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ABSTRACT: The increasing use of wireless technologies in many aspects of people’s lives has led to a congested electromagnetic
spectrum, making it critical to manage the limited available spectrum as efficiently as possible. This is particularly important for
military activities such as electronic warfare, where jamming is used to disrupt enemy communication, self-attacking drones, and
surveillance drones. However, current detection methods used by armed personnel, such as optical sensors and Radio Detection
and Ranging (RADAR), do not include Radio Frequency (RF) analysis, which is crucial for identifying the signals used to operate
drones. To combat security vulnerabilities posed by the rogue or unidentified transmitters, RF transmitters should be detected not
only by the available data content of broadcasts but also by the physical properties of the transmitters. This requires faster
fingerprinting and identifying procedures that extend beyond the traditional hand-engineered methods. In this paper, RF data from
the drones’ remote controller is identified and collected using Software Defined Radio (SDR), a radio that employs software to
perform signal-processing tasks that were previously accomplished by hardware. A deep learning model is then provided to train
and detect modulation strategies utilized in drone communication and a suitable jamming strategy. This paper overviews Unmanned
Aerial Vehicles (UAV) neutralization, communication signals, and Deep Learning (DL) applications. It introduces an intelligent
system for modulation detection and drone jamming using Software Defined Radio (SDR). DL approaches in these areas, alongside
advancements in UAV neutralization techniques, present promising research opportunities. The primary objective is to integrate
recent research themes in UAV neutralization, communication signals, and Machine Learning (ML) and DL applications, delivering
a more efficient and effective solution for identifying and neutralizing drones. The proposed intelligent system for modulation
detection and jamming of drones based on SDR, along with deep learning approaches, holds great potential for future research in
this field.
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1. Introduction

Wireless technologies have become pervasive in many aspects of people’s lives. Beyond smartphones, wireless
technologies are widely used in surveillance, telemetry, emitter localization, Radio Detection and Ranging (RADAR),
radio navigation, location tracking, jamming, Unmanned Aerial Vehicle (UAV) surveillance, and anti-jamming
techniques. Given the widespread use of the radio frequency (RF) spectrum, it is essential to manage and utilize the
limited available spectrum as efficiently as possible. However, the electromagnetic spectrum has become increasingly
congested due to the growing number and widespread use of RF transmitters.

In military contexts, particularly in electronic warfare, RF jammers are employed to disrupt enemy
communications and drone operations by emitting interference signals. These operations play a critical role in disabling
adversary drones and other RF-based communication systems. Drone detection, a key aspect of these operations, is
typically conducted using technologies such as RADAR, optical sensors, acoustic sensors, and RF analysis [1].
Although RF analysis is underutilized compared to optical sensors and RADAR, it holds significant potential in
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scenarios where rapid, data-driven decision-making is necessary. By monitoring the RF spectrum, RF analysis enables
the identification of signals used to operate drones, making it a vital component of drone interdiction.

Addressing the security risks posed by rogue or unidentified RF transmitters requires detecting transmitters not
only by their data content but also by their physical properties. The challenges of high data rates and multiple
transmitters sharing a single channel create the need for faster, more sophisticated identification methods than traditional
hand-engineered techniques can provide [2]. As such, there is an increasing demand for advanced fingerprinting
techniques that leverage machine learning (ML) and deep learning (DL) models [3].

In this study, we propose an intelligent system for modulation detection and jamming of drone communication
using Software Defined Radio (SDR). SDR offers a flexible platform for signal processing via software, which enables
rapid adaptability in response to new threats. A machine learning model classifies modulation strategies and identifies
appropriate jamming responses. While numerous studies have explored ML and DL applications for communication
signals and UAYV neutralization, no recent research has fully integrated these approaches into a unified solution. This
work fills that gap by introducing a system that combines SDR-based modulation classification with ML techniques for
effective drone jamming.

The rest of the paper is structured as follows. Section 2 introduces background concepts about relevant literature
and identifies the research gap, discussing potential technologies to solve the research problem. In Section 3 we present
our detailed discussion of the technology used in the research, explains the approach of the study in detail. The design
phase and implementation of the designed model are detailed in Section 4. Section 5 evaluates the implemented model
design, and finally, Section 6 concludes the paper and presents directions for future work.

2. Background and Related Works

This section reviews the state-of-the-art in SDR-based modulation classification, UAV signal identification, and
associated jamming techniques, providing context for the challenges and advancements in this field.

