
  

https://doi.org/10.70322/sbe.2025.10015 

Review 

Generative Artificial Intelligence for Function-Driven De Novo 
Enzyme Design 
Xuan Qi 1,2,3, Dehang Wang 1,2, Zhenkun Shi 1,2, Xiaoping Liao 1,2,* and Hongwu Ma 1,2,* 

1 Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China;  
qixuan24@tib.cas.cn (X.Q.); wangdexing@tib.cas.cn (D.W.); zhenkun.shi@tib.cas.cn (Z.S.) 

2 National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China 
3 School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China,  

Hefei 230026, China 

* Corresponding author. E-mail: liao_xp@tib.cas.cn (X.L.); ma_hw@tib.cas.cn (H.M.) 

Received: 28 August 2025; Accepted: 26 September 2025; Available online: 29 September 2025 

 

ABSTRACT: The de novo design of artificial enzymes with customized catalytic functions represents a long-standing challenge 
in synthetic biology. Recent breakthroughs in deep learning, particularly the rise of Generative Artificial Intelligence (GAI), have 
transformed enzyme design from structure-centric strategies toward function-oriented paradigms. This review outlines the emerging 
computational frameworks that now span the entire design pipeline, including active site design, backbone generation, inverse 
folding, and virtual screening. Detailed description of active site, called a theozyme, is designed to stabilize transition states and 
can be guided by density functional theory (DFT) calculations that define the geometry of key catalytic components. Guided by the 
theozyme, GAI approaches such as diffusion and flow-matching models enable the generation of protein backbones pre-configured 
for catalysis. Inverse folding methods, exemplified by ProteinMPNN and LigandMPNN, further incorporate atomic-level 
constraints to optimize sequence–function compatibility. To assess and optimize catalytic performance, virtual screening platforms 
such as PLACER allow evaluation of protein–ligand conformational dynamics under catalytically relevant conditions. Through 
representative case studies, we illustrate how GAI-driven frameworks facilitate the rational creation of artificial enzymes with 
architectures distinct from natural homologs, thereby enabling catalytic activities not observed in nature. With the rapid progress 
and widespread adoption of GAI, we anticipate that de novo enzyme design with customized catalytic functions will soon evolve 
into a mature and broadly applicable methodology. 
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1. Introduction 

Enzymes are the catalytic engines of biological systems, enabling precise and efficient transformations under mild 
conditions. Their vast potential in biomanufacturing, medicine, and environmental applications has driven increasing 
efforts to discover, engineer, and even design new enzymes beyond the natural repertoire [1–4]. Traditional approaches 
to enzyme engineering, such as directed evolution and rational design, have achieved remarkable success, especially in 
improving stability and catalytic ability based on the starting enzyme [5–8]. Rational enzyme design relies on structural 
knowledge to make targeted mutations for improved function, but its success is limited by the complexity of protein 
engineering and the risk of local fitness optimum. Directed evolution mimics natural selection by generating diverse 
mutant libraries and screening for improved variants. However, it is labor-intensive, costly, and often constrained by 
the difficulty of identifying rare high-performing mutants [9,10]. 

De Novo Enzyme Design aims to design artificial enzymes from scratch to catalyze chemical reactions that either 
do not exist in nature or are inefficiently catalyzed by natural enzymes [11,12]. Early efforts largely reused natural 
protein scaffolds—using tools such as RosettaMatch [13] to place theozyme-derived catalytic motifs (built from 
transition-state models) into unrelated backbones, followed by local sequence redesign. Owing to limitations in 
scoring/energy functions, incomplete active-site preorganization, and neglected conformational dynamics, the resulting 



Synthetic Biology and Engineering 2025, 3, 10015 2 of 16 

catalysts typically displayed activities orders of magnitude below natural enzymes, precluding industrial use [14,15]. 
Subsequently, domain- and chimera-based strategies emerged, recombining fragments from related enzyme families 
and integrating evolutionary constraints with structural-compatibility filters [16,17]. By preserving the active center, 
these approaches better maintain proper folding; however, they remain inherently constrained by the structures and 
functions of existing protein backbones. 

