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ABSTRACT: The COVID-19 pandemic starkly exposed vulnerabilities in global food supply chains, highlighting the critical need 
for resilient, localized alternatives to ensure urban food security. Urban agriculture (UA), which we define as all agricultural output 
occurring in cities with an urbanization rate exceeding 85%, emerges as a pivotal strategy to mitigate such risks by shortening 
supply chains, particularly for perishable goods like vegetables and fruits. This study investigates the underexplored role of UA in 
Guangdong Province, China—a region characterized by rapid urbanization, high population density, and economic dynamism- to 
assess its contribution to food self-sufficiency. Leveraging a novel classification framework, we categorize Guangdong’s 21 
prefecture-level cities into two groups based on an 85% urbanization threshold (2017–2022), distinguishing high-degree urbanized 
cities (e.g., Shenzhen, Guangzhou) from others. Using panel data, we analyze spatial-temporal patterns in grain, vegetable, and fruit 
self-sufficiency through geospatial and statistical methods. Key findings reveal pronounced disparities: high-degree urbanized cities 
exhibit critically low grain self-sufficiency, relying heavily on external supplies, while non-urbanized regions achieve exceptional 
surpluses. Conversely, vegetables and fruits demonstrate a center-periphery gradient, with peri-urban zones bridging the gap 
between urban cores and rural surplus hubs. Despite incremental gains in UA productivity, urban yields lag behind non-urban areas 
for grains and vegetables, though fruit production shows convergence, underscoring UA’s niche potential. These results highlight 
the indispensability of non-urban regions in sustaining provincial food security while emphasizing UA’s role in fresher, faster urban 
supply chains. We propose actionable policies, including: (1) integrating farmland protection redlines with UA incentives (e.g., 
vertical farming subsidies, peri-urban logistics optimization); (2) scaling technology-driven UA (controlled-environment 
agriculture, digital platforms); and (3) reducing post-harvest losses through urban-centric infrastructure. Our findings advance the 
discourse on crisis-resilient food systems, offering a replicable framework for high-density regions globally. 

Keywords: Urban agriculture; Food security; China 

© 2025 The authors. This is an open access article under the Creative Commons Attribution 4.0 International 
License (https://creativecommons.org/licenses/by/4.0/). 

 

1. Introduction 

The COVID-19 pandemic has profoundly disrupted global food systems, revealing significant vulnerabilities in 
food supply chains. Government-imposed lockdowns severely impacted the entire food supply chain, affecting 
producers, suppliers, and consumers alike. Agricultural production faced disruptions due to shortages of essential inputs, 
such as labor and agricultural materials [1]. Concurrently, food processing and logistics operations were compelled to 
suspend activities [2]. These disruptions led to increased costs and food prices, thereby diminishing consumer welfare 
[3–7]. Ultimately, the fragile state of food supply chains during lockdown periods resulted in heightened household 
food insecurity [8–10]. This crisis affected both developed and developing nations [11–14], as well as rural and urban 
areas [15]. The reduction in food production and distribution capacities, coupled with a surge in demand, exacerbated 
malnutrition issues [16,17], even in developed countries such as the United States [18]. Particularly during a period 
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when enhanced energy and nutrition were essential to combat the COVID-19 pandemic, concerns over food fraud 
intensified [19]. 

Building resilience in food supply chains is imperative to address future public crises. On the one hand, digital 
technologies can enhance the resilience of food supply chains [20,21]. For instance, the adoption of blockchain 
technologies can make food supply chains more innovative and more efficient [22,23]. On the other hand, shortening 
food supply chains [10,20,22,24–28] through localization [29,30] and regionalization [31,32] can improve the resilience 
of food supply systems in the face of large-scale disruptions. By reducing the distance between farmers and consumers 
both spatially and practically, the risks associated with food supply chains can be correspondingly mitigated. 

Under conventional circumstances, the delineation of urban centres as nodes of commerce and industry and rural 
hinterlands as zones of agricultural production leverages economies of scale and scope to maximise economic efficiency 
[30,33]. According to the core–periphery paradigm, industrial activities concentrate in densely populated urban cores, 
while agricultural production remains peripheral, reflecting agglomeration economies that minimise input and 
distribution costs [34,35]. However, this spatial specialisation proved vulnerable during crises such as the COVID-19 
pandemic, when extended supply chains experienced significant disruptions, exposing the fragility of long-distance 
food distribution systems [30,36]. In this context, urban agriculture emerges as a strategic mechanism to enhance local 
self-sufficiency, mitigate supply chain risks, and ensure access to fresh produce in densely populated cities [37–42]. 
Furthermore, urban agriculture complements rural production by supplying highly perishable commodities that require 
swift delivery to maintain freshness, alleviating pressure on extended distribution systems and offering niche market 
advantages [43,44]. Despite its potential to bolster urban food security, the role of urban agriculture in achieving 
municipal self-sufficiency remains underexplored in rapidly urbanizing regions [44]. 