2.1. UAVs Advancement and Potential Threats

UAVs have gained significant traction in various sectors, including military, civil, and agricultural domains. Their
applications range from animal tracking [4] and crisis management [5] to delivering goods [6,7] and search and rescue
missions [8,9]. Additionally, UAVs are being explored for space exploration [10-14]. By 2026, the UAV market is
expected to expand from USD 27.4 billion to USD 58.4 billion, driven by automation demand and rapid advancements
in enabling technologies [15]. However, UAV technology also poses security risks, including hostile drone attacks [16].
Several incidents demonstrate the potential threats posed by rogue drones, such as the 1994 sarin gas attack attempt
using a drone [1], Al-Qaeda’s planned 2013 drone strike in Pakistan, and the targeted attack on California’s power grid,
which caused USD 15 million in damages. More recently, drones have been used by terrorist organizations to gather
intelligence and deliver explosives, chemical, and biological weapons, further emphasizing the need for effective drone
detection and neutralization mechanisms [17].

2.2. Drone Detection Mechanisms

Various techniques are employed for drone detection, each with its limitations. Optical systems using video
cameras often suffer from poor visibility in low light or adverse weather conditions, leading to high false alarm rates
[18,19]. While capable of detecting low-flying drones, RADAR systems often struggle with clutter and cannot easily
distinguish between small drones and birds [20]. Geofencing, a common defense mechanism in commercial drones, can
be bypassed by skilled users [17].

RF analysis provides a promising solution, as it identifies and monitors the communication signals drones rely on.
In particular, modulation classification, which determines the type of signal modulation used by a drone, is crucial since
different modulations indicate distinct communication types. Traditional manual modulation identification is unreliable
due to human error, leading to the development of automated approaches, such as likelihood ratio-based and feature-
based methods, each with advantages and limitations [21].

2.3. Application of Software Defined Radio Technology in Modulation Classification

Software Defined Radio (SDR) has revolutionized signal processing by allowing functions traditionally
implemented in hardware to be handled by software, providing greater flexibility. While Joe Mitola is often credited
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with its invention, the concept dates back to the 1980s with the development of the SpeakEasy transceiver platform [22].
Initially designed for tactical communications and interoperability among military forces, SDR has since advanced into
a powerful tool for various applications, including drone signal analysis. SDR-based modulation classification uses
machine learning (ML) algorithms to classify signals based on extracted features. These algorithms are robust against
changes in signal characteristics such as noise and fading, but require large training datasets. Alternatively, known
reference signals and correlation techniques can be used to determine modulation types, though these methods are more
sensitive to signal variations and less effective in noisy environments.

2.4. Spread Spectrum & Protocols of Drone RF Signals

Modern commercial drones predominantly operate in the 2.4 GHz and 5 GHz Wi-Fi bands for manual control,
with GPS-based functionalities using frequencies of 1574.42 MHz and 1227.60 MHz. Drones may also utilize the 900
MHz and 1.3 GHz bands, which can interfere with GPS and require larger antennas. Traditional analog (AM, FM, PM)
and digital modulations (ASK, FSK, PSK) have been replaced by spread spectrum technologies, such as Direct
Sequence Spread Spectrum (DSSS) and Frequency Hopping Spread Spectrum (FHSS). These technologies enhance
resistance to interference and jamming, making drone communication more reliable. Moreover, the protocols used
between the drone and its controller vary in packet structure, encryption, and spectrum usage, making it possible to
trace a drone to its manufacturer. This knowledge aids in developing jamming strategies tailored to counter specific drones.

2.5. Technology Implemented in Drone Jamming

Drone jamming aims to disrupt UAV communication systems, neutralizing them by blocking the signals between
the drone and its operator [23]. Other methods of drone neutralization include directed energy weapons, physical
countermeasures (e.g., nets or trained birds), and laser systems [24,25]. Jamming techniques are divided into response
jamming, which reacts to incoming signals, and noise jamming, which generates broad-spectrum interference. Noise
jamming can be wideband, covering a range of frequencies, or narrowband, targeting specific frequencies. However,
its effectiveness depends on the ability to locate the drone accurately, which is challenging due to the small size and
mobility of UAVs. In some cases, barrage jamming, which targets multiple frequencies, can spread the jamming power
too thin, reducing its effectiveness [26,27]. Recent advancements in ML have introduced more dynamic jamming
techniques, capable of adapting to changes in the drone’s signal characteristics in real-time [28,29].

2.6. Analysis of Literature

Table 1 summarizes current surveys and evaluations on accurate modulation type classification using machine
learning and deep learning. It highlights key findings, advantages, limitations, input signal types, technologies used,
modulation types, and recognition accuracy.

