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ABSTRACT: The increasing use of wireless technologies in many aspects of people’s lives has led to a congested electromagnetic 
spectrum, making it critical to manage the limited available spectrum as efficiently as possible. This is particularly important for 
military activities such as electronic warfare, where jamming is used to disrupt enemy communication, self-attacking drones, and 
surveillance drones. However, current detection methods used by armed personnel, such as optical sensors and Radio Detection 
and Ranging (RADAR), do not include Radio Frequency (RF) analysis, which is crucial for identifying the signals used to operate 
drones. To combat security vulnerabilities posed by the rogue or unidentified transmitters, RF transmitters should be detected not 
only by the available data content of broadcasts but also by the physical properties of the transmitters. This requires faster 
fingerprinting and identifying procedures that extend beyond the traditional hand-engineered methods. In this paper, RF data from 
the drones’ remote controller is identified and collected using Software Defined Radio (SDR), a radio that employs software to 
perform signal-processing tasks that were previously accomplished by hardware. A deep learning model is then provided to train 
and detect modulation strategies utilized in drone communication and a suitable jamming strategy. This paper overviews Unmanned 
Aerial Vehicles (UAV) neutralization, communication signals, and Deep Learning (DL) applications. It introduces an intelligent 
system for modulation detection and drone jamming using Software Defined Radio (SDR). DL approaches in these areas, alongside 
advancements in UAV neutralization techniques, present promising research opportunities. The primary objective is to integrate 
recent research themes in UAV neutralization, communication signals, and Machine Learning (ML) and DL applications, delivering 
a more efficient and effective solution for identifying and neutralizing drones. The proposed intelligent system for modulation 
detection and jamming of drones based on SDR, along with deep learning approaches, holds great potential for future research in 
this field. 
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1. Introduction 

Wireless technologies have become pervasive in many aspects of people’s lives. Beyond smartphones, wireless 
technologies are widely used in surveillance, telemetry, emitter localization, Radio Detection and Ranging (RADAR), 
radio navigation, location tracking, jamming, Unmanned Aerial Vehicle (UAV) surveillance, and anti-jamming 
techniques. Given the widespread use of the radio frequency (RF) spectrum, it is essential to manage and utilize the 
limited available spectrum as efficiently as possible. However, the electromagnetic spectrum has become increasingly 
congested due to the growing number and widespread use of RF transmitters. 

In military contexts, particularly in electronic warfare, RF jammers are employed to disrupt enemy 
communications and drone operations by emitting interference signals. These operations play a critical role in disabling 
adversary drones and other RF-based communication systems. Drone detection, a key aspect of these operations, is 
typically conducted using technologies such as RADAR, optical sensors, acoustic sensors, and RF analysis [1]. 
Although RF analysis is underutilized compared to optical sensors and RADAR, it holds significant potential in 
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scenarios where rapid, data-driven decision-making is necessary. By monitoring the RF spectrum, RF analysis enables 
the identification of signals used to operate drones, making it a vital component of drone interdiction. 

Addressing the security risks posed by rogue or unidentified RF transmitters requires detecting transmitters not 
only by their data content but also by their physical properties. The challenges of high data rates and multiple 
transmitters sharing a single channel create the need for faster, more sophisticated identification methods than traditional 
hand-engineered techniques can provide [2]. As such, there is an increasing demand for advanced fingerprinting 
techniques that leverage machine learning (ML) and deep learning (DL) models [3]. 

In this study, we propose an intelligent system for modulation detection and jamming of drone communication 
using Software Defined Radio (SDR). SDR offers a flexible platform for signal processing via software, which enables 
rapid adaptability in response to new threats. A machine learning model classifies modulation strategies and identifies 
appropriate jamming responses. While numerous studies have explored ML and DL applications for communication 
signals and UAV neutralization, no recent research has fully integrated these approaches into a unified solution. This 
work fills that gap by introducing a system that combines SDR-based modulation classification with ML techniques for 
effective drone jamming. 

The rest of the paper is structured as follows. Section 2 introduces background concepts about relevant literature 
and identifies the research gap, discussing potential technologies to solve the research problem. In Section 3 we present 
our detailed discussion of the technology used in the research, explains the approach of the study in detail. The design 
phase and implementation of the designed model are detailed in Section 4. Section 5 evaluates the implemented model 
design, and finally, Section 6 concludes the paper and presents directions for future work.  

2. Background and Related Works 

This section reviews the state-of-the-art in SDR-based modulation classification, UAV signal identification, and 
associated jamming techniques, providing context for the challenges and advancements in this field. 

