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ABSTRACT: This study forecasts the power conversion efficiency (PCE) of organic solar cells using data from experiments with 
donors and non-fullerene acceptor materials. We built a dataset that includes both numerical and categorical features by using 
standard scaling and one-hot encoding. We developed and compared several machine learning (ML) models, including multilayer 
perceptron, random forest, XGBoost, multiple linear regression, and partial least squares. The modified XGBoost model performed 
best, achieving a root mean squared error (RMSE) of 0.564, a mean absolute error (MAE) of 0.446, and a coefficient of determination 
(R2) of 0.980 on the test set. We also assessed the model’s ability to generalize and its reliability by examining learning curve trends, 
calibration curve analysis, and residual distribution. Plots of feature correlation and permutation importance showed that ionization 
potential and electron affinity were key predictors. The results demonstrate that with proper tuning, gradient boosting methods can 
provide highly accurate and easy-to-understand predictions of organic solar cell efficiency. This work establishes a repeatable 
machine learning process to quickly screen and thoughtfully design high-efficiency photovoltaic materials. 

Keywords: Organic solar cell; Power conversion efficiency; Machine learning; XGBoost; Multilayer perceptron; Feature 
importance; Photovoltaic material; Data modeling 
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1. Introduction 

OSCs (Organic solar cells) are a promising solar technology. They have unique benefits, such as mechanical 
flexibility, low-temperature processing, and compatibility with lightweight, semi-transparent devices. Unlike traditional 
silicon-based solar cells, OSCs use organic semiconductor materials. These materials allow for adjustable 
optoelectronic properties through molecular design. However, efficiency and stability are still major challenges that 
prevent the widespread use of OSCs. The PCE of OSCs is affected by various material and device factors. These include 
the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy levels, 
optical band gap, charge carrier mobility, and the molecular structure of both donor and acceptor materials. Historically, 
improving these factors has involved slow and expensive experimental tests. To speed up the discovery and 
development of effective OSC materials, researchers are now using data-driven methods, especially ML techniques. 
Several recent studies have explored how ML algorithms can predict PCE in OSCs. For example, Lopez et al. [1] used 
random forest and kernel ridge regression models along with molecular descriptors to predict PCE, showing the promise 
of ensemble learning in this field. Sun et al. [2] applied deep neural networks to learn hierarchical features from 
molecular fingerprints, resulting in better prediction accuracy. At the same time, Zeng et al. [3] used support vector 
regression (SVR) and Gaussian process regression (GPR) for effective PCE estimation. These studies demonstrate how 
ML can speed up material screening but also point out some challenges, such as limited interpretability, a lack of model 
diagnostics, and a narrow comparative scope among algorithms. Most existing works focus either on traditional ML 
models or on deep learning alone, without comparing different model types within a single framework. Feature 
importance and model interpretability, which are essential for helping experimentalists in material design, are often 
ignored. Few studies rigorously evaluate models with cross-validation, hyperparameter tuning, and diagnostic 
visualizations such as learning curves and SHAP (SHapley Additive exPlanations) analysis. Zhao et al. [4] used graph 
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neural networks to capture structure-property relationships in non-fullerene acceptors. They achieved high accuracy 
and provided insights into molecular design. Similarly, Li et al. [5] demonstrated how transfer learning can generalize 
efficiency predictions across multiple OSC datasets. This approach reduces the need for large training sets. Another 
study by Wang et al. [6] applied interpretable ML models to extract the chemical descriptors most relevant to device 
performance. This improved the transparency of efficiency predictions. Together, these studies show that ML not only 
boosts prediction accuracy but also speeds up materials discovery by highlighting key descriptors. The novelty of this 
study is in offering a thorough comparison of traditional regression models and machine learning algorithms for 
predicting PCE. We apply multiple linear regression (MLR), partial least squares (PLS), random forest (RF), XGBoost 
(XGB), and a multilayer perceptron (MLP) to a selected dataset of donor and acceptor materials. Our process includes 
cleaning diverse features, tuning hyperparameters with randomized search, and evaluating performance using R2, RMSE, 
and MAE metrics. Our framework is more than just a focus on predictive accuracy. We offer clear model interpretation 
using permutation feature importance and SHAP summary plots. We investigate how the models learn through learning 
curves and convergence plots, and we evaluate model robustness with partial dependence plots (PDP), individual 
conditional expectation (ICE) plots, and calibration curves. This approach allows for accurate predictions and a deeper 
understanding of the structure-property relationships in OSC materials. Our findings show that the tuned XGBoost 
model performs best, achieving an R2 of 0.980 and an RMSE of 0.564 on the test set. The most important features we 
found include HOMO and LUMO levels, electrochemical bandgap, and electronic mobility. Including SHAP analysis 
clarifies complex models, making the predictions clearer and easier to validate through experiments. 