Because of the expansion of cities, past rural areas have been incorporated into urban boundaries. The land use has 
not changed entirely for municipal development or commercial purposes, whereas some farmland and facilities remain 
for agricultural production, which creates urban agriculture. Compared to long-distance food supply from rural areas, 
which has been hit the hardest during COVID-19 lockdowns and damaged the welfare of urban consumers and farmers 
[15], food produced from urban agriculture and supplied to urban consumers is an instant and straightforward way to 
achieve shorter food supply chains [22,24,27]. The panic from COVID-19 lockdowns reshaped the consumption 
behavior of urban residents who became more favorable of local food supply [30]. Therefore, urban agriculture is also 
an important source for supply, and its contribution to safeguarding urban food security as well as national food security 
requires more comprehensive understanding. 

Before the COVID-19 pandemic, urban agriculture had already been widely recognized for its pivotal role in 
strengthening urban self-sufficiency by countering the vulnerabilities inherent in long-distance food networks shaped 
by globalization and liberalized trade regimes. Mok et al. (2014) comprehensively reviewed urban agriculture across 
developed countries, demonstrating its capacity to supply substantial volumes of fresh produce within city boundaries 
and reduce dependence on external sources [30]. Jarosz (2008) argued that alternative food networks—such as 
community gardens and farmers’ markets—resocialize food distribution, fostering localized producer–consumer 
linkages that mitigate the concentration of corporate control over global supply chains [39]. At the landscape scale, 
Tscharntke et al. (2005) showed that diversified, spatially proximate agricultural practices enhance ecosystem services 
and resilience by shortening supply distances and maintaining biodiversity, thereby fortifying local food security against 
systemic disruptions [40]. 

China’s vast territory exhibits significant regional disparities in economic development and agricultural capacity, 
with coastal regions generally outperforming inland and upland areas [45,46]. Guangdong Province epitomizes these 
contrasts: as one of China’s most economically advanced (see Figure 1) and rapidly urbanizing provinces (see Table 1), 
it has undergone profound industrial and urban transformation since the reform and opening-up era [47,48]. Internally, 
Guangdong comprises four distinct subregions: the Pearl River Delta, and the eastern, western, and northern prefectures, 
characterized by marked divergence in GDP per capita and urbanization levels [49,50]. The Pearl River Delta, including 
Guangzhou, Shenzhen, Foshan, Zhuhai, Dongguan, and Zhongshan, has achieved an urbanization rate exceeding 85% 
by 2022, forming the backbone of the Guangdong–Hong Kong–Macao Greater Bay Area, a global economic hub [51]. 
The province’s varied topography—from alluvial delta plains to mountainous uplands—yields heterogeneous 
agricultural endowments that shape local production patterns [52]. However, accelerated urban expansion has 
precipitated extensive land-use change, leading to farmland loss and environmental degradation [53]. Concurrently, 
massive population inflows have driven food demand to levels that outpace local production capacity, increasing 
reliance on external food sources [54,55]. These dynamics render Guangdong an especially representative case for 
examining how urban agriculture can bolster city-level self-sufficiency and enhance resilience in food supply chains. 
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Figure 1. The rise of GDP per capita in Guangdong from 2000 to 2022. Data Source: Guangdong Statistical Yearbook. 

Table 1. The urbanization rate in Guangdong from 2000 to 2022. Data Source: Guangdong Statistical Yearbook. 

Region 2000 2010 2020 2022 
Guangzhou 83.79 83.79 86.19 86.48 
Shenzhen 92.46 99.76 99.54 99.79 

Zhuhai 85.48 87.66 90.47 90.76 
Foshan 75.06 94.10 95.20 95.22 

Dongguan 60.04 88.47 92.15 92.25 
Zhongshan 60.67 87.84 86.96 87.02 

Average 55.00 66.18 74.15 74.79 
Shantou 67.00 68.47 70.70 70.75 

Shaoguan 51.13 52.54 57.33 58.54 
Heyuan 26.53 40.06 48.50 50.25 
Meizhou 37.21 43.03 51.58 52.68 
Huizhou 51.66 61.85 72.80 72.91 
Shanwei 52.58 54.03 57.12 57.86 
Jiangmen 47.08 62.31 67.63 67.85 
Yangjiang 41.92 46.82 54.16 55.26 
Zhanjiang 38.47 36.69 45.46 47.31 
Maoming 37.45 35.08 43.56 45.84 
Zhaoqing 32.52 42.40 51.02 52.14 
Qingyuan 32.60 47.56 54.50 56.30 
Chaozhou 43.41 62.78 64.19 64.81 
Jieyang 37.91 47.33 50.65 51.93 
Yunfu 35.86 36.97 43.77 45.04 