Table 1. Summary of surveys and evaluations on modulation type classification using machine learning and deep learning.

Technology .
e el . . Modulation
Research Advantages Limitations Input Signal Type & Recognition .
Signal Type
Accuracy
2ASK, 4ASK,
8ASK, 2FSK,
. CNN 4FSK, 8FSK,
Accuracy increases when the ) .
. . . Accuracy decreases with ~ Amplitude vs. sample 2PSK, 4PSK,
Siyang Zhou [30] number of layers increases in the .
low SNR signal graph 90% under -10 dB 8PSK,
CNN model
SNR 4QAM, 16QAM,
64QAM, OFDM,
LFM, MSK
4PAM, QPSK,
128QAM, 8PSK,
. . . CNN
Sowjanya . . Higher SNRs are required . 16QAM, GFSK,
Accuracy increases with the . ) Frequency vs. Time
Ponnaluru for robust efficiency in 32QAM,
number of datasets . . Spectrogram 98.9% at 20 dB
[3] high-order modulations. SNR 64QAM,

BPSK, 256QAM,
CPFSK
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Jithin Jagannath
[31]

The estimated SNR value enhances The probability of correct
classifier performance independent classification decreases
of ANN design,

Less processing power

when the number of layers

increases.

Amplitude, phase,

frequency, and other
signal statistics such as

moments and

cumulants, are among

the features

ANN

98% at 15 dB SNR

BPSK, 8PSK,
GMSK, QPSK,
GFSK, 16QAM,
CPFSK

PNN has a shorter training time
than SAE and ANN, and its

Supervised learning may

cause feature confusion,

SAE (stacked
auto-encoder),

2PSK, 2FSK,

PNN (probabilistic 4PSK, 4ASK,

Hui Han [32 Welch power spectrum neural network)  8ASK, 32QAM,
(321 accuracy is higher at low SNR than and accuracy decreases P P ) AFSK SFSK
SAE, SVM, and ANN. with low SNR ’ ’
99.8% at 0 dB 64QAM
SNR
Hybrid ML network improves the . . PCA, SVM BPSK, QPSK,
. . . Correct recognition rate Time-frequency
Feng Wang [33] classification of modulation 16QAM, LFM,

. decreases when low SNR
techniques

spectrum

94% at 10dB SNR 2FSK, 4FSK

The Inception-v3 with the
constellation model achieves the
maximum accuracy in high SNR

CNN, SqueezeNet,

GoogleNet,
Inception-v3

. . . Detection accuracy . . BPSK, QPSK,
Yilin Sun [34] circumstances, while the GRF ) Constellation diagram
. . decreases with low SNR 8PSK, QAM16
(Graphical representation of For SNRs larger
features) delivers higher accuracy in than 10 dB SNR,
low SNR scenarios. around 100%
8PSK,
Classification accuracy increases . BPSK,
L . . . Inception-ResNet
gradually Training time(s)/epoch is  Time-frequency CPFSK, GFSK,
Peng Wu [35] . . . 93.76% at 14 dB
and remains stable with the high spectrum SNR PAMA4,
increase of SNR QAMI, QAMO64,
QPSK
16-QAM,
In the complex
L. CPFSK,
.. . communication .
. Training CNN with an extra layer . . Time-frequency CNN, LSTM 8-PSK, BPSK,
Ruolin Zhou [36] . environment, the quality of
improves accuracy. L. spectrum 96.25% GFSK,
communication is often too
. 64-QAM,
difficult to guarantee.
PAM4, QPSK
Due to the low resolution
o . . AlexNet
. A larger volume of training data is of photos, data conversion QPSK,
Shengliang Peng ) . .
also advantageous for performance from complicated samples Constellation diagrams 8PSK, 16QAM,
[37] . . 79.6%~100% at 8
enhancement. to images certainly results 64 QAM
. . dB SNR
in information loss.
Under nominal channel distortions,
8PSK, B-FM,
neural network performance for the
Venkatesh . . . Frequency errors are more __ ResNet BPSK, CPFSK,
modulation classification task may : .. Time-frequency
Sathyanarayanan . . common in phase sensitive DSB-AM, GFSK,
attain very high levels of accuracy . spectrum
[38] . . . modulation types. 80% PAM4, QPSK,
over a wide variety of modulation SSB-AM

patterns.