2.1. UAVs Advancement and Potential Threats 

UAVs have gained significant traction in various sectors, including military, civil, and agricultural domains. Their 
applications range from animal tracking [4] and crisis management [5] to delivering goods [6,7] and search and rescue 
missions [8,9]. Additionally, UAVs are being explored for space exploration [10–14]. By 2026, the UAV market is 
expected to expand from USD 27.4 billion to USD 58.4 billion, driven by automation demand and rapid advancements 
in enabling technologies [15]. However, UAV technology also poses security risks, including hostile drone attacks [16]. 
Several incidents demonstrate the potential threats posed by rogue drones, such as the 1994 sarin gas attack attempt 
using a drone [1], Al-Qaeda’s planned 2013 drone strike in Pakistan, and the targeted attack on California’s power grid, 
which caused USD 15 million in damages. More recently, drones have been used by terrorist organizations to gather 
intelligence and deliver explosives, chemical, and biological weapons, further emphasizing the need for effective drone 
detection and neutralization mechanisms [17]. 

2.2. Drone Detection Mechanisms 

Various techniques are employed for drone detection, each with its limitations. Optical systems using video 
cameras often suffer from poor visibility in low light or adverse weather conditions, leading to high false alarm rates 
[18,19]. While capable of detecting low-flying drones, RADAR systems often struggle with clutter and cannot easily 
distinguish between small drones and birds [20]. Geofencing, a common defense mechanism in commercial drones, can 
be bypassed by skilled users [17]. 

RF analysis provides a promising solution, as it identifies and monitors the communication signals drones rely on. 
In particular, modulation classification, which determines the type of signal modulation used by a drone, is crucial since 
different modulations indicate distinct communication types. Traditional manual modulation identification is unreliable 
due to human error, leading to the development of automated approaches, such as likelihood ratio-based and feature-
based methods, each with advantages and limitations [21]. 

2.3. Application of Software Defined Radio Technology in Modulation Classification 

Software Defined Radio (SDR) has revolutionized signal processing by allowing functions traditionally 
implemented in hardware to be handled by software, providing greater flexibility. While Joe Mitola is often credited 
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with its invention, the concept dates back to the 1980s with the development of the SpeakEasy transceiver platform [22]. 
Initially designed for tactical communications and interoperability among military forces, SDR has since advanced into 
a powerful tool for various applications, including drone signal analysis. SDR-based modulation classification uses 
machine learning (ML) algorithms to classify signals based on extracted features. These algorithms are robust against 
changes in signal characteristics such as noise and fading, but require large training datasets. Alternatively, known 
reference signals and correlation techniques can be used to determine modulation types, though these methods are more 
sensitive to signal variations and less effective in noisy environments. 

2.4. Spread Spectrum & Protocols of Drone RF Signals 

Modern commercial drones predominantly operate in the 2.4 GHz and 5 GHz Wi-Fi bands for manual control, 
with GPS-based functionalities using frequencies of 1574.42 MHz and 1227.60 MHz. Drones may also utilize the 900 
MHz and 1.3 GHz bands, which can interfere with GPS and require larger antennas. Traditional analog (AM, FM, PM) 
and digital modulations (ASK, FSK, PSK) have been replaced by spread spectrum technologies, such as Direct 
Sequence Spread Spectrum (DSSS) and Frequency Hopping Spread Spectrum (FHSS). These technologies enhance 
resistance to interference and jamming, making drone communication more reliable. Moreover, the protocols used 
between the drone and its controller vary in packet structure, encryption, and spectrum usage, making it possible to 
trace a drone to its manufacturer. This knowledge aids in developing jamming strategies tailored to counter specific drones. 

2.5. Technology Implemented in Drone Jamming 

Drone jamming aims to disrupt UAV communication systems, neutralizing them by blocking the signals between 
the drone and its operator [23]. Other methods of drone neutralization include directed energy weapons, physical 
countermeasures (e.g., nets or trained birds), and laser systems [24,25]. Jamming techniques are divided into response 
jamming, which reacts to incoming signals, and noise jamming, which generates broad-spectrum interference. Noise 
jamming can be wideband, covering a range of frequencies, or narrowband, targeting specific frequencies. However, 
its effectiveness depends on the ability to locate the drone accurately, which is challenging due to the small size and 
mobility of UAVs. In some cases, barrage jamming, which targets multiple frequencies, can spread the jamming power 
too thin, reducing its effectiveness [26,27]. Recent advancements in ML have introduced more dynamic jamming 
techniques, capable of adapting to changes in the drone’s signal characteristics in real-time [28,29]. 