Building on identified gaps in the literature and the empirical context of Guangdong Province, this study delivers 
three principal contributions: We develop a novel, data-driven framework that classifies prefecture-level cities by an 
85% urbanization-rate threshold to operationalize “urban” versus “non-urban” agricultural contexts, and validates the 
assumption that all agricultural output in these high-urbanization cities serves as a proxy for urban agriculture (see Table 
1). This dual approach overcomes the common lack of direct urban-farm statistics and offers a replicable methodology 
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for future urban food-system research in other rapidly urbanizing regions. Our paper is the first to compute grain, 
vegetable, and fruit self-sufficiency ratios for all 21 prefecture-level cities in Guangdong over a six-year horizon (2017–
2022). By integrating panel data with geospatial techniques, we uncover distinct resilience trajectories in high-degree 
urbanized versus other cities, revealing how food-supply vulnerabilities evolve and space in response to urban 
expansion. We translate our empirical findings into clear, actionable recommendations—such as prioritizing perishable-
food support in high-density zones, incentivizing rooftop and peri-urban farming, and preserving urban greenbelts—to 
enhance localized supply chains. These policy prescriptions are grounded in city-level performance metrics and provide 
decision-makers with precise levers to bolster urban food security under future crises. 

2. Data and Methods 

2.1. Method 

Self-sufficiency of food can be assessed using various metrics, including caloric value, production volume, or 
monetary value [44,56]. To evaluate the balance between food production and consumption, the most intuitive and 
straightforward approach is to compare actual food production with the region’s standard per capita food consumption 
and the population it supports. This method provides a practical framework for analyzing regional food security 
dynamics and identifying areas where localized interventions may be necessary to address imbalances. This study 
analyzes the self-sufficiency of food at the prefecture-level cities in Guangdong Province. The urbanization rate is 
chosen as the separation threshold to split the city into two groups: high-degree urbanized cities (urbanization rate > 
85% in 2022, see Table 1, Guangzhou, Shenzhen, Zhuhai, Foshan, Zhongshan, Dongguan) and others (Shantou, 
Shaoguan, Heyuan, Meizhou, Huizhou, Shanwei, Jiangmen, Yangjiang, Zhanjiang, Maoming, Zhaoqing, Qingyuan, 
Chaozhou, Jieyang, Yunfu). 

In this study, we operationally define “urban agriculture” as the total agricultural output from prefecture-level cities 
with an urbanization rate exceeding 85%. This proxy is adopted due to the lack of direct urban farm statistics. It is 
justified by the high degree of urbanization in these cities, where remaining agricultural activities are typically small-
scale, peri-urban, or technologically intensive. This approach allows for a consistent and replicable assessment of UA’s 
contribution to food self-sufficiency. 

The analysis is grounded in the fundamental concepts of division between food production and consumption: 

RSSG ,
,

  ,
  (1) 

VSSG ,
YV ,

SV P ,
 (2) 

FSSG ,
YF ,

SF P ,
 (3) 

where RSSGi,y indicates the ratio of self-sufficiency of grain in region i of year y; YRi,y is grain production in region i 
of year y; SR is the standard of individual grain consumption, and P is the population in region i of year y. VSSGi,y 
indicates the ratio of self-sufficiency of vegetable and melon in region i of year y; YVi,y is vegetable and melon 
production in region i of year y; SV is the standard of individual vegetable and melon consumption. FSSGi,y indicates 
the ratio of self-sufficiency of fruit in region i of year y; YFi,y is fruit production in region i of year y; SF is the standard 
of individual fruit consumption. If RSSG, VSSG, and FSSG are greater than 1, it indicates that the grain, vegetable, and 
melon, fruit production in the region exceeds the local consumption needs, ensuring self-sufficiency. Conversely, it 
implies the deficit, requiring imports from other regions (via domestic allocation or international trade). 

Several factors influence the calculation of actual food production and consumption. Apart from direct 
consumption for diet, grain has been consumed indirectly for forage and food processing. These factors act as additional 
constraints and are often estimated using conversion coefficients. For example, grain loss accounts for approximately 
12% of total production [57,58], and the direct consumption of grain in Guangdong is 42.2% [59]. Considering the 
direct and indirect consumption of grain, an annual 400 kg per capita has been set as the grain consumption standard 
[60]. Vegetable and melon, as well as fruit consumption, are used at the direct consumption level reported from the 
Guangdong Rural Statistical Yearbook. This methodological framework provides a structured approach to quantifying 
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food self-sufficiency and identifying regional disparities in food production and consumption, which are critical for 
ensuring food security. 

2.2. Statistical Analytical Framework 

The analyses in this study were conducted in three distinct stages (Figure 2). First, a descriptive statistical analysis 
was performed to identify the structure and trend of food production in Guangdong. 

 

Figure 2. Data analysis procedure in this study. 

Second, the study compared the yield of grain, vegetable, melon, and fruit between high-urbanized regions and 
others in Guangdong with the t-test application. The continuously annual yield data from 2017 to 2022 were used. 

Finally, the study estimated the self-sufficiency of grain, vegetable, and melon (the data for vegetable and melon 
consumption are merged together), and fruit in Guangdong. To mitigate potential bias from extreme one-year values, 
the average yield data from 2017 to 2022 were used. Additionally, the spatial distribution of food self-sufficiency was 
analyzed to uncover the patterns of food production and consumption across Guangdong. 