Despite advancements in drone neutralization and signal analysis using ML and DL methods, real-time
identification of drone RF signals remains a significant challenge. Existing studies have not fully integrated DL-based
techniques for real-time drone RF signal detection and classification. This research aims to fill this gap by employing
DL-based object detection to enable accurate and efficient real-time identification of drone RF signals, addressing
challenges such as large dataset requirements and the specific needs of military applications.

Recent contributions have begun extending this work into operational UAV security systems. Xu et al. [39]
presented an integrated SDR-based framework for passive detection and blanket jamming, demonstrating the feasibility
of combining spectrum sensing with wideband interference. Khan et al. [40] introduced a UAV-based smart surveillance
system built on wireless sensor networks, showing the role of distributed sensing in threat monitoring. Zhang et al. [41]
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examined ML-driven unauthorized UAV detection integrated into UTM frameworks, highlighting the importance of
scalable civil airspace security solutions. Complementary to these, Tesfay et al. [42] proposed a deep learning-based
UAYV neutralization system leveraging intelligent jamming, while Xue et al. [43] developed adaptive signal generation
strategies for UAV jamming in IEEE Access. Collectively, these works illustrate the breadth of recent advances
spanning detection, surveillance, and jamming.

However, a persistent limitation across prior studies is their focus on either detection or jamming, rather than their
integration. Existing solutions typically address signal recognition, surveillance, or interference independently, leaving a gap
in unified systems that can identify and neutralize drones in real time. The present study is the first to demonstrate an end-to-
end SDR-based framework that couples deep learning driven modulation detection with immediate jamming activation. By
validating the system on real RF data from multiple commercial transmitters, our work advances beyond simulation-only or
single-function approaches and contributes a practical, integrated solution to UAV countermeasure research.

3. Methods

This section outlines the methods for detecting and jamming drone radio frequency (RF) signals by integrating
software-defined radio (SDR) technology with deep learning models. The approach involves capturing RF signals
emitted by drones, processing them to generate spectrograms, and utilizing machine learning techniques for signal
detection and classification. An automatic jamming mechanism is then implemented based on the identified signals.

3.1. Overview

The proposed system, the Intelligent System for Modulation Detection and Jamming of Drones (ISMD), is designed
to detect and classify drone RF signals within a specified perimeter, typically up to 100 m. By capturing real-time drone
control data, such as modulation techniques, transmitting power, and signal-to-noise ratio, the system processes these
inputs using SDR technology and deep learning models to generate spectrograms and accurately identify drone signals.
Upon detection, the system employs a repeat attack jamming technique to disrupt unauthorized drone activities.

3.2. Equipment and Software
3.2.1. Hardware

The primary hardware component used in this study is the HackRF One SDR (Great Scott Gadgets, USA), which
operates over a frequency range of 1 MHz to 6 GHz. This range encompasses the Industrial, Scientific, and Medical (ISM)
bands commonly utilized by drones for communication and control. The HackRF One can both receive and transmit signals,
making it suitable for capturing RF signals from drones and implementing jamming techniques. Additional hardware includes
antennas compatible with the HackRF One to enhance signal reception and transmission capabilities.

3.2.2. Software

Various software tools were employed to support the hardware components in this study. SDRangel (Version 6.0.2),
an open-source SDR platform, interfaced with the HackRF One to tune specific frequency ranges, capture drone RF
signals, and generate spectrograms for analysis. The TensorFlow Object Detection API facilitated the development and
training of machine learning models for object detection, leveraging features like data augmentation and transfer
learning. Python served as the primary programming language for scripting and automation, utilizing libraries such as
PyAutoGUI for automating frequency scanning and jamming activation, and OpenCV for image processing and feature
extraction tasks. Figure 1 illustrates the SDRangel user interface used during the study.
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Figure 1. SDRangel software user interface.

3.3. Data Collection
3.3.1. Drone Transmitters and Specifications

Four commercially available drone transmitters operating within the 2.4 GHz ISM band were selected to generate a
diverse dataset of RF signals. These transmitters employ different modulation techniques, spread spectrum methods, and
communication protocols, providing a comprehensive range of signal characteristics for model training. Table 2 summarizes
the specifications of each transmitter, including modulation type, spread spectrum technique, and protocol used.

Table 2. Details of transmitters.