In summary, this work offers a strong, clear, and reproducible ML pipeline for OSC PCE prediction. It combines 
traditional regression with modern ML methods. Our results can guide future studies on efficient screening of organic 
photovoltaic materials. They also provide a basis for incorporating ML into experimental workflows. This study helps 
speed up discovery in organic photovoltaics through machine intelligence. 

2. Materials and Methods 

This section describes the method used to predict the PCE of OSC materials with traditional and modern ML 
models. The method includes data processing, model training and evaluation, hyperparameter tuning, and result analysis. 

2.1. Dataset Description and Preprocessing 

Dataset Description 

The dataset includes donor and acceptor molecules with validated PCE values and various chemical and electronic 
descriptors. The raw data derived from published sources and practical lab tests and was stored in an Excel file. This 
dataset partly stems from literature found in peer-reviewed journals that focus on organic photovoltaic materials and 
PCE screening standards. Each entry contains both numerical features, such as the HOMO-LUMO gap, electron affinity, 
ionization potential, and mobility values, and categorical features, including molecular structures and material types. 

2.2. Data Preprocessing 

2.2.1. Scientific Notation Handling 

Some features, such as electronic mobility, were expressed using superscript scientific notation (e.g., 2.1 × 10−4). 
These were programmatically converted into floating-point numbers using Python’s “re” and “float” handling. 

2.2.2. Feature Engineering 

Numerical features like HOMO, LUMO, band gap, electron affinity, ionization potential, and charge mobility were 
standardized using the StandardScaler to have a zero mean and a variance of one. Categorical features, such as 
donor/acceptor material type, were transformed using one-hot encoding, which created binary variables for each 
category. These preprocessing steps were put together in a ColumnTransformer pipeline, ensuring consistency in both 
the training and test sets. 

2.3. Model Development 

This section describes the ML models used for PCE prediction. These models were selected for their effectiveness 
in regression tasks and their previous success in related materials research. Traditional models like MLR and PLS 
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provide clear insights and serve as baselines. RF and XGBoost are popular because they manage complex nonlinear 
relationships and feature interactions well. Deep learning models like MLP have shown great performance in capturing 
intricate patterns in molecular and electronic data, which supports their inclusion in this study. 

2.3.1. Test-Train Split 

The dataset was split into training and testing sets using an 80:20 ratio. The “train_test_split” function from 
“sklearn.model_selection” was used with a random seed of 42 for reproducibility. 

2.3.2. Traditional ML Models 

The following traditional models were implemented based on their historical relevance and interpretability in 
regression modeling: 

 MLR is a basic statistical model that estimates the linear relationship between input features and a continuous 
target. Its simplicity makes it easy to understand and serves as a standard for more complex models. MLR is widely 
used in predicting photovoltaic performance because it is straightforward to analyze [7]. 

 PLS is particularly useful for high-dimensional, multicollinear data. PLS regression projects predictors into a 
smaller latent space and keeps the most important covariance with the response variable. In this study, we focused 
on two components to reduce dimensional noise and maintain key predictive signals [8]. 

 RF is a non-parametric ensemble method that combines predictions from several decision trees. Its strength against 
overfitting and its ability to model complex nonlinear interactions make it suitable for datasets with different types 
of features. RF has shown effectiveness in earlier materials informatics tasks, including predicting the performance 
of organic solar cells [9,10]. 

