving that precise engineering of 
the PUFA metabolic pathway can indeed increase the output of functional lipids [177]. 

Metabolic pathway optimization is central to modern fermentation. By using in silico prediction and modeling to 
regulate key enzymatic activities, substrate flux, and byproduct formation, engineered strains can achieve a dynamic 
balance between product yield and cell growth [178]. Modular design and controllable co-culture strategies allow different 
strains to specialize in distinct functional modules, achieving metabolic division of labor and enhancing production 
efficiency [179]. For example, in the co-culture system of Aspergillus oryzae and Lactobacillus plantarum, the former is 
mainly responsible for the hydrolysis of starch to release fermentable substrates, while the latter uses these substrates to 
ferment and produce organic acids and increase the content of protein and amino acids [180]. The protein content and 
amino acid improvement effect of the co-culture output are significantly better than those of single-strain fermentation. 

Synthetic microbial consortia (SMCs) have recently emerged as a rapidly expanding research frontier in microbial 
biotechnology. By leveraging metabolic modeling, co-culture engineering, and multi-omics–guided strain selection, these 
systems enable the rational design and optimization of microbial communities, thereby achieving more precise control 
over interspecies interactions and metabolic fluxes in fermentation processes [181]. Such approaches enhance the 
efficiency, stability, and functionality of fermentation systems, ultimately improving the flavor complexity, nutritional 
quality, and bioactive compound profiles of fermented foods [182]. For example, OuYang et al. developed an SMC 
comprising Lactobacillus plantarum NF2 and Acetobacter pasteurianus NF171 to optimize citrus vinegar fermentation 
[183]. This defined consortium markedly increased the production of ethyl acetate, a key contributor to desirable aroma, 
while simultaneously promoting the accumulation of several phenolic acids (such as chlorogenic and ferulic acids) and 
flavonoids (including rutinarin and nobiletin) [183]. These findings highlight the potential of SMC-based strategies to 
tailor microbial metabolism for enhanced sensory and functional attributes in fermented food products. 
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In the field of probiotics, the application of defined microbial consortia represents an emerging paradigm shift that 
departs from the conventional single-strain approach, which often produces inconsistent or limited physiological 
outcomes [184]. Lactobacillus and Bifidobacterium species, for instance, are well recognized for their capacity to 
generate SCFAs that contribute to gut and metabolic health [185]. Building upon this concept, Ye et al. developed a 
synthetic microbial consortium composed of seven well-characterized gut commensals—Alistipes putredinis, 
Barnesiella intestinihominis, Coprococcus catus, Dorea longicatena, Agathobacter rectalis (formerly Eubacterium 
rectale), Faecalibacterium prausnitzii, and Roseburia hominis—and fermented it with a prebiotic mix [186]. In elderly 
participants, the intervention markedly enhanced the relative abundance of beneficial taxa and stimulated SCFAs 
production, indicating improved microbial metabolic activity [186]. Collectively, these findings underscore the 
therapeutic and nutritional potential of synthetic microbial consortia as a next-generation probiotic strategy capable of 
targeted modulation of the gut ecosystem and host metabolism. 

The pursuit of improved nutrient utilization systems is a key goal in fermentation science, specifically, aiming to 
mitigate excessive microbial catabolism of beneficial nutrients. Limiting microbial consumption during fermentation is 
crucial for maximizing nutrient content and maintaining the sensory properties of the final fermented product [187,188]. 
Precision fermentation uses precise genetic perturbations to reprogram microbial metabolic pathways, thereby 
conferring desirable nutrients and flavors to food [189]. This advanced bioprocess utilizes genetically engineered 
microbial hosts (such as yeast or fungi) as cell factories to synthesize single, specific target molecules (such as proteins, 
enzymes, or lipids) [189]. Engineered strains incorporate biosensing capabilities, enabling them to respond to nutrient 
gradients and other environmental cues by inhibiting or inducing cellular functions, thereby ensuring efficient, high-
purity production of the desired compound [189]. For instance, Sathivel et al. demonstrated how harnessing quorum 
sensing in microbial consortia could impart distinctive sensory properties to red wine [190]. 

The integration of systems biology and machine learning has further improved strain design and fermentation 
process optimization. By analyzing genomic, transcriptomic, and metabolomic data, researchers can predict metabolic 
bottlenecks, regulatory networks, and inter-strain interactions, providing guidance for the application of engineered 
strains in functional fermented foods [158]. For instance, Josephs-Spaulding et al. applied transcriptomics combined 
with machine learning to reconstruct the regulatory network of Limosilactobacillus reuteri, identifying key modules of 
riboflavin and fatty acid metabolism, which guide metabolic optimization for functional food applications [191]. 
Peerapat et al. applied machine learning to the design-build-test-learn cycle, demonstrating that machine learning has 
great potential to accelerate and optimize metabolic engineering processes [192]. Overall, modern synthetic biology-
based fermentation not only increases the concentration of health-promoting ingredients in fermented foods but also 
offers new strategies for supporting liver health and managing metabolic diseases, such as MASLD, while maintaining 
food safety, stability, and sensory quality. 