2.3. Data 

Benefiting from a comprehensive and well-established statistical system, this study utilizes annual data from 21 
prefecture-level cities in Guangdong Province, drawn from the Guangdong Rural Statistical Yearbook. 

3. Results 

3.1. Structure and Trend of Food Production in Guangdong Province 

Figure 3 compares the evolution of cultivated area for grain, vegetables, melons, and fruit between high-degree 
urbanized cities (urbanization rate > 85%) and all other prefecture-level regions in Guangdong from 2017 through 2022. 
In Figure 3a, the grain-sown area in high-degree urbanized cities expanded steadily from 0.0432 million ha in 2017 to 
0.0515 million ha in 2022, indicating modest but persistent growth in urban agricultural initiatives. By contrast, non-
highly urbanized regions sustained much larger grain-cultivation areas, fluctuating slightly around 2.10–2.18 million 
ha, with a minor dip in 2018 followed by stabilization and a marginal rebound through 2022. This stark scale differential 
underscores that, although metropolitan jurisdictions are increasingly engaging in urban farming, their contribution to 
overall provincial grain output remains limited. 

Turning to Figure 3b, vegetable-sown area within the most urbanized cities rose marginally from 0.225 million ha 
in 2017 to a peak of 0.236 million ha in 2020, before leveling off at 0.234 million ha by 2022. Such stability suggests 
that urban vegetable production has reached a mature plateau under current land-use constraints. In contrast, other 
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regions exhibited a clear upward trajectory, from 1.00 million ha in 2017 to 1.19 million ha in 2022, reflecting continued 
expansion of suburban and rural vegetable cultivation and reinforcing their dominant role in meeting provincial demand. 

  

(a) (b) 

  
(c) (d) 

Figure 3. The Comparison between high-degree urbanized regions and others and Trends of Grain Area (a), Vegetable Area (b), 
Melon Area (c), and Fruit Area (d) in Guangdong Province, 2017–2022. Data Source: Guangdong Rural Statistical Yearbook. 

Figure 3c illustrates melon cultivation, where high-degree urbanized cities saw a decline from 0.00433 million ha 
in 2017 to 0.00308 million ha in 2021, followed by a slight recovery to 0.00322 million ha in 2022. This volatility 
suggests challenges in sustaining specialized crop production under urban pressure. Meanwhile, non-highly urbanized 
areas maintained a steady increase in melon-sown area—from 0.0369 million ha to 0.0401 million ha—outstripping 
their urban counterparts by a factor of ten or more and highlighting the peripheral regions’ comparative advantage in 
niche horticulture. 

Finally, Figure 3d shows that fruit-sown area in high-degree urbanized cities experienced minor interannual 
fluctuations, rising from 0.0937 million ha in 2017 to 0.0992 million ha in 2021 before a slight dip to 0.0990 million ha 
in 2022. In comparison, other regions saw continuous growth from 0.867 million ha to 0.970 million ha over the same 
period. The roughly tenfold disparity between the two groups reaffirms that, despite stable urban fruit production, non-
urbanized prefectures remain the primary source of Guangdong’s fruit supply. 

Overall, these trends reveal a pronounced production gap between highly urbanized and less urbanized regions: 
metropolitan areas are gradually scaling up urban agriculture but still account for only a small fraction of provincial 
cultivation. In contrast, the substantial and growing land base in other regions guarantees their critical role in sustaining 
Guangdong’s food security. 

Figure 4a–d contrasts the evolution of grain, vegetable, melon, and fruit production between high-degree urbanized 
cities and all other prefecture-level regions in Guangdong from 2017 to 2022. During this period, grain output in the six 
most urbanized jurisdictions rose modestly from 0.218 million t to 0.268 million t, whereas other regions maintained 
substantially larger yields—growing from 11.9 million t to 12.6 million t—resulting in a persistent 50–55-fold 
production gap and underscoring the minor yet positive contribution of urban agriculture to provincial grain supply. 
Vegetable production in urban cores also increased steadily, from 5.53 million t to 6.06 million t, but remained far 
below the 26.2 million t to 33.9 million t expansion observed in less urbanized areas, reinforcing their continued 
dominance in meeting Guangdong’s vegetable demand. Melon cultivation within highly urbanized cities exhibited an 
overall decline—from 0.0962 million t in 2017 to a low of 0.0633 million t in 2021, before marginally rebounding to 
0.0644 million t in 2022—while non-urbanized regions demonstrated uninterrupted growth from 1.08 million t to 1.27 
million t, reflecting a ten- to twenty-fold advantage in peripheral areas. Similarly, urban fruit production rose from 
0.815 million t to a peak of 1.19 million t in 2021 before settling at 1.17 million t in 2022; in contrast, other regions 
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expanded fruit yields from 13.4 million t to 17.8 million t. Together, these trends reveal a pronounced disparity in 
production scale -ranging from 4.7- to over 55-fold- between metropolitan and non-metropolitan areas, highlighting the 
indispensable role of rural and suburban agriculture in sustaining Guangdong’s food security and the incremental but 
constrained gains achievable through urban farming. 