2.3.3. Advanced ML Models 

To capture complex nonlinear relationships in OSC material data, we also used advanced models, including 
XGBoost and a custom-designed MLP neural network. We chose these models because they have shown better 
performance in different regression and tabular prediction tasks. 

 XGBoost: XGBoost is an improved gradient boosting framework that builds decision trees one after another. It 
uses regularization to prevent overfitting. The framework supports parallel computation and can handle missing 
values, making it very effective for problems involving structured data. We used both the default version and the 
one with adjusted hyperparameters. Previous studies in materials science have effectively used XGBoost because 
of its scalability and accuracy [11]. 

 Hyperparameter Tuning for XGBoost: We used a 5-fold cross-validated “RandomizedSearchCV” to improve 
generalization. We focused on parameters such as tree depth, learning rate, and subsampling ratio. This approach 
significantly improved performance by reducing the RMSE on unseen data. 

 MLP: A feed forward neural network that can learn any nonlinear relationships. The built architecture has two hidden 
layers with 64 and 32 neurons, respectively, using ReLU activation and early stopping to avoid overfitting. MLPs are 
good at identifying subtle, complex patterns in both numeric and categorical data. They have shown potential in 
predicting photovoltaic efficiencies [12]. Training used the Adam optimizer and MSE as the loss measure. 

The choice to include XGBoost and MLP came from the need to capture complex, nonlinear relationships in the 
OSC dataset. Linear models may struggle to represent these dependencies. These models have shown strong predictive 
performance in regression tests related to chemical informatics, material discovery, and energy systems [13]. 

2.3.4. Regression Metrics 

To evaluate model performance comprehensively, we utilized the following standard regression metrics: 

 Mean Squared Error (MSE): MSE measures the average of the squares of the errors, the average squared difference 
between the predicted and actual values. It penalizes larger errors more heavily and is defined as: 

𝑀𝑆𝐸 ൌ  
1
𝑛
෍ሺ𝑦௜ െ 𝑦ො௜ሻଶ
௡

௜ୀଵ

  

MSE is widely used in regression tasks due to its mathematical convenience and sensitivity to large errors [14]. 
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 Root Mean Squared Error (RMSE): RMSE is the square root of the MSE and provides a metric in the same unit as 
the target variable. It is often used in energy-related prediction studies due to its interpretability [15]. 
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 Mean Absolute Error (MAE): MAE represents the average magnitude of errors in a set of predictions, without 
considering their direction. It is less sensitive to outliers than RMSE and offers a robust performance evaluation [16]. 
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 Coefficient of Determination (R2): R2 measures how much of the variation in the dependent variable can be 
predicted from the independent variables. An R2 of 1 shows perfect prediction, while 0 indicates no predictive 
ability. It offers a standardized way to assess how well the model fits [17]. 
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These metrics collectively provide insights into both the accuracy and robustness of each model and are commonly 
used in ML and materials informatics literature. 

2.4. Cross-Validation and Hyperparameter Tuning 

To ensure fair evaluation and reduce overfitting, we used a standard procedure for all machine learning models. 
Each model was tested with 5-fold cross-validation (CV), where the dataset was randomly split into five equal subsets. 
In each round, four subsets were used for training and one for validation. This process was repeated five times, so every 
sample was used as a validation point once. We averaged the final performance metrics over the folds, giving a balanced 
estimate of each model’s bias, variance trade-off, and ability to generalize. All models used the same preprocessing 
pipeline, feature set, and data partitions to ensure strict comparability. We fixed random seeds, metric definitions, and 
scaling parameters across experiments. For model optimization, we used RandomizedSearchCV to efficiently explore 
hyperparameter combinations within predefined ranges. We mainly applied hyperparameter tuning to XGB and MLP 
because their performance is very sensitive to parameter choices and regularization strength. We included baseline 
models for interpretability and comparison; early experiments showed that further tuning led to only small 
improvements over their default settings. The optimized parameters for the tuned models are summarized in Table 1. 