Transmitter Type Modulation/Spread Spectrum/Protocol
Modulation: Frequency Shift Keying (FSK)
SKYDROID T 12 Spread Spectrum: Frequency Hopping Spread Spectrum (FHSS)

Protocol: CSMA/CA

Modulation: Gaussian Frequency Shift Keying (GFSK)
FLYSKY FS-i6 Spread Spectrum: Frequency Hopping Spread Spectrum (FHSS)

Protocol: AFHDS2A

Modulation: Gaussian Frequency Shift Keying (GFSK)
DUMBORC-X6 Spread Spectrum: Chirp Spread Spectrum (CSS)
Protocol: AFHDS2
Modulation: Gaussian Minimum Shift Keying (GMSK)
Differential Quadrature Phase Shift Keying (DQPSK)
Spread Spectrum: Direct Sequence Spread Spectrum (DSSS)
Protocol: Wi-Fi UDP

DJI TELLO

3.3.2. RF Data Acquisition

Data collection involved capturing RF signals emitted by each transmitter using the HackRF One SDR in
conjunction with SDRangel software (Version 6.0.2). The transmitters were placed at varying distances from the
receiver, incrementally increasing by 5 m up to a maximum of 40 m, to simulate different operational scenarios. At
each distance, 50 samples were collected per transmitter, resulting in 400 samples per transmitter and an aggregate of
1600 samples for the entire dataset. The captured signals were processed in real-time to generate spectrograms, which
visually represent the frequency spectrum of the signals over time. These spectrograms served as input data for the deep
learning models.

For all data collection experiments, the HackRF One was configured with a sampling rate of 20 mega-samples per
second (MS/s), centered in the 2.40-2.49 GHz ISM band, with an effective receiver bandwidth of 2 MHz. The automatic
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gain control (AGC) was fixed at 30 dB to balance sensitivity and avoid saturation in strong signal scenarios. Each RF
capture was processed in SDRangel to generate spectrograms using a 1024-point FFT with a 50% overlap and a Hann
window function, resulting in a time resolution of approximately 2 ms per frame. This configuration provided sufficient
frequency resolution to distinguish between modulation schemes while maintaining real-time responsiveness.

3.4. Data Preparation
3.4.1. Spectrogram Generation

The SDRangel software (Version 6.0.2) was configured to generate spectrograms from the captured RF signals.
Key parameters such as frequency range, resolution bandwidth, and time window were adjusted to optimize the quality
of the spectrograms for analysis. The spectrograms provided a visual representation of the signal’s frequency content,
which is essential for identifying unique patterns associated with different drone transmitters.

3.4.2. Image Labeling

Accurate annotation of the spectrogram images is critical for training effective object detection models. The
Labellmg software (Version 1.8.6) was employed to manually annotate the spectrograms by drawing bounding boxes
around the regions of interest corresponding to each transmitter type. Annotations were saved in the PASCAL Visual
Object Classes (VOC) format, which includes details such as the object’s class, bounding box coordinates, and image
size. Figure 2 illustrates an example of an annotated spectrogram image. Each transmitter class had 400 annotated
images, resulting in a total of 1600 annotated images organized into four groups based on transmitter type.

<annotation>
<folder>images</folder>
<filename>TELO_40m 0384.jpg</filename>
<path>C:\Users\NANAYAKKARA\Desktop\data set\images\TELO 40m 0384.jpg</path>
<source>
<database>Unknown</database>
</source>
<size>
<width>1918</width>
<height>1027</height>
<depth>3</depth>
</size>
<segmented>0</segmented>
<object>
<name>DJI_Tello</name>
<pose>Unspecified</pose>
<truncated>1</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>396</xmin>
<ymin>396</ymin>
<xmax>1918</xmax>
<ymax>539</ymax>
</bndbox>
</object>
</annotation>

Figure 2. Example of spectrogram annotation in PASCAL VOC format.

3.5. Model Development
3.5.1. TensorFlow Object Detection API

The TensorFlow Object Detection API was utilized to develop and train object detection models capable of
identifying and classifying drone RF spectrograms. The API offers pre-trained models and tools for training custom
models on new datasets. It supports features like data augmentation and transfer learning, and provides evaluation
metrics to assess model performance.

3.5.2. Transfer Learning and Model Selection

Transfer learning was employed to leverage pre-trained models trained on large datasets, enabling the model to
recognize high-level features within images. Four pre-trained models were selected from the TensorFlow Model Zoo
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based on criteria such as processing speed (in milliseconds), mean average precision (mAP), and compatibility with

available hardware resources:
Table 3 lists the selected models: CenterNet HourGlass104 [44], EfficientDet DO [45], SSD ResNet50 V1 FPN
(RetinaNet50) [46], and Faster R-CNN ResNet152 V1 [47,48], along with their respective mAP scores and processing speeds.

Table 3. Selected pre-trained models and their specifications.