The advent of Generative Artificial Intelligence (GAI) no longer relies solely on pre-existing structural templates. 
Instead, it enables the generation of entirely novel architectures from first principles to meet predefined catalytic 
objectives. This shift expands the accessible design space beyond the limits of natural evolution, allowing the rational 
creation of artificial enzymes with bespoke catalytic functions that can overcome inherent limitations of natural enzymes 
[18–20]. Early demonstrations include the design of artificial luciferases with improved stability and broadened 
substrate tolerance, highlighting the feasibility of this approach [21]. Building on this foundation, a particularly notable 
advance was achieved by the David Baker laboratory, which recently applied GAI to design a fully de novo serine 
hydrolase with catalytic efficiencies (kcat/Km) up to 2.2 × 105 M−1ꞏs−1 and folds distinct from natural hydrolases. 
Importantly, the artificial enzyme backbone is unprecedented in nature, highlighting the capacity of GAI to explore 
structural space inaccessible to evolutionary processes. This paradigm shift is driven by a new generation of AI-powered 
frameworks, including advanced backbone-generation and inverse-folding models (e.g., RFdiffusion [22], SCUBA-D 
[23], ProteinMPNN [24], and LigandMPNN [25]), that enable the de novo construction of protein scaffolds with tailored 
topological features, as well as mechanism-informed approaches that incorporate catalytic mechanisms directly into the 
design process. 

Recent research in the field has exemplified a typical de novo enzyme design workflow. It begins with defining 
the catalytic requirements of the target reaction, followed by the identification of the active sites that establish the 
essential catalytic geometry. These active sites then serve as constraints for generating compatible protein backbones 
using generative models, followed by sequence design through inverse-folding frameworks to ensure structural integrity 
and chemical preorganization of the active site. The resulting candidates undergo iterative refinement through 
computational evaluation—including structural prediction and active-site geometry scoring—to enrich functional 
designs before experimental testing. Recent advances in GAI and structure-based modeling have enabled a more 
systematic and predictive design cycle, thereby supporting the realization of artificial enzymes with tailored catalytic 
functions. In the following sections, this review will systematically explore these computational methods and their 
applications across the enzyme design pipeline. It will provide a detailed discussion of the typical workflow for de novo 
enzyme design. 

2. Identification of Active Sites 

Although naturally occurring enzymes are extraordinarily efficient biocatalysts capable of mediating highly 
selective chemical transformations under mild conditions, natural enzymes still exhibit limitations in practical 
applications. Many important biosynthetic reactions lack corresponding natural enzymes, and the intrinsic properties of 
natural enzymes—such as stability and substrate specificity—often fall short of the stringent requirements of industrial 
applications. This challenge has driven an urgent demand for de novo design of novel enzymes, aiming to create entirely 
new catalytic proteins through rational and computational approaches in the absence of natural evolutionary templates. 
A central difficulty in this field lies in the fact that the catalytic efficiency of natural enzymes depends on the precise 
atomic-scale arrangement of residues within the active site relative to the substrate; for reactions that have not evolved 
in nature, no pre-existing structural templates are available for guidance. To address this challenge, two foundational 
design strategies have emerged in enzyme engineering: “data-driven design” centered on the Identification of consensus 
structures, and “rational design” exemplified by the Theozyme model. This section provides a detailed discussion of 
both strategies. 

2.1. Consensus Structure Identification: A Data-Driven Approach 

This data-driven approach extracts conserved geometrical features from families of natural enzymes using large 
structural databases such as the Protein Data Bank. This method aims to uncover highly conserved spatial relationships 
and hydrogen-bonding networks associated with catalytic function within a protein family [26,27]. The core concept is 
the identification of a “consensus shape”—a pseudo-protein that distills and summarizes the essential structural 
information of the protein family (Figure 1A). Through sequence and structural alignment [27,28], this approach can 
reveal conserved distances, angles, and dihedral distributions between catalytic residues. 
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A canonical example of consensus structure recognition is the catalytic triad (Ser-His-Asp) of serine hydrolases 
[26,29]. Despite their evolutionary divergence, many distinct serine protease families, including trypsin and subtilisin, 
have independently evolved this identical catalytic mechanism. Studies have shown that, beyond the triad itself, the 
adjacent oxyanion hole—a microenvironment formed by backbone amide hydrogen atoms—plays a critical role in 
stabilizing the tetrahedral intermediate of the reaction. Statistical analysis of these characteristic distances and angles 
provides reliable guidance for designing active sites for similar reactions. 