4. Challenges and Outlook 

Despite the availability of pharmacological treatments for MASLD, dietary interventions and healthy lifestyle 
modifications remain the primary strategies for mitigating disease progression [9]. In recent years, the Mediterranean 
diet has been recognized as an effective reference for dietary intervention in MASLD. However, due to regional dietary 
habits and limitations in food accessibility, the Mediterranean diet is not universally applicable, as individuals differ in 
their biochemical, genetic, and microbiome makeup. In contrast, fermented foods offer distinct advantages for MASLD 
management. They provide functional nutrients, including polyphenols, SCFAs, PUFAs, and antioxidant peptides, 
which have demonstrated potential therapeutic effects in preclinical and some clinical studies by improving hepatic 
lipid metabolism and reducing oxidative stress and inflammation. Moreover, the fermentation process imparts unique 
flavors such as sour, aromatic, and umami, enhancing sensory appeal, acceptability, and adherence to dietary regimens. 
Fermented foods with local characteristics are found globally, many of which exhibit potential therapeutic benefits for 
MASLD. Compared with single functional supplements, functional fermented foods can address chronic metabolic 
disorders without requiring significant dietary changes, making them widely applicable and feasible for MASLD 
prevention and treatment. 

Fermented foods not only provide functional nutrients but also offer a distinctive sensory experience. Nevertheless, 
the strong flavors of certain fermented foods can limit their widespread adoption. For instance, natto, a traditional 
Japanese fermented soy product, possesses a sticky texture and a characteristic ammoniacal odor, often described as 
“unpleasant” or “like rotten garbage”. Although it is rich in beneficial nutrients, including probiotics, dietary fiber, 
protein, and vitamin K2, its intense flavor has impeded global acceptance [142]. To overcome this limitation, 
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researchers are exploring the use of engineered LAB to enhance flavor profiles. Co-cultivation with specific LAB strains 
can modulate volatile compound production, reduce the release of undesirable odors, and improve overall sensory 
quality [193]. Additionally, substituting traditional soybeans with alternative fermented substrates such as red lentils, 
green peas, or chickpeas in natto production has been shown to reduce off-flavors while maintaining or enhancing 
nutritional content [194]. These flavor modification strategies increase the acceptability of fermented foods and expand 
dietary options for MASLD patients. By integrating functional nutrients with improved sensory properties, fermented 
foods are poised to become a vital component of MASLD intervention. 

Modern biotechnology, including gene editing, holds promise for increasing the yield of functional products and 
optimizing metabolic pathways in engineered fermentation strains. Nonetheless, these approaches face significant 
limitations, particularly for commonly used fermentation bacteria such as LAB and B. amyloliquefaciens. Regulatory 
constraints and safety considerations are the primary limiting factors. Because fermented foods are intended for human 
consumption, transgenic strains generated through conventional gene editing are generally classified as genetically 
modified organisms (GMOs). In Europe, the United States, and numerous other countries, GMO food approvals are 
stringent, and consumer acceptance is low, restricting the commercial application of engineered strains [195]. Even 
strains demonstrating excellent metabolic performance in laboratory settings may encounter legal and market barriers 
that hinder practical implementation. 

To address these challenges, several complementary strategies can be pursued. From the standpoint of regulation 
and societal acceptance, the establishment of clearer classification frameworks for gene-edited microorganisms and the 
development of more comprehensive risk assessment systems would facilitate the safe and responsible integration of 
new technologies into the food industry. Concurrently, enhancing public awareness and understanding of the potential 
benefits and associated risks of these technologies is essential for improving societal acceptance, a process that is 
inherently gradual and often contentious. The adoption of novel biotechnological tools in domains closely related to 
human health and nutrition is therefore expected to follow a prolonged and carefully regulated trajectory. 

At present, however, several technical strategies may enable the attainment of desired functional improvements 
without contravening existing regulatory frameworks. First, non-GMO approaches such as laboratory-directed 
evolution and random mutagenesis can be employed to enhance strain performance while avoiding the introduction of 
exogenous DNA, thereby circumventing transgenic regulatory constraints. Second, the development and application of 
SMC present considerable potential in this context. Without the need for gene-editing interventions, such consortia can 
leverage quorum-sensing mechanisms and the inherent metabolic capabilities of distinct strains to enhance the 
production of target compounds in fermented foods or to introduce novel functional and sensory attributes. For instance, 
as noted previously, OuYang et al. demonstrated that this strategy could be applied to enrich citrus vinegar with 
additional flavor and bioactive constituents [183]. Future research exploring the utilization of synthetic microbial 
communities in fermented food production, either to confer specific health-promoting properties or to design next-
generation probiotic formulations, represents a highly promising and forward-looking direction for the field. 

Engineering efficiency and strain characteristics further constrain the use of traditional gene editing. LAB, despite 
their widespread use in food fermentation, often exhibit low transformation efficiency and limited genetic tool 
availability. Gene knockout or overexpression may impair growth or fermentation performance. While Bacillus subtilis 
demonstrates robust environmental resistance and high product potential, gene editing may affect spore formation or 
disrupt metabolic balance, compromising industrial fermentation stability. Traditional gene editing primarily targets 
single genes, making comprehensive metabolic network optimization challenging. Fermentation bacteria possess 
complex metabolic pathways in which the synthesis of multiple products is interdependent and substrate-competitive. 
Consequently, single-gene modifications rarely achieve global metabolic optimization and may lead to byproduct 
formation or impaired cell growth. Additional challenges arise in industrial-scale production: strains optimized under 
laboratory conditions may experience metabolic drift or trait instability in large-scale fermentation, affecting product 
consistency and functionality. In multi-strain co-culture systems, engineered strains may fail to compete effectively 
with native strains, reducing overall fermentation efficiency and target metabolite yield. 

To achieve safe, efficient, and acceptable production of functional fermented foods, modern fermentation 
technologies must integrate metabolic engineering, synthetic biology, modular design, co-culture strategies, and 
computational simulation optimization. Such approaches aim to balance strain functionality with sensory quality, 
thereby enhancing the potential of fermented foods in MASLD intervention and the broader health food market. 
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