  

(a) (b) 

  
(c) (d) 

Figure 4. The Comparison between high-degree urbanized regions and others and Trends of Grain Production (a), Vegetable 
Production (b), Melon Production (c), and Fruit Production (d) in Guangdong Province, 2017–2022. Data Source: Guangdong 
Rural Statistical Yearbook. 

3.2. The Yield Comparison of Food Production in Guangdong Province 

As shown in Figure 5a, grain yield in the six high-degree urbanized cities fluctuated between 4875 and 5217 kg/ha 
from 2017 to 2022, exhibiting no clear upward trend. In contrast, the other prefecture-level regions achieved higher and 
steadily increasing yields, rising from 5637 kg/ha in 2017 to 5869 kg/ha in 2022. Annual Student’s t-tests (t = 4.15–
5.47, p < 0.001) confirm a persistent 12–16% yield advantage in non-urbanized areas, highlighting the greater 
productivity of extensive rural farming systems under current management practices. 

Figure 5b illustrates that vegetable yields in high-degree urbanized cities increased modestly from 21,902 to 22,848 
kg/ha over the study period, whereas non-urbanized regions posted higher yields—26,468 to 28,660 kg/ha. Student’s t-
values for each year (t = 2.88–3.47, p ≤ 0.01) demonstrate statistically significant differences, with the absolute yield 
gap widening from 4515 kg/ha in 2017 to 5812 kg/ha in 2022. These results underscore the sustained productivity edge 
of suburban and rural cultivation systems despite parallel upward trends. 

As depicted in Figure 5c, melon yields in high-degree urbanized cities declined from 19,758 kg/ha in 2017 to 
16,178 kg/ha in 2022, while other regions maintained stable yields between 27,823 and 28,787 kg/ha. The widening 
yield gap—from 8066 kg/ha to 12,610 kg/ha—is reflected the challenges that dense urban environments face in 
sustaining specialized horticultural production. 

Figure 5d shows that fruit yields in urban cores climbed from 12,903 kg/ha in 2017 to 16,518 kg/ha in 2022, while 
yields in other prefectures grew from 14,576 to 16,855 kg/ha. Unlike the other crops, Student’s t-tests yielded no 
significant differences (t = −0.47 to 1.73; p > 0.05), indicating convergence: the yield gap narrowed from 1672 kg/ha 
to 337 kg/ha, with urban yields briefly exceeding rural yields in 2021. This pattern suggests that intensified peri-urban 
fruit cultivation and technology adoption are closing the productivity divide. 
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(a) (b) 

  
(c) (d) 

Figure 5. The Student-T statistical Test between high-degree urbanized regions and others and Trends of Grain Yield (a), Vegetable 
Yield (b), Melon Yield (c), and Fruit Yield (d) in Guangdong Province, 2017–2022. (*** p < 0.001; n.s., not significant (t-test)). 
Data Source: Guangdong Rural Statistical Yearbook. 

3.3. The Self-Sufficiency of Food Production in Guangdong Province 

Figure 6a–c collectively reveal stark spatial heterogeneity in Guangdong’s capacity to meet local consumption 
through in-situ production. Grain self-sufficiency (RSSG) declines sharply with urbanization intensity, whereas 
vegetable and melon self-sufficiency (VSSG) and fruit self-sufficiency (FSSG) exhibit pronounced center-to-periphery 
gradients, with suburban ring cities showing moderate surpluses and peripheral prefectures delivering exceptional 
outputs. These results underscore the inverse relationship between urban density and staple-crop resilience, the 
buffering role of peri-urban agriculture for high-demand HVPs (high-value produce), and the critical function of non-
urbanized regions in underpinning Guangdong’s overall food security [61,62]. 

Figure 6a maps the mean RSSG for Guangdong’s 21 prefecture-level cities (2017–2022), revealing stark territorial 
disparities. Shenzhen (0.28%) and Dongguan (0.55%) occupy the lowest sufficiency tier, followed by other high-
urbanization cities such as Guangzhou (2.97%) and Zhuhai (3.74%), whose local grain outputs meet less than 5% of 
consumption needs. Mid-level sufficiency is observed in transitional zones—Shantou (17.35%), Shanwei (25.04%), 
and Chaozhou (21.71%)—where limited peri-urban cultivation yields modest buffers against imports. The highest 
RSSG values are concentrated in Guangdong’s western and northern prefectures: Zhaoqing (57.09%), Jiangmen 
(51.70%), Shaoguan (47.49%), and Meizhou (45.06%). Nevertheless, even these outlying hubs fall well below self-
sufficiency, underscoring the province’s overall vulnerability. Spatially, core urban centers cluster in the lowest RSSG 
quintile, whereas peripheral cities dominate higher quintiles, highlighting their indispensable role as grain production 
bases and buffers for metropolitan demand. This pronounced center–periphery pattern emphasizes the need to 
strengthen peri-urban grain cultivation and to streamline interregional grain flows to mitigate urban deficits. 