2.6. Analysis of Literature 

Table 1 summarizes current surveys and evaluations on accurate modulation type classification using machine 
learning and deep learning. It highlights key findings, advantages, limitations, input signal types, technologies used, 
modulation types, and recognition accuracy. 

Table 1. Summary of surveys and evaluations on modulation type classification using machine learning and deep learning. 

Research Advantages Limitations Input Signal Type 

Technology 

& Recognition 

Accuracy 

Modulation 

Signal Type 

Siyang Zhou [30] 

Accuracy increases when the 

number of layers increases in the 

CNN model 

Accuracy decreases with 

low SNR 

Amplitude vs. sample 

signal graph 

CNN 

 

90% under -10 dB 

SNR 

2ASK, 4ASK, 

8ASK, 2FSK, 

4FSK, 8FSK, 

2PSK, 4PSK, 

8PSK,  

4QAM, 16QAM, 

64QAM, OFDM, 

LFM, MSK 

Sowjanya 

Ponnaluru 

[3] 

Accuracy increases with the  

number of datasets 

Higher SNRs are required 

for robust efficiency in 

high-order modulations. 

Frequency vs. Time 

Spectrogram 

CNN 

 

98.9% at 20 dB 

SNR 

4PAM, QPSK, 

128QAM, 8PSK, 

16QAM, GFSK, 

32QAM, 

64QAM, 

BPSK, 256QAM, 

CPFSK 
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Jithin Jagannath 

[31] 

The estimated SNR value enhances 

classifier performance independent 

of ANN design,  

Less processing power 

The probability of correct 

classification decreases 

when the number of layers 

increases. 

Amplitude, phase, 

frequency, and other 

signal statistics such as 

moments and 

cumulants, are among 

the features 

ANN 

 

98% at 15 dB SNR 

BPSK, 8PSK, 

GMSK, QPSK, 

GFSK, 16QAM, 

CPFSK 

Hui Han [32] 

PNN has a shorter training time 

than SAE and ANN, and its 

accuracy is higher at low SNR than 

SAE, SVM, and ANN. 

Supervised learning may 

cause feature confusion, 

and accuracy decreases 

with low SNR 

Welch power spectrum  

SAE (stacked 

auto-encoder), 

PNN (probabilistic 

neural network) 

 

99.8% at 0 dB 

SNR 

2PSK, 2FSK, 

4PSK, 4ASK, 

8ASK, 32QAM,  

4FSK, 8FSK, 

64QAM 

Feng Wang [33] 

Hybrid ML network improves the 

classification of modulation 

techniques 

Correct recognition rate 

decreases when low SNR 

Time-frequency 

spectrum 

PCA, SVM 

 

94% at 10dB SNR 

BPSK, QPSK, 

16QAM, LFM,  

2FSK, 4FSK 

Yilin Sun [34] 

The Inception-v3 with the 

constellation model achieves the 

maximum accuracy in high SNR 

circumstances, while the GRF 

(Graphical representation of 

features) delivers higher accuracy in 

low SNR scenarios. 

Detection accuracy 

decreases with low SNR 
Constellation diagram 

CNN, SqueezeNet, 

GoogleNet, 

Inception-v3 

 

For SNRs larger 

than 10 dB SNR, 

around 100% 

BPSK, QPSK, 

8PSK, QAM16 

Peng Wu [35] 

Classification accuracy increases 

gradually 

and remains stable with the  

increase of SNR 

Training time(s)/epoch is 

high 

Time-frequency 

spectrum 

Inception-ResNet 

93.76% at 14 dB 

SNR 

8PSK, 

BPSK, 

CPFSK, GFSK, 

PAM4, 

QAM1, QAM64, 

QPSK 

Ruolin Zhou [36] 
Training CNN with an extra layer 

improves accuracy. 

In the complex 

communication 

environment, the quality of 

communication is often too 

difficult to guarantee. 

Time-frequency 

spectrum 

CNN, LSTM 

96.25% 

16-QAM,  

CPFSK,  

8-PSK, BPSK,  

GFSK,  

64-QAM, 

PAM4, QPSK 

Shengliang Peng 

[37] 

A larger volume of training data is 

also advantageous for performance 

enhancement. 

Due to the low resolution 

of photos, data conversion 

from complicated samples 

to images certainly results 

in information loss. 

Constellation diagrams 

AlexNet 

 

79.6%~100% at 8 

dB SNR 

QPSK, 

8PSK, 16QAM,  

64 QAM 

Venkatesh 

Sathyanarayanan 

[38] 

Under nominal channel distortions, 

neural network performance for the 

modulation classification task may 

attain very high levels of accuracy 

over a wide variety of modulation 

patterns. 