Model COCO mAP Speed (ms)
CenterNet HourGlass104 512 x 512 41.9 70
EfficientDet DO 512 x 512 33.6 39
SSD ResNet50 V1 FPN 1024 x 1024 (RetinaNet50) 38.3 87
Faster R-CNN ResNet152 V1 1024 x 1024 37.5 86

3.5.3. Model Training and Evaluation

Model training was conducted using Google Colab with GPU acceleration to handle the computational demands
of deep learning tasks. The dataset was split into training and testing sets, with 80% of the data used for training and
20% for testing. The training process involved setting the number of training steps to 50,000 and using a batch size of
8 to accommodate GPU memory limitations. The Adam optimizer was used with an initial learning rate of 0.0001,
decayed linearly after 40,000 steps.

To improve generalization, image-based data augmentation was applied to the spectrogram dataset. Random
horizontal/vertical flips, contrast normalization, and time-frequency masking were used to simulate variability in
captured signals while preserving the spectral patterns necessary for classification. Training was performed on an
NVIDIA Tesla T4 GPU (~16 GB), requiring approximately 36 h to complete 50,000 steps. Early stopping was applied
if validation loss plateaued for more than 2000 steps. The final evaluation metrics were computed on the withheld 20%
test set to ensure unbiased performance estimates. Figure 3 illustrates the overall workflow of the model training process,
starting from data preparation and annotation to model configuration, training iterations, and evaluation metrics.

-{
-7,7'
TENSOR FLOW -

- -
'

CONFIGURATION
FILE

Figure 3. High-level workflow of the model training process. The pipeline includes spectrogram generation from RF signals,
annotation, configuration of deep learning models, and training with evaluation metrics. This diagram illustrates the end-to-end
integration of SDR data collection with TensorFlow-based model development.

3.6. Implementation of Jamming Mechanism

3.6.1. Repeat Attack Strategy

The repeat attack jamming technique involves capturing the drone’s communication signals and retransmitting
them to interfere with the original signal, effectively disrupting the drone’s control mechanisms. Recorded RF signals
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for each transmitter were saved in WAV format using SDRangel. These recordings served as the jamming signals
activated upon detection of a corresponding drone transmitter.

3.6.2. SDRangel Configuration

Automation scripts using PyAutoGUI were developed to configure SDRangel for both detection and jamming.

SDRangel was programmed to automatically scan the 2.40-2.49 GHz frequency range to detect potential drone
transmitters. Upon detecting a signal exceeding a predefined threshold, the system identified the transmitter type using
the trained deep learning model.

Once a specific drone transmitter was identified, the system automatically enabled the Push-to-Talk (PTT) function
in SDRangel to transmit the pre-recorded jamming signal through the HackRF One’s transmitter path.

Considerations were made regarding the transmission power of the jamming signal to ensure its effectiveness. The
jamming signal’s strength needed to be sufficient to overpower the drone’s control signal without causing unintended
interference with other devices operating in the same frequency band.

4. Results
4.1. Trained Model Performance

Four pre-trained models were fine-tuned and evaluated: CenterNet HourGlass104 512 x 512, EfficientDet DO 512

x 512, SSD ResNet50 V1 FPN 1024 x 1024, and Faster R-CNN ResNet152 V1 1024 x 1024. The performance of each
model was assessed based on the total loss during training, average per-step training time, and its ability to accurately
predict drone RF spectrograms.

Training Metrics Summary

A summary of the training metrics for each model is presented in Table 4.

Table 4. Training metrics of the fine-tuned models.

Model Training Steps Avg. Per-Step Time (s) Total Loss
CenterNet HourGlass104 512 x 512 50,000 3.133 0.3078
EfficientDet DO 512 x 512 50,000 0.428 0.1948
SSD ResNet50 V1 FPN 1024 x 1024 50,000 1.443 0.2014
Faster R-CNN ResNet152 V1 1024 x 1024 28,200 1.167 0.0723

4.2. Model Testing

Each trained model was tested using the RF spectrogram images to evaluate its detection accuracy and effectiveness
in identifying different drone transmitters.

4.2.1. CenterNet HourGlass104 512 x 512 Model

The CenterNet model was applied to four RF spectrogram images corresponding to the four transmitter types. The
model accurately identified the transmitter types with a detection accuracy of 98%. The detection scores were mapped
using a predefined category index.

The CenterNet HourGlass104 model successfully identified all four transmitter types with high accuracy. As shown
in Figure 4, the predicted bounding boxes align well with the annotated spectrogram features, although minor positional
deviations occurred at lower SNR conditions.