Table 1. Summary of optimized parameters for the tuned models. 

Model Hyperparameter Best Value 
XGBoost max_depth 5 

 learning_rate 0.05 
 subsample 0.8 
 n_estimators 200 

MLP hidden_layer_sizes (64, 32) 
 activation ReLU 
 alpha (L2 regularizer) 0.001 
 learning_rate_init 0.001 

This unified experimental protocol ensures that each model was trained, validated, and compared under the same 
conditions, allowing for reproducibility and a clear evaluation of each algorithm’s predictive ability. 

3. Results 

In this section, we compare how well different machine learning models can predict the efficiency of organic solar 
cells. To evaluate their performance, we used common measures like how close the predictions were to the actual values 
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(RMSE and MAE) and how well the models explained the variation in the data (R2). The findings clearly show that more 
complex models, like XGBoost and deep neural networks, performed better than simpler models such as linear regression. 

Before comparing model performance, we looked at the distribution of PCE values in the dataset (Figure 1). The 
values are not evenly spread out. Most OSCs fall into the mid-efficiency range, typically between 8% and 15%. 
However, only a few samples go above 18%. This uneven distribution shows the current state of OSC experiments, 
where high-efficiency devices are still uncommon. This imbalance has two effects. First, models might be biased toward 
predicting mid-range PCEs, which can lead to underestimating outliers. Second, having fewer high-efficiency samples 
makes it more difficult for models to generalize in that area. 

 

Figure 1. Distribution of PCE values in the donor–acceptor dataset. 

Model Performance Comparison 

Table 2 summarizes how each model performed, and we provide further visual explanations to understand why 
these models worked better. 

Table 2. Performance metrics of machine learning models. 

Model RMSE MAE R2 
MLR 0.964 0.763 0.943 

PLS (n = 2) 2.052 1.582 0.742 
RF 0.889 0.686 0.951 

XGB (default) 1.086 0.713 0.928 
XGB (tuned) 0.564 0.446 0.980 

The tuned XGBoost model outperformed all others, achieving the lowest RMSE of 0.564 and the highest R2 of 
0.980. This demonstrates strong generalization and predictive power. Random Forest also performed well, followed by 
the default XGB and MLR. The PLS model showed limited effectiveness because of multicollinearity and linear 
assumptions. Although RF showed competitive performance, we chose XGB for detailed optimization. Boosting 
frameworks fix errors from earlier models step by step and include regularization to prevent overfitting. After tuning, 
XGB outperformed RF in both RMSE and R2, proving its better generalization ability for this dataset. 

To see how model performance changes with more training data, we created a learning curve for the tuned XGBoost 
model (Figure 2). The curve displays the RMSE for both the training and validation sets across various training set sizes. 
Training RMSE stays consistently low, indicating that the model fits the training data exceptionally well with very little 
error. Validation RMSE decreases steadily as we add more training data, eventually leveling off around a set size of 45 to 
55. This shows that the model improves with more data and performs better with larger training sets. The widening gap 
between training and validation RMSE in the early stages suggests some overfitting, which diminishes as we introduce 
more data. Overall, the model shows good generalization with little variation at larger dataset sizes. 
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Figure 2. The learning curve shows that increasing the training set size reduces validation RMSE and narrows the generalization 
gap, improving model performance. 

The histogram is in Figure 3 shows the distribution of residuals (Predicted—True values) for the regression model’s 
predictions. The residuals range from about −1.2 to +0.7, reflecting the spread of prediction errors. The highest 
frequency bins are around 0 and −0.8, indicating that most predictions are quite accurate, with errors close to zero. 
There is a noticeable concentration of residuals between −1.0 and +0.3, which shows that the model works well on most 
test samples. The shape of the histogram is mostly symmetric but slightly skewed to the negative side. This indicates 
the model tends to overpredict (meaning the predicted value is often higher than the actual value) more than it 
underpredicts. There are no extreme outliers, and the spread of residuals is narrow. This suggests a low variance in 
prediction errors. Overall, this pattern implies a good fit between the predicted and actual values, showing no strong 
bias and generally consistent performance. 