The primary advantage of consensus structure identification lies in its low computational cost and ability to directly 
leverage evolutionary solutions honed over millions of years. It is particularly suitable for designing reactions for which 
natural templates exist or for catalytic chemistries similar to those found in nature. However, its main limitations are 
restricted transferability and coverage. The method cannot be applied to reactions that occupy “entirely novel chemical 
space,” where no natural template is available. Moreover, as a statistical abstraction [30], it does not explain why a 
particular geometry is optimal, nor does it provide insight at the level of first-principles theory [29]. 

In addition to structural alignment, recent advances in sequence-based models provide complementary means of 
identifying consensus features [31–33]. For example, protein language models such as ESM2 [34–36] and evolutionary 
approaches such as Evmutation [37] can highlight conserved residues or predict mutational tolerance through saturation 
mutagenesis scoring, thereby offering insight into positions critical for catalytic activity. Importantly, while sequence 
conservation and statistical scores can suggest putative active sites, because they reflect general evolutionary constraints 
rather than explicit catalytic geometries, their functional relevance often requires further validation—either through 
experimental mutagenesis or by integrating orthogonal computational strategies (e.g., molecular dynamics, energetic 
analysis). This ensures that residues inferred from sequence data are not solely artifacts of alignment but are 
mechanistically relevant to catalysis. 

 

Figure 1. Computational strategies for catalytic center design in de novo enzymes. (A) Conserved residues are identified by 
sequence alignment (upper) or structural superposition (lower), providing consensus positions that define putative catalytic sites. 
(B)Theoretical enzyme model (theozyme). A minimal active-site representation is built by placing key catalytic residues around a 
transition-state analogue, thereby encoding the geometric and electrostatic requirements necessary to stabilize the reaction pathway. 
(C) QM-based theozyme construction. A localized active-site is optimized using quantum-chemical methods. The lower-right inset 
illustrates different electronic-structure approaches, including semi-empirical, Hartree–Fock, and density functional theory (DFT), 
with peak height representing accuracy and color shading indicating computational cost. 
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2.2. Theoretical Enzyme Models: Cornerstones of Rational Design 

In contrast, the Theozyme (short for “theoretical enzyme”) represents an “inside-out” strategy (Figure 1B), 
introduced by the research group of Houk [38], in the late twentieth century. A theozyme is an idealized minimal active 
site model composed solely of the transition state of the target reaction together with catalytic groups capable of forming 
stabilizing interactions—typically simplified amino acid side chains or backbone fragments [39]. Through quantum 
mechanical (QM) calculations, this approach delineates the optimal spatial arrangement of catalytic groups required to 
maximally stabilize the transition state of a given chemical reaction. 

The design philosophy of the theozyme is conceptually rooted in the transition-state theory proposed by Linus 
Pauling and Richard Wolfenden, which posits that efficient enzymes accelerate reactions primarily through tightly 
binding and stabilizing the transition state, thereby significantly lowering the activation barrier. The theozyme provides 
an atomically precise “blueprint” for this idealized state. Beyond insights into substrate orientation, bond dynamics, and 
molecular rearrangements [40–45], it enables quantitative assessment of how individual atoms or catalytic groups 
contribute to the overall reaction rate. 

The Theozyme construction process follows a QM-based workflow (Figure 1C). Initially, the transition-state 
structure of the target reaction is precisely located under idealized conditions, in the absence of any external catalytic 
groups, using QM methods such as Hartree–Fock theory (HF), density functional theory (DFT), or semi-empirical 
approaches [38]. Catalytic residue models—typically side-chain fragments or backbone functional groups—are 
systematically positioned around this transition state. To reduce complexity, these residues are truncated and capped with 
hydrogens [46]. With the transition state fixed as a constraint, the geometry of the entire supramolecular system is optimized, 
yielding an arrangement that maximally stabilizes the transition state and minimizes the reaction barrier. This process distills 
key geometric parameters—distances, angles, and dihedrals—that guide subsequent enzyme design algorithms. 