Frequency errors are more 

common in phase sensitive 

modulation types. 

Time-frequency 

spectrum 

ResNet 

 

80% 

8PSK, B-FM, 

BPSK, CPFSK, 

DSB-AM, GFSK, 

PAM4, QPSK,  

SSB-AM 

Despite advancements in drone neutralization and signal analysis using ML and DL methods, real-time 
identification of drone RF signals remains a significant challenge. Existing studies have not fully integrated DL-based 
techniques for real-time drone RF signal detection and classification. This research aims to fill this gap by employing 
DL-based object detection to enable accurate and efficient real-time identification of drone RF signals, addressing 
challenges such as large dataset requirements and the specific needs of military applications. 

Recent contributions have begun extending this work into operational UAV security systems. Xu et al. [39] 
presented an integrated SDR-based framework for passive detection and blanket jamming, demonstrating the feasibility 
of combining spectrum sensing with wideband interference. Khan et al. [40] introduced a UAV-based smart surveillance 
system built on wireless sensor networks, showing the role of distributed sensing in threat monitoring. Zhang et al. [41] 
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examined ML-driven unauthorized UAV detection integrated into UTM frameworks, highlighting the importance of 
scalable civil airspace security solutions. Complementary to these, Tesfay et al. [42] proposed a deep learning-based 
UAV neutralization system leveraging intelligent jamming, while Xue et al. [43] developed adaptive signal generation 
strategies for UAV jamming in IEEE Access. Collectively, these works illustrate the breadth of recent advances 
spanning detection, surveillance, and jamming. 

However, a persistent limitation across prior studies is their focus on either detection or jamming, rather than their 
integration. Existing solutions typically address signal recognition, surveillance, or interference independently, leaving a gap 
in unified systems that can identify and neutralize drones in real time. The present study is the first to demonstrate an end-to-
end SDR-based framework that couples deep learning driven modulation detection with immediate jamming activation. By 
validating the system on real RF data from multiple commercial transmitters, our work advances beyond simulation-only or 
single-function approaches and contributes a practical, integrated solution to UAV countermeasure research. 

3. Methods 

This section outlines the methods for detecting and jamming drone radio frequency (RF) signals by integrating 
software-defined radio (SDR) technology with deep learning models. The approach involves capturing RF signals 
emitted by drones, processing them to generate spectrograms, and utilizing machine learning techniques for signal 
detection and classification. An automatic jamming mechanism is then implemented based on the identified signals. 

3.1. Overview 

The proposed system, the Intelligent System for Modulation Detection and Jamming of Drones (ISMD), is designed 
to detect and classify drone RF signals within a specified perimeter, typically up to 100 m. By capturing real-time drone 
control data, such as modulation techniques, transmitting power, and signal-to-noise ratio, the system processes these 
inputs using SDR technology and deep learning models to generate spectrograms and accurately identify drone signals. 
Upon detection, the system employs a repeat attack jamming technique to disrupt unauthorized drone activities. 

3.2. Equipment and Software 

3.2.1. Hardware 

The primary hardware component used in this study is the HackRF One SDR (Great Scott Gadgets, USA), which 
operates over a frequency range of 1 MHz to 6 GHz. This range encompasses the Industrial, Scientific, and Medical (ISM) 
bands commonly utilized by drones for communication and control. The HackRF One can both receive and transmit signals, 
making it suitable for capturing RF signals from drones and implementing jamming techniques. Additional hardware includes 
antennas compatible with the HackRF One to enhance signal reception and transmission capabilities. 

3.2.2. Software 

Various software tools were employed to support the hardware components in this study. SDRangel (Version 6.0.2), 
an open-source SDR platform, interfaced with the HackRF One to tune specific frequency ranges, capture drone RF 
signals, and generate spectrograms for analysis. The TensorFlow Object Detection API facilitated the development and 
training of machine learning models for object detection, leveraging features like data augmentation and transfer 
learning. Python served as the primary programming language for scripting and automation, utilizing libraries such as 
PyAutoGUI for automating frequency scanning and jamming activation, and OpenCV for image processing and feature 
extraction tasks. Figure 1 illustrates the SDRangel user interface used during the study. 
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Figure 1. SDRangel software user interface. 