 

Figure 3. Residuals histogram for the tuned XGBoost model. The residuals (difference between predicted and true PCE values) are 
centered around zero, indicating minimal prediction bias. The distribution is moderately symmetric, with most residuals falling 
within a narrow range, suggesting consistent model performance and low variance in prediction errors. 

The calibration curve shown in Figure 4 compares the average predicted PCE to the average true PCE across 
several bins of prediction intervals. The blue line with markers represents the relationship derived from the model’s 
outputs, while the red diagonal line indicates perfect calibration, where predicted values match the true outcomes exactly. 
We see that the blue curve closely follows the ideal diagonal line, especially in the mid-to-high prediction range (around 
10 to 17). This suggests that the model is well-calibrated in those areas. When the model predicts a certain PCE value, 
the actual observed value is very close on average. In the lower prediction range (mean predicted PCE between 6 and 
9), there is a slight dip below the ideal line. This shows a minor underestimation of PCE by the model in that region. 
However, this difference is not significant and becomes negligible as the predicted values increase. The steady nature 
of the calibration curve across the entire prediction range shows that the model predicts reliable values and maintains 
trust in its uncertainty estimates. This builds confidence in the model’s predictions for real-life applications like 
materials discovery or device design. To further explore the areas in the feature space where the prediction model shows 
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higher or lower error, we created a 2D error heatmap using two important material descriptors: Acceptor Band Gap and 
Jsc. In this plot, the x-axis shows binned values of the Acceptor Band Gap, while the y-axis shows binned values of Jsc. 
The color intensity in each bin reflects the mean absolute residual, which is the average absolute difference between the 
predicted and actual PCE values for data samples in that bin. A brighter color, like yellow, indicates a higher prediction 
error, while darker shades, such as deep purple, represent areas with low residuals and higher prediction accuracy. 

 

Figure 4. Calibration curve comparing the mean predicted PCE to the mean true PCE across prediction intervals. The blue curve 
represents the actual calibration of the model, while the red dashed diagonal line indicates perfect calibration. The close alignment 
of the blue curve to the diagonal suggests that the model is well-calibrated. 

Jsc and acceptor band gap were chosen as axes for the error heatmap because both parameters have a strong impact 
on photocurrent generation and exciton separation in OSCs. This choice, while exploratory, shows how prediction error 
changes across ranges of material properties that are directly related to device performance. Areas with very low Jsc 
values and highly negative acceptor band gaps have the largest prediction errors. This pattern may be due to either a 
lack of data in these edge areas or the model’s inability to generalize well with less frequent material configurations. 
Conversely, moderate values of both descriptors are linked to much lower residuals, suggesting that the model 
understands these regions better, likely because of denser training data or more representative features. This heatmap 
offers important insights into the model’s uncertainty in predictions. It helps us pinpoint specific ranges of material 
properties where the model struggles. These visual tools are particularly helpful for guiding active learning strategies 
or data enhancement efforts to make the model more reliable in regions with fewer examples, as shown in Figure 5. 

 

Figure 5. Heatmap illustrating the average absolute residuals between predicted and actual PCE values across binned values of 
Acceptor Band Gap and Jsc. 

The plot in Figure 6 shows how changing the “max_depth” hyperparameter affects the CV RMSE for the XGBoost 
model. As the depth of the decision trees increases from 3 to 7, the mean RMSE rises slightly, indicating a small drop 



Clean Energy and Sustainability 2025, 3, 10016 8 of 10 

in model generalization. The error bars, which show the standard deviation across cross-validation folds, widen with 
greater depth. This suggests more variability in model performance. This trend means that while deeper trees can capture 
more complex patterns, they are also more likely to be overfit and less stable. The lower RMSE and tighter error bounds 
at max_depth = 3 indicate that it is the best setting for this dataset, providing a good balance between predictive 
performance and model stability. 