4.2.2. EfficientDet DO 512 x 512 Model

When tested, the EfficientDet DO model achieved a maximum detection accuracy of 69%. While it identified the
transmitter types, the accuracy was lower compared to the CenterNet model. Figure 5 illustrates the test outputs of
EfficientDet DO 512 x 512 model.
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4.2.3. SSD ResNet50 V1 FPN 1024 x 1024 Model

The SSD ResNet50 V1 FPN model did not accurately identify the transmitter types and often misclassified the
spectrograms. It exhibited the lowest detection accuracy among the evaluated models, with an accuracy of 48%. Figure
6 illustrates the test outputs of SSD ResNet50 V1 FPN 1024 x 1024 model.

Amp % o o [B8E
Doc. TS . 400, 0¢

BEF LTEM

Figure 4. Test outputs of the CenterNet HourGlass104 (512 x 512) model applied to spectrograms from four distinct drone transmitters: (a)
DumboRC X6, (b) SkyDroid T12, (¢) DJI Tello, and (d) FlySky FS-i6. The model accurately identified modulation patterns, as indicated
by the bounding boxes, which yielded high-confidence classifications (average accuracy =~ 98%). These results demonstrate the model’s
robustness in recognizing unique RF signal characteristics, with only minor bounding box misalignments observed in a few instances.

2,452,400%

[a] [b] [e] [d]

Figure 5. Test outputs of the EfficientDet DO (512 x 512) model applied to spectrograms from four drone transmitters: (a) SkyDroid
T12, (b) DJI Tello, (¢) DumboRC X6, and (d) FlySky FS-i6. The model successfully detected and classified modulation patterns
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with high precision across distinct frequency bands. Bounding boxes indicate confident detections of unique RF signatures,
highlighting the model’s strong generalization ability for drone signal recognition in complex spectral environments.

2,447,000 % 2,448,000%
oo © ppm
Q [B8E Bas F Ay X wto DC Q. BBF  Bas

02,400,000

Figure 6. Test outputs of the SSD ResNet50 V1 FPN (1024 x 1024) model applied to spectrograms from four drone transmitters:
(a) FlySky FS-i6, (b) DumboRC X6, (¢) DJI Tello, and (d) SkyDroid T12.

4.2.4. Faster R-CNN ResNet152 V1 1024 x 1024 Model

Among the evaluated models, Faster R-CNN ResNet152 V1 provided the most robust results. Figure 7 highlights
its ability to consistently identify transmitter types with strong confidence scores, validating its superior feature
extraction capabilities.

(a] [b] [c] [d]

Figure 7. Test outputs of the Faster R-CNN ResNet152 V1 model applied to spectrograms from four drone transmitters: (a)
SkyDroid T12, (b) FlySky FS-i6, (¢) DumboRC X6, and (d) DJI Tello. The model accurately detected all transmitter modulation
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patterns with near-perfect confidence scores. Achieving an overall accuracy of 99%, this model demonstrated the highest reliability
and precision among all evaluated architectures for drone RF spectrogram classification.

4.3. Further Evaluation of Models

The models were further evaluated using metrics such as mean Average Precision (mAP), precision, recall, and F1
score to assess their performance comprehensively. The F1 score was calculated using the formula:

Precision X Recall
Fl1=2x

Precisio + Recall

Practical implementation tests were conducted using real-time scenarios to assess the models’ performance in
operational conditions. Visual inspections were performed to ensure correct detection and identify false positives.
Figure 8 presents the practical implementation setup, demonstrating the hardware and configuration used in the
experiment. Figure 9 highlights the practical implementation of the Faster R-CNN ResNet152 V1 model, showcasing
how this deep learning architecture is applied to the task. Figure 10 provides an example of a repeat attack for a Flysky
FS-i6 controlled drone, illustrating the specific scenario where this attack was executed.

Modulated Signal

—————

I P Extended Display
/
. /
! /
| Repeat Attack /
UnknownI y
Signal /
ReceivingI V4
Path | /
| /
/
I /
| /
| /
/
M /
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Figure 8. Practical implementation setup.

Figure 9. Practical implementation of faster R-CNN ResNet152 V1 model.
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Figure 10. Example of repeat attack for flysky FS-i6 controlled drone.

5. Discussion
Comparative Analysis of Models

A comparative analysis of the models based on detection accuracy and processing speed is presented in Table 5.

Table 5. Model comparison results with practical implementation.