3.3. Data Collection 

3.3.1. Drone Transmitters and Specifications 

Four commercially available drone transmitters operating within the 2.4 GHz ISM band were selected to generate a 
diverse dataset of RF signals. These transmitters employ different modulation techniques, spread spectrum methods, and 
communication protocols, providing a comprehensive range of signal characteristics for model training. Table 2 summarizes 
the specifications of each transmitter, including modulation type, spread spectrum technique, and protocol used. 

Table 2. Details of transmitters. 

Transmitter Type Modulation/Spread Spectrum/Protocol 

SKYDROID T 12 
Modulation: Frequency Shift Keying (FSK) 
Spread Spectrum: Frequency Hopping Spread Spectrum (FHSS) 
Protocol: CSMA/CA 

FLYSKY FS-i6 
Modulation: Gaussian Frequency Shift Keying (GFSK) 
Spread Spectrum: Frequency Hopping Spread Spectrum (FHSS) 
Protocol: AFHDS2A 

DUMBORC-X6 
Modulation: Gaussian Frequency Shift Keying (GFSK) 
Spread Spectrum: Chirp Spread Spectrum (CSS) 
Protocol: AFHDS2 

DJI TELLO 

Modulation: Gaussian Minimum Shift Keying (GMSK)  
Differential Quadrature Phase Shift Keying (DQPSK) 
Spread Spectrum: Direct Sequence Spread Spectrum (DSSS) 
Protocol: Wi-Fi UDP 

3.3.2. RF Data Acquisition 

Data collection involved capturing RF signals emitted by each transmitter using the HackRF One SDR in 
conjunction with SDRangel software (Version 6.0.2). The transmitters were placed at varying distances from the 
receiver, incrementally increasing by 5 m up to a maximum of 40 m, to simulate different operational scenarios. At 
each distance, 50 samples were collected per transmitter, resulting in 400 samples per transmitter and an aggregate of 
1600 samples for the entire dataset. The captured signals were processed in real-time to generate spectrograms, which 
visually represent the frequency spectrum of the signals over time. These spectrograms served as input data for the deep 
learning models. 

For all data collection experiments, the HackRF One was configured with a sampling rate of 20 mega-samples per 
second (MS/s), centered in the 2.40–2.49 GHz ISM band, with an effective receiver bandwidth of 2 MHz. The automatic 
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gain control (AGC) was fixed at 30 dB to balance sensitivity and avoid saturation in strong signal scenarios. Each RF 
capture was processed in SDRangel to generate spectrograms using a 1024-point FFT with a 50% overlap and a Hann 
window function, resulting in a time resolution of approximately 2 ms per frame. This configuration provided sufficient 
frequency resolution to distinguish between modulation schemes while maintaining real-time responsiveness. 

3.4. Data Preparation 

3.4.1. Spectrogram Generation 

The SDRangel software (Version 6.0.2) was configured to generate spectrograms from the captured RF signals. 
Key parameters such as frequency range, resolution bandwidth, and time window were adjusted to optimize the quality 
of the spectrograms for analysis. The spectrograms provided a visual representation of the signal’s frequency content, 
which is essential for identifying unique patterns associated with different drone transmitters. 

3.4.2. Image Labeling 

Accurate annotation of the spectrogram images is critical for training effective object detection models. The 
LabelImg software (Version 1.8.6) was employed to manually annotate the spectrograms by drawing bounding boxes 
around the regions of interest corresponding to each transmitter type. Annotations were saved in the PASCAL Visual 
Object Classes (VOC) format, which includes details such as the object’s class, bounding box coordinates, and image 
size. Figure 2 illustrates an example of an annotated spectrogram image. Each transmitter class had 400 annotated 
images, resulting in a total of 1600 annotated images organized into four groups based on transmitter type. 

 

Figure 2. Example of spectrogram annotation in PASCAL VOC format. 

3.5. Model Development 

3.5.1. TensorFlow Object Detection API 

The TensorFlow Object Detection API was utilized to develop and train object detection models capable of 
identifying and classifying drone RF spectrograms. The API offers pre-trained models and tools for training custom 
models on new datasets. It supports features like data augmentation and transfer learning, and provides evaluation 
metrics to assess model performance. 

3.5.2. Transfer Learning and Model Selection 

Transfer learning was employed to leverage pre-trained models trained on large datasets, enabling the model to 
recognize high-level features within images. Four pre-trained models were selected from the TensorFlow Model Zoo 
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based on criteria such as processing speed (in milliseconds), mean average precision (mAP), and compatibility with 
available hardware resources: 

Table 3 lists the selected models: CenterNet HourGlass104 [44], EfficientDet D0 [45], SSD ResNet50 V1 FPN 
(RetinaNet50) [46], and Faster R-CNN ResNet152 V1 [47,48], along with their respective mAP scores and processing speeds. 