Figure 6b illustrates the mean vegetable and melon self-sufficiency ratio for each of Guangdong’s 21 prefecture-
level cities over 2017–2022. A clear center-to-periphery gradient emerges: core metropolitan jurisdictions such as 
Shenzhen (17.47%), Zhuhai (68.73%), and Dongguan (97.34%) fall below the 100% self-sufficiency threshold, 
reflecting acute land scarcity and limited peri-urban cultivation, whereas the Pearl River Delta’s suburban ring cities—
Guangzhou (264.51%), Foshan (126.28%), and Zhongshan (125.05%)—achieve moderate surpluses by integrating peri-
urban agricultural zones. The highest surpluses occur in less urbanized northern and western prefectures (e.g., Qingyuan 
559.20%, Huizhou 550.21%, Zhaoqing 480.60%, Meizhou 313.56%, Shaoguan 306.93%), underscoring their capacity 
as major production bases for intra-provincial distribution. This spatial pattern highlights the necessity of reinforcing 
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urban agriculture in land-constrained cores and optimizing logistics from high-surplus peripheries to ensure resilient 
provincial food security. 

  

(a) (b) 

 

(c)  

Figure 6. Spatial Distribution of Grain (a), Vegetable and Melon (b) and Fruit (c) Self-Sufficiency in Guangdong Province. Data 
Source: Guangdong Rural Statistical Yearbook. 

Figure 6c reveals a pronounced spatial gradient in average fruit self-sufficiency across Guangdong’s 21 prefecture-
level cities over 2017–2022: the most highly urbanized cores—Shenzhen (13.22%) and Dongguan (47.85%)—exhibit 
severe deficits, while Zhuhai (125.82%), Guangzhou (146.52%) and Zhongshan (103.26%) in the Pearl River Delta’s 
suburban ring achieve modest surpluses through peri-urban cultivation. Beyond this ring, production capacity intensifies 
markedly: coastal and northern-western prefectures such as Zhanjiang (723.53%), Maoming (1064.34%), Zhaoqing 
(888.60%), and Meizhou (579.29%) deliver the highest surpluses, followed by Huizhou (475.87%), Qingyuan 
(370.55%), and Yunfu (358.40%). Mid-level surplus cities—including Shantou (107.79%), Shanwei (184.32%), and 
Jieyang (172.79%)—underscore the broad regional ability to generate fruit outputs well in excess of local consumption. 
This pattern highlights acute land constraints and limited urban agriculture in core metropolises, contrasted with 
expansive cultivation zones on the provincial periphery, suggesting the need to bolster urban-center production 
technologies and optimize cross-regional distribution networks. 

4. Discussion and Policy Recommendation: Transformation to Modern Urban Agriculture 

4.1. Storing Food in the Land: Urban Agriculture and the Red Line of Farmland Protection 

China has experienced rapid and massive urban expansion in recent decades, with cropland loss driven primarily 
by built-up land conversion. Wang et al. (2019) estimated that 5.92 million ha—or 3.31% of national cropland—was 
lost between 2000 and 2010 [63]. Huang et al. (2019) further reported that, during 1990–2015, 291 Chinese cities saw 
farmland occupation expand by nearly 1900 ha per year at an average annual growth rate of 5% [64]. More recent 
analysis by Wu et al. (2024) suggests this pressure intensified, with approximately 4000 ha of farmland lost each year 
between 1990 and 2020 [65].  

To arrest further decline in arable area, the Chinese government enshrined a “Red Line of Farmland Protection” 
policy, mandating a minimum of 1.8 billion mu (120 million ha) of farmland to secure national food supply [63,66,67]. 
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In 2015, this commitment was reinforced under the “storing grain in the land” strategy [68]. Parallel to urban pressures, 
significant tracts of farmland have been diverted to ecological restoration—such as grain-for-green programs—to 
bolster environmental resilience, despite short-term reductions in harvest area [69,70]. 

Our spatial analysis of Guangdong Province confirms a pronounced inverse relationship between urban density 
and staple-crop self-sufficiency. Highly urbanized cities such as Shenzhen (RSSG = 0.28) and Dongguan (RSSG = 0.55) 
remain heavily dependent on external grain sources (Figure 6a), whereas peripheral prefectures, Zhaoqing (RSSG = 
57.09), Jiangmen (RSSG = 51.70), and Shaoguan (RSSG = 47.49), achieve exceptional surpluses. Similar center–
periphery gradients characterize vegetable and melon self-sufficiency (e.g., Shenzhen VSSG = 17.47%, Guangzhou 
VSSG = 264.51%, Qingyuan VSSG = 559.20%) and fruit self-sufficiency (e.g., Shenzhen FSSG = 13.22%, Guangzhou 
FSSG = 146.52%, Maoming FSSG = 1064.34%) (Figure 6b,c). These findings underscore that, while non-urbanized 
regions underpin Guangdong’s overall food security, urban agriculture—even in highly developed cities—remains 
insufficient to offset staple-crop deficits. However, it exhibits promising gains in fruit production. 