Model Detection Accuracy (%) Processing Time per Image (ms)
CenterNet HourGlass104 512 x 512 96 1366
EfficientDet DO 512 x 512 58 233
SSD ResNet50 V1 FPN 1024 x 1024 48 1286
Faster R-CNN ResNet152 V1 1024 x 1024 99 2349

Although Table 5 primarily reports detection accuracy and inference time, we further analyzed error cases to infer
trends in precision, recall, and F1 performance. The Faster R-CNN ResNet152 V1 exhibited the best trade-off between
precision and recall, achieving highly confident detections with minimal false positives. CenterNet HourGlass104
achieved similar reliability at lower computational cost, whereas EfficientDet DO offered rapid inference with modest
accuracy, making it suitable for applications where early warning is prioritized over exact classification. SSD ResNet50
V1 FPN underperformed across all dimensions.

These results emphasize that model selection should be guided not only by accuracy but also by latency and
operational context. High-accuracy models such as Faster R-CNN are recommended in security-critical environments,
whereas lighter architectures like EfficientDet may be preferable for real-time, resource-constrained systems. Future work
will include full reporting of precision, recall, and F1-scores across larger datasets for more rigorous benchmarking.

The Faster R-CNN ResNet152 V1 1024 x 1024 model achieved the highest detection accuracy of 99%, albeit with
the longest processing time per image (2349 ms). It occasionally showed slight deviations in bounding box placement
but demonstrated superior overall performance. The CenterNet HourGlass104 512 x 512 model also exhibited high
detection accuracy at 96% with more precise bounding box localization. Its processing speed was faster than the Faster
R-CNN model but still relatively slow (1366 ms). The EfficientDet DO 512 % 512 model achieved a moderate detection
accuracy of 58% with the fastest processing speed (233 ms), making it suitable for applications where speed is critical
and moderate accuracy is acceptable. The SSD ResNet50 V1 FPN 1024 x 1024 model showed the lowest detection
accuracy at 48% and did not perform well in correctly identifying the transmitter types. It occasionally misidentified
spectrograms and misplaced bounding boxes.
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Compared with the studies summarized in Table 1, our Faster R-CNN ResNet152 V1 model achieves superior
accuracy (99%) while maintaining robustness across varied transmitters. Unlike CNN or ANN-based approaches that
deteriorate under low SNR [30-32], our system sustains high accuracy even in practical, noisy RF environments.
Importantly, the integration of SDR-based real-time data collection and jamming execution provides a holistic
neutralization pipeline not addressed in prior works. This combination positions our system as more operationally viable
for security-critical deployments.

The key distinction of our work lies in its dual capability: modulation detection combined with immediate jamming
activation, all implemented on a low-cost SDR platform. Previous studies [44—46] have contributed to either SDR-
based detection or intelligent jamming methods; however, none have demonstrated an integrated, real-time system that
bridges both functions using deep learning. By offering both accurate classification and rapid neutralization within a
single pipeline, our approach advances the state of UAV countermeasure systems. It provides a practical foundation for
deployment in security-sensitive environments.

6. Conclusions

In conclusion, the development of an intelligent system for drone detection and jamming using deep learning
techniques and software-defined radio technology offers a promising solution to combat the increasing threat of
unauthorized drone activity. The system provides a cost-effective and reliable method for detecting and classifying
drone RF signals in real-time, with high accuracy and without human intervention. The system can be used in various
applications such as perimeter security, critical infrastructure protection, and public safety, and its potential users
include military, law enforcement, security personnel, private organizations, and individuals concerned about the
security and privacy of their property. The research project presented in this work utilized the HackRF One SDR module,
the SDRangel software, and the TensorFlow Object Detection API to collect and analyse drone RF signals. The deep
learning models developed in this research to detect and classify drone signals demonstrated high accuracy and
efficiency as high as 96.67%. The performance evaluation results also showed that the system was capable of
successfully jamming the drone signal using a repeat attack mechanism.

Future works in this area include the integration of the intelligent system with existing security systems to provide
a comprehensive and efficient solution for drone detection and jamming. Additionally, the development of more
sophisticated deep learning models using larger and more diverse datasets could further improve the accuracy and
efficiency of the system. The integration of multiple sensors and technologies, such as RADAR, optical sensor outputs
and RF direction finding, could also provide additional data for improved detection and classification of drone signals.
Furthermore, the proposed system could be extended to include advanced techniques for detecting and tracking multiple
drones simultaneously, identifying the type and model of drones, and analyzing the behavior and trajectory of the drones.
The use of Al and ML algorithms could be explored to enable the system to adapt to changing drone technologies and
evolving security threats.
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