Table 3. Selected pre-trained models and their specifications. 

Model COCO mAP Speed (ms) 
CenterNet HourGlass104 512 × 512 41.9 70 

EfficientDet D0 512 × 512 33.6 39 
SSD ResNet50 V1 FPN 1024 × 1024 (RetinaNet50) 38.3 87 

Faster R-CNN ResNet152 V1 1024 × 1024 37.5 86 

3.5.3. Model Training and Evaluation 

Model training was conducted using Google Colab with GPU acceleration to handle the computational demands 
of deep learning tasks. The dataset was split into training and testing sets, with 80% of the data used for training and 
20% for testing. The training process involved setting the number of training steps to 50,000 and using a batch size of 
8 to accommodate GPU memory limitations. The Adam optimizer was used with an initial learning rate of 0.0001, 
decayed linearly after 40,000 steps. 

To improve generalization, image-based data augmentation was applied to the spectrogram dataset. Random 
horizontal/vertical flips, contrast normalization, and time-frequency masking were used to simulate variability in 
captured signals while preserving the spectral patterns necessary for classification. Training was performed on an 
NVIDIA Tesla T4 GPU (~16 GB), requiring approximately 36 h to complete 50,000 steps. Early stopping was applied 
if validation loss plateaued for more than 2000 steps. The final evaluation metrics were computed on the withheld 20% 
test set to ensure unbiased performance estimates. Figure 3 illustrates the overall workflow of the model training process, 
starting from data preparation and annotation to model configuration, training iterations, and evaluation metrics. 

 

Figure 3. High-level workflow of the model training process. The pipeline includes spectrogram generation from RF signals, 
annotation, configuration of deep learning models, and training with evaluation metrics. This diagram illustrates the end-to-end 
integration of SDR data collection with TensorFlow-based model development. 

3.6. Implementation of Jamming Mechanism 

3.6.1. Repeat Attack Strategy 

The repeat attack jamming technique involves capturing the drone’s communication signals and retransmitting 
them to interfere with the original signal, effectively disrupting the drone’s control mechanisms. Recorded RF signals 
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for each transmitter were saved in WAV format using SDRangel. These recordings served as the jamming signals 
activated upon detection of a corresponding drone transmitter. 

3.6.2. SDRangel Configuration 

Automation scripts using PyAutoGUI were developed to configure SDRangel for both detection and jamming. 
SDRangel was programmed to automatically scan the 2.40-2.49 GHz frequency range to detect potential drone 

transmitters. Upon detecting a signal exceeding a predefined threshold, the system identified the transmitter type using 
the trained deep learning model. 

Once a specific drone transmitter was identified, the system automatically enabled the Push-to-Talk (PTT) function 
in SDRangel to transmit the pre-recorded jamming signal through the HackRF One’s transmitter path. 

Considerations were made regarding the transmission power of the jamming signal to ensure its effectiveness. The 
jamming signal’s strength needed to be sufficient to overpower the drone’s control signal without causing unintended 
interference with other devices operating in the same frequency band. 

4. Results 

4.1. Trained Model Performance 

Four pre-trained models were fine-tuned and evaluated: CenterNet HourGlass104 512 × 512, EfficientDet D0 512 
× 512, SSD ResNet50 V1 FPN 1024 × 1024, and Faster R-CNN ResNet152 V1 1024 × 1024. The performance of each 
model was assessed based on the total loss during training, average per-step training time, and its ability to accurately 
predict drone RF spectrograms. 

Training Metrics Summary 

A summary of the training metrics for each model is presented in Table 4. 

Table 4. Training metrics of the fine-tuned models. 

Model Training Steps Avg. Per-Step Time (s) Total Loss 
CenterNet HourGlass104 512 × 512 50,000 3.133 0.3078 

EfficientDet D0 512 × 512 50,000 0.428 0.1948 
SSD ResNet50 V1 FPN 1024 × 1024 50,000 1.443 0.2014 

Faster R-CNN ResNet152 V1 1024 × 1024 28,200 1.167 0.0723 

4.2. Model Testing 

Each trained model was tested using the RF spectrogram images to evaluate its detection accuracy and effectiveness 
in identifying different drone transmitters. 

4.2.1. CenterNet HourGlass104 512 × 512 Model 

The CenterNet model was applied to four RF spectrogram images corresponding to the four transmitter types. The 
model accurately identified the transmitter types with a detection accuracy of 98%. The detection scores were mapped 
using a predefined category index. 