Moreover, the provincial trend in sown grain area has remained remarkably stable at both district and county 
levels—despite substantial urban encroachment—testifying to Guangdong’s vigorous enforcement of farmland 
protection measures [71]. This stability provides a solid foundation for sustainable food supply, but also signals the 
need for more targeted interventions to harness urban agricultural potential where land is scarce. 

Furthermore, it is important to note that food self-sufficiency is not a static metric but evolves dynamically over 
time. Our findings represent a snapshot under current conditions; however, the trajectory of self-sufficiency is 
influenced by the interplay of several long-term trends. Ongoing urbanization and land consumption continue to exert 
downward pressure on the availability of land for agriculture, particularly within city cores. Conversely, advancements 
in agricultural technology—such as the adoption of high-yield vertical farming, hydroponics, and optimized crop 
varieties—can significantly increase productivity per unit area, thereby exerting a positive influence on self-sufficiency 
rates. Future longitudinal studies tracking these factors—urban sprawl, technological adoption, and yield changes—across 
a diverse set of cities would be invaluable. Such research would better isolate key drivers and allow for more targeted and 
effective policy interventions that can anticipate future trends rather than merely responding to current conditions. 

In alignment with China’s “Red Line of Farmland Protection”, which codifies a minimum of 1.8 billion mu (120 
million ha) of permanent basic farmland to secure national food supplies [66,67], Guangdong should formally integrate 
these red-line quotas into its multi-level territorial spatial plans, thereby delimiting urban growth boundaries and 
safeguarding high-quality arable land within municipal master plans. Simultaneously, the province must accelerate 
high-standard farmland construction in peri-urban belts by upgrading soil management, irrigation infrastructure, and 
mechanization, ensuring that outer-ring prefectures sustain and enhance their pivotal role as surplus food producers. 

Moreover, to bolster food self-sufficiency in land-constrained urban cores (e.g., Shenzhen, Dongguan), Guangdong 
should deploy targeted support—such as grants, tax incentives, and streamlined land-leasing—for vertical farms, 
rooftop greenhouses, and other controlled-environment agriculture systems, while strengthening peri-urban–urban 
supply chains through GIS-enabled logistics and cold-chain networks. This dual approach of modern urban agriculture 
and optimized distribution will maximize local production of fresh, high-value crops and more effectively channel 
peripheral surpluses into metropolitan markets. 

4.2. Storing Food in Technology: Upgrade of Urban Agriculture 

A comprehensive assessment of food self-sufficiency must also consider the demand side, particularly the role of 
evolving dietary patterns. The level of sufficiency is not only a function of production but also of consumption. Rapid 
shifts in urban diets, particularly towards more resource-intensive patterns such as increased consumption of animal 
proteins, would necessitate substantially more land and water resources to produce the same caloric value compared to 
plant-based diets. Therefore, a city’s actual and future self-sufficiency capacity is profoundly shaped by the dietary 
choices of its inhabitants. Policies aimed at enhancing urban food resilience must therefore be holistic, considering not 
only production-side strategies but also demand-side measures. Promoting sustainable and less land-intensive dietary 
choices among urban consumers is crucial for easing the pressure on local production systems. Integrating consumption 
patterns and their evolution into future models and policies for urban food self-sufficiency will provide a more 
comprehensive and realistic assessment of a city’s ability to feed itself. 

Apart from promoting sustainable farmland use with the “storing food in the land” policy, China also promotes 
agricultural technology innovation as “storing food in the technology” [72–74]. Urban agriculture can achieve higher 
food yield than conventional agriculture, mainly because of technical and managerial factors: 
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(1) Climate change and controlled environment agriculture: Climate change is predicted to increase the vulnerability 
of food production and uncertainty in food yield, urban agriculture could utilize controlled environments that 
maintain optimal growing conditions, leading to higher yield [75–79]. 

(2) Land use competition and vertical farming: Agriculture is particularly vulnerable in the land use competition  [80], 
and the use of vertical farming systems increases the amount of grain produced per area [81–83]. 

(3) Input reduction and precise agriculture: The massive input of water and chemicals harasses sustainable farming in 
China, and urban agriculture is seen as a solution to reduce the ecological footprint from implementing digital 
transformation and precise application in agriculture [84–88].  

(4) Location advantage and technology dissemination: Location advantage plays vital role in technology dissemination 
and transfer. By taking advantage of a preferred location, a city, especially a rising megacity, can attract the 
dwelling of high-quality talent and achieve scientific and technological innovation [89,90]. In China, agricultural 
extension services make great qualified technical assistance for appropriate technology dissemination and transfer 
[91,92], and it heavily relies on the network consists of agricultural institutes, university and promotion centers [93,94]. 
By taking advantage of a closer distance to the city, urban agriculture can more easily receive the technical assistance. 