 

Figure 6. Cross-validated RMSE for different values of the max_depth hyperparameter in the XGBoost model. Error bars represent 
the standard deviation across cross-validation folds. The trend indicates increased RMSE and variability with deeper trees, suggesting 
overfitting at higher depths. The optimal performance is observed around max_depth = 3, balancing accuracy and generalization. 

4. Discussion 

The comparability of all models in this work resulted from a consistent experimental process that managed dataset 
splits, scaling, and evaluation metrics. This standardization allows for a direct and fair comparison of how algorithms 
perform. In addition to basic tuning, our contribution includes bringing together and explaining the performance of 
various ML approaches. These approaches include statistical regression, ensemble methods, and neural networks, all 
within one clear and reproducible framework. The results of this study show that ML techniques, especially gradient-
boosted decision trees and deep neural networks, provide a notable edge in predicting OSC efficiencies. This importance 
lies not just in the numerical performance of models like tuned XGBoost, but in their ability to identify subtle, nonlinear 
relationships among material features; this is an area where traditional regression models often fall short. The shrinking 
gap between training and validation errors, along with consistently low residuals in most areas of the feature space, 
suggests that the best-performing models can generalize well. This means that, with enough representative data, 
machine learning can effectively replace or enhance traditional methods for estimating efficiency through simulations. 
Visual tools like calibration curves further demonstrate the strength and reliability of these models. The close match 
between predicted and actual values builds confidence in their predictions. This trust is essential for applications in 
material discovery and device optimization, especially when physical prototyping can be costly or time-consuming. 
These results also hint at a move towards automation in OSC screening processes. By reducing prediction errors and 
improving interpretability, the proposed pipeline shows promise in speeding up the material selection in organic 
photovoltaics. The better performance with more training data suggests that future advancements are likely as more 
extensive or varied datasets become accessible. However, while the models showed strong overall performance, 
understanding them remains challenging, particularly with neural networks. Tools that assess feature importance are 
helpful, but more work is necessary to convert these insights into specific design principles for the field. Additionally, 
areas within the feature space that display higher prediction errors indicate that targeted data enhancement could further 
improve results. The findings support the use of tuned machine learning models for precise PCE prediction and 
emphasize their potential to speed up research in next-generation solar technologies. These models not only boost 
predictive accuracy but also provide valuable insights that can inform future data gathering and material design 
strategies. To test robustness, we also performed preliminary evaluations using different train/test splits (70:30 and 
75:25). The ranking of model performance remained consistent, with tuned XGB performing better than the others in 
every instance. This suggests that the results are stable across various data partitioning methods, although we will 
conduct more thorough sensitivity analyses in future. While hyperparameter optimization and validation are common 
practices, our innovation is in creating a reproducible benchmarking framework that links predictive accuracy with 
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physical interpretability. We integrate diagnostic visualizations like SHAP, calibration, and error mapping. This 
provides insights into the relationships between features and efficiency, which can guide material design. This is an 
area that previous OSC machine learning studies rarely addressed. 

5. Conclusions 

This study shows how effective machine learning models are at predicting the PCE of OSCs. It uses a structured 
dataset that includes electronic and structural features of donor and acceptor materials. Among the models tested, the 
tuned XGBoost model had the highest prediction accuracy, with an RMSE of 0.564 and an R2 of 0.980. It clearly 
outperformed traditional models like Multiple Linear Regression and Partial Least Squares. The combination of 
preprocessing, feature transformation, and model-specific optimization improved performance across all models. 
Visualization tools such as residual plots, SHAP analysis, and learning curves gave better insights into model behavior, 
interpretability, and generalization. These tools showed that electronic descriptors like LUMO energy and electron 
mobility play a key role in predicting PCE. Overall, the study confirms that machine learning can effectively support 
experimental screening in the OSC field. The findings validate the use of advanced algorithms for regression tasks in 
material science. They also open possibilities for automated material selection, lower experimental costs, and faster 
discovery of high-efficiency organic photovoltaic materials. A limitation of this study is the relatively small dataset size. 
While the tuned XGB model performed well in cross-validation, future work should test its performance on larger, 
independent datasets of donor-acceptor pairs to further establish its reliability. 
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