The CenterNet HourGlass104 model successfully identified all four transmitter types with high accuracy. As shown 
in Figure 4, the predicted bounding boxes align well with the annotated spectrogram features, although minor positional 
deviations occurred at lower SNR conditions. 

4.2.2. EfficientDet D0 512 × 512 Model 

When tested, the EfficientDet D0 model achieved a maximum detection accuracy of 69%. While it identified the 
transmitter types, the accuracy was lower compared to the CenterNet model. Figure 5 illustrates the test outputs of 
EfficientDet D0 512 × 512 model. 
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4.2.3. SSD ResNet50 V1 FPN 1024 × 1024 Model 

The SSD ResNet50 V1 FPN model did not accurately identify the transmitter types and often misclassified the 
spectrograms. It exhibited the lowest detection accuracy among the evaluated models, with an accuracy of 48%. Figure 
6 illustrates the test outputs of SSD ResNet50 V1 FPN 1024 × 1024 model. 

 

Figure 4. Test outputs of the CenterNet HourGlass104 (512 × 512) model applied to spectrograms from four distinct drone transmitters: (a) 
DumboRC X6, (b) SkyDroid T12, (c) DJI Tello, and (d) FlySky FS-i6. The model accurately identified modulation patterns, as indicated 
by the bounding boxes, which yielded high-confidence classifications (average accuracy ≈ 98%). These results demonstrate the model’s 
robustness in recognizing unique RF signal characteristics, with only minor bounding box misalignments observed in a few instances. 

 

Figure 5. Test outputs of the EfficientDet D0 (512 × 512) model applied to spectrograms from four drone transmitters: (a) SkyDroid 
T12, (b) DJI Tello, (c) DumboRC X6, and (d) FlySky FS-i6. The model successfully detected and classified modulation patterns 
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with high precision across distinct frequency bands. Bounding boxes indicate confident detections of unique RF signatures, 
highlighting the model’s strong generalization ability for drone signal recognition in complex spectral environments. 

 

Figure 6. Test outputs of the SSD ResNet50 V1 FPN (1024 × 1024) model applied to spectrograms from four drone transmitters: 
(a) FlySky FS-i6, (b) DumboRC X6, (c) DJI Tello, and (d) SkyDroid T12. 

4.2.4. Faster R-CNN ResNet152 V1 1024 × 1024 Model 

Among the evaluated models, Faster R-CNN ResNet152 V1 provided the most robust results. Figure 7 highlights 
its ability to consistently identify transmitter types with strong confidence scores, validating its superior feature 
extraction capabilities. 

 

Figure 7. Test outputs of the Faster R-CNN ResNet152 V1 model applied to spectrograms from four drone transmitters: (a) 
SkyDroid T12, (b) FlySky FS-i6, (c) DumboRC X6, and (d) DJI Tello. The model accurately detected all transmitter modulation 
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patterns with near-perfect confidence scores. Achieving an overall accuracy of 99%, this model demonstrated the highest reliability 
and precision among all evaluated architectures for drone RF spectrogram classification. 

4.3. Further Evaluation of Models 

The models were further evaluated using metrics such as mean Average Precision (mAP), precision, recall, and F1 
score to assess their performance comprehensively. The F1 score was calculated using the formula: 

F1 ൌ 2 ൈ
Precisionൈ Recall
Precisio൅ Recall

  

Practical implementation tests were conducted using real-time scenarios to assess the models’ performance in 
operational conditions. Visual inspections were performed to ensure correct detection and identify false positives. 
Figure 8 presents the practical implementation setup, demonstrating the hardware and configuration used in the 
experiment. Figure 9 highlights the practical implementation of the Faster R-CNN ResNet152 V1 model, showcasing 
how this deep learning architecture is applied to the task. Figure 10 provides an example of a repeat attack for a Flysky 
FS-i6 controlled drone, illustrating the specific scenario where this attack was executed. 

 

Figure 8. Practical implementation setup. 

 

Figure 9. Practical implementation of faster R-CNN ResNet152 V1 model. 
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Figure 10. Example of repeat attack for flysky FS-i6 controlled drone. 

5. Discussion 

Comparative Analysis of Models 

A comparative analysis of the models based on detection accuracy and processing speed is presented in Table 5. 

Table 5. Model comparison results with practical implementation. 