(5) Municipal subsidy and ecosystem service to the city: As for the emerging economies, China also encounters severe 
urban-rural imbalance during the development process [95]. Accompanied with the implementation of the fiscal 
decentralization scheme [96], the gap of fiscal status between district and county also exacerbates [95,97,98]. 
Therefore, the district can provide relatively higher subsidies for supporting grain production per unit in the district. 
On the other hand, city also has higher realization of the necessity and importance of ecosystem services from 
urban agriculture [99–101], and they also are more capable for paying higher compensation to urban agriculture 
[102], which is one of the crucial supporting arguments for subsiding urban agriculture with public finance.  

Despite these technological and managerial advantages, Guangdong’s high-degree urbanized cities continue to 
underperform relative to peripheral regions: grain yields in cores average only ~5050 kg/ha versus ~5750 kg/ha in other 
areas (Figure 5a), and self-sufficiency ratios remain below unity (Figure 6a). To bridge this gap, Guangdong should 
accelerate technology transfer by establishing pilot plant factories in Shenzhen and Guangzhou, linking municipal R&D 
centers with urban farm cooperatives, and integrating digital platforms that consolidate sensor, weather, and market 
data to enhance decision-making and resource allocation [103]. By coupling these upgrades with strict enforcement of 
the Red Line farmland protection policy, the province can demonstrate a scalable model of high-quality urban 
agriculture that both sustains metropolitan consumption and exemplifies China’s broader transition toward resilient, 
technology-driven food systems. 

4.3. Food Loss Reduction 

Grain and food loss in Guangdong—and more broadly in China—occurs across the entire value chain, with on-
farm losses (during sowing, cultivation, and harvesting) and off-farm losses (post-harvest handling, storage, and 
distribution) contributing distinctly to overall inefficiency [104]. Within the farm boundary, yield losses are relatively 
uniform between districts and counties [104]. In contrast, post-harvest losses are highly sensitive to local infrastructure: 
improper handling, inadequate drying, and substandard storage can lead to substantial quality deterioration and weight 
loss before grain reaches the market [105]. Research shows that modern storage facilities—hermetic silos, mechanical 
dryers and automated aeration systems—can reduce storage losses by 20–30% [106], but these technologies demand 
reliable electricity—something urban centers can provide more consistently than rural areas, where grid instability 
persists [104,107]. 

Beyond storage, rapid and dependable transport links are crucial to minimize losses en route to consumers. Urban 
areas in Guangdong benefit from superior transport infrastructure—including dense road networks and refrigerated 
logistics nodes—resulting in lower spoilage rates compared to rural counterparts [103,108]. Moreover, urban agriculture 
inherently shortens the supply chain, delivering grain from peri-urban plots to local markets over shorter distances and 
further reducing handling stages. As such, targeted investments in modern post-harvest facilities—powered by stable 
urban grids—and in last-mile logistics within city boundaries can substantially curb food losses, boosting effective yield 
and advancing self-sufficiency. Although surveys in Guangdong document preliminary gains in loss reduction through 
improved storage [104,109], a systematic study of how urban agricultural systems uniquely leverage these advantages 
is needed to inform scalable policy and practice. 
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5. Conclusions 

By operationalizing an 85% urbanization threshold to distinguish urban from non-urban agricultural contexts, this 
study offers a robust proxy framework for quantifying urban agriculture. It addresses the common lack of direct urban-
farm statistics. Our province-wide spatial–temporal analysis across 21 prefecture-level cities reveals pronounced 
heterogeneity in self-sufficiency patterns: high-degree urbanized cities exhibit persistent deficits in staples, 
underscoring the inverse relationship between urban density and staple-crop resilience. Conversely, urban cores 
demonstrate comparable or even higher self-sufficiency ratios in high-value horticultural products, highlighting the niche 
advantage of urban and peri-urban agriculture in delivering fresh vegetables and fruits where demand is concentrated. 

These findings support targeted policy interventions, such as farmland titling reform to secure land tenure, 
integration of “storing food in the land” and “storing food in the technology” strategies, and incentives for controlled-
environment agriculture and rooftop farms, to safeguard arable land, optimize input use, and boost production in land-
constrained cores. Moreover, strengthening logistics and cold-chain networks between high-surplus peripheral zones 
and urban markets can further shorten supply chains, reduce losses, and enhance food system resilience to future crises. 

Overall, this study not only deepens understanding of urban agriculture’s contribution to municipal food security 
in Guangdong but also provides a replicable methodological and analytical framework for other rapidly urbanizing 
megaregions seeking to integrate local food production into urban planning and emergency response strategies. Future 
research should focus on deploying digital monitoring, precise agronomic management, and cross-sector partnerships 
to further optimize urban food networks under evolving climate, demographic, and public health uncertainties. 
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