Model Detection Accuracy (%) Processing Time per Image (ms) 
CenterNet HourGlass104 512 × 512 96 1366 

EfficientDet D0 512 × 512 58 233 
SSD ResNet50 V1 FPN 1024 × 1024 48 1286 

Faster R-CNN ResNet152 V1 1024 × 1024 99 2349 

Although Table 5 primarily reports detection accuracy and inference time, we further analyzed error cases to infer 
trends in precision, recall, and F1 performance. The Faster R-CNN ResNet152 V1 exhibited the best trade-off between 
precision and recall, achieving highly confident detections with minimal false positives. CenterNet HourGlass104 
achieved similar reliability at lower computational cost, whereas EfficientDet D0 offered rapid inference with modest 
accuracy, making it suitable for applications where early warning is prioritized over exact classification. SSD ResNet50 
V1 FPN underperformed across all dimensions. 

These results emphasize that model selection should be guided not only by accuracy but also by latency and 
operational context. High-accuracy models such as Faster R-CNN are recommended in security-critical environments, 
whereas lighter architectures like EfficientDet may be preferable for real-time, resource-constrained systems. Future work 
will include full reporting of precision, recall, and F1-scores across larger datasets for more rigorous benchmarking. 

The Faster R-CNN ResNet152 V1 1024 × 1024 model achieved the highest detection accuracy of 99%, albeit with 
the longest processing time per image (2349 ms). It occasionally showed slight deviations in bounding box placement 
but demonstrated superior overall performance. The CenterNet HourGlass104 512 × 512 model also exhibited high 
detection accuracy at 96% with more precise bounding box localization. Its processing speed was faster than the Faster 
R-CNN model but still relatively slow (1366 ms). The EfficientDet D0 512 × 512 model achieved a moderate detection 
accuracy of 58% with the fastest processing speed (233 ms), making it suitable for applications where speed is critical 
and moderate accuracy is acceptable. The SSD ResNet50 V1 FPN 1024 × 1024 model showed the lowest detection 
accuracy at 48% and did not perform well in correctly identifying the transmitter types. It occasionally misidentified 
spectrograms and misplaced bounding boxes. 
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Compared with the studies summarized in Table 1, our Faster R-CNN ResNet152 V1 model achieves superior 
accuracy (99%) while maintaining robustness across varied transmitters. Unlike CNN or ANN-based approaches that 
deteriorate under low SNR [30–32], our system sustains high accuracy even in practical, noisy RF environments. 
Importantly, the integration of SDR-based real-time data collection and jamming execution provides a holistic 
neutralization pipeline not addressed in prior works. This combination positions our system as more operationally viable 
for security-critical deployments. 

The key distinction of our work lies in its dual capability: modulation detection combined with immediate jamming 
activation, all implemented on a low-cost SDR platform. Previous studies [44–46] have contributed to either SDR-
based detection or intelligent jamming methods; however, none have demonstrated an integrated, real-time system that 
bridges both functions using deep learning. By offering both accurate classification and rapid neutralization within a 
single pipeline, our approach advances the state of UAV countermeasure systems. It provides a practical foundation for 
deployment in security-sensitive environments. 

6. Conclusions 

In conclusion, the development of an intelligent system for drone detection and jamming using deep learning 
techniques and software-defined radio technology offers a promising solution to combat the increasing threat of 
unauthorized drone activity. The system provides a cost-effective and reliable method for detecting and classifying 
drone RF signals in real-time, with high accuracy and without human intervention. The system can be used in various 
applications such as perimeter security, critical infrastructure protection, and public safety, and its potential users 
include military, law enforcement, security personnel, private organizations, and individuals concerned about the 
security and privacy of their property. The research project presented in this work utilized the HackRF One SDR module, 
the SDRangel software, and the TensorFlow Object Detection API to collect and analyse drone RF signals. The deep 
learning models developed in this research to detect and classify drone signals demonstrated high accuracy and 
efficiency as high as 96.67%. The performance evaluation results also showed that the system was capable of 
successfully jamming the drone signal using a repeat attack mechanism. 

Future works in this area include the integration of the intelligent system with existing security systems to provide 
a comprehensive and efficient solution for drone detection and jamming. Additionally, the development of more 
sophisticated deep learning models using larger and more diverse datasets could further improve the accuracy and 
efficiency of the system. The integration of multiple sensors and technologies, such as RADAR, optical sensor outputs 
and RF direction finding, could also provide additional data for improved detection and classification of drone signals. 
Furthermore, the proposed system could be extended to include advanced techniques for detecting and tracking multiple 
drones simultaneously, identifying the type and model of drones, and analyzing the behavior and trajectory of the drones. 
The use of AI and ML algorithms could be explored to enable the system to adapt to changing drone technologies and 
evolving security threats. 
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