In practice, the hybrid functional B3LYP/6-31+G* remains one of the most widely applied methods for theozyme 
calculations [46]. B3LYP combines a portion of exact Hartree–Fock exchange with DFT-based exchange–correlation, 
balanced by three empirical parameters [47,48]. This hybridization provides a favorable compromise between accuracy 
and efficiency in describing organic thermochemistry and geometries, typically predicting activation energies with an 
approximate error of ~1 kcalꞏmol−1. The 6-31+G* basis set defines atomic orbitals with sufficient flexibility at a 
reasonable cost. While not flawless in reproducing relative transition-state energies, the B3LYP/6-31+G* level of theory 
generally provides geometrical precision sufficient to guide theozyme-based enzyme design. 

In summary, the Theozyme model and consensus-structure identification thus serve as complementary tools for 
active-site design: the former provides a rigorous atomistic blueprint rooted in transition-state stabilization, while the 
latter reduces arbitrariness by leveraging structural motifs conserved through evolution. Integrating these strategies 
holds promise for overcoming current bottlenecks in de novo enzyme design. 

3. GAI Is Reshaping Enzyme Backbone Design 

A central objective in de novo enzyme design is to construct a backbone capable of precisely accommodating 
catalytically essential residues [15]. Traditional approaches, such as RosettaMatch [49], rely on identifying compatible 
sites within a predefined scaffold library to position the active-site geometry. While successfully generating a range of 
artificial enzymes, these methods are inherently constrained by the geometric limitations of the available scaffold 
libraries [50]. As a result, achieving a balance between global scaffold stability and the precise spatial requirement of 
the catalytic center often proves elusive, limiting the realization of ideal active-site geometries within physically 
plausible protein structures. 

To overcome these limitations, recent efforts have shifted toward active-site-constrained scaffold generation. 
Unlike conventional template-based strategies, this approach does not rely on natural topologies or predefined 
backbones. Instead, it seeks to generate novel scaffolds that are intrinsically compatible with the intended catalytic 
geometry via sampling, recombination, or de novo construction. Early machine learning-based methods in this area 
were often restricted by the diversity and size of existing scaffold libraries, limiting their ability to explore novel 
geometries. However, advances in generative modeling have opened new avenues. In particular, diffusion-based models 
(such as SMCDiff [51] and RFdiffusion [22]) and flow-matching models (such as RFdiffusion2 [20]) have marked a 
paradigm shift in protein scaffold design. 

This section outlines the principles and emerging applications of these generative models, examining their 
advantages and limitations in the context of enzyme design. 
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3.1. Diffusion Model Opens New Era for Enzyme Backbone Design 

Diffusion model [52] is a class of probabilistic generative models that operate by progressively corrupting input 
structures with noise during a forward process, and then learning to reverse this process to recover clean samples [52,53]. 
The core idea is to interpolate between two distributions: a simple, tractable noise distribution, typically Gaussian, and 
the complex, desired data distribution. A neural network is trained to iteratively denoise samples, thereby transforming 
random noise into structured outputs that reflect the target distribution (Figure 2A). 

A notable advancement in protein backbone generation was introduced by Trippe and colleagues in 2022, who 
leveraged E(3)-equivariant graph neural networks [54,55] to develop SMCDiff [51] (Sequential Monte Carlo Diffusion), 
a two-stage generative framework. The process begins with ProtDiff, an unconditional generative model trained to 
capture the distribution of protein backbone geometries. Conditional sampling is then applied to embed user-defined 
catalytic motifs within the generated scaffolds. This strategy enables the construction of diverse backbone architectures 
of up to 80 residues while preserving structural plausibility at scale. The two-step approach—unconditional modeling 
followed by conditional refinement-offers a practical balance between geometric diversity and functional fidelity. 
However, a critical limitation arises from the use of E(3)-equivariant networks, which inherently cannot distinguish 
between left- and right-handed helices. As a result, approximately 45% of generated scaffolds contain erroneous left-
handed helices, rendering them incompatible with downstream design and ultimately non-functional. 

To address these stereochemical limitations and enhance generative scalability, the Baker laboratory introduced 
RFdiffusion in 2023 [22,56], a pioneering framework that applies diffusion models directly to the generation of three-
dimensional protein coordinates, including the backbones of enzymes such as serine hydrolases and carbonic anhydrases. 
(These applications are discussed in detail in the case study section.) This approach marked a breakthrough in navigating 
high-dimensional conformational spaces. By precisely defining both the sequence positions and spatial orientations of 
catalytic residues, RFdiffusion integrates RoseTTAFold [57] with an SE(3)-equivariant diffusion model and employs 
guided sampling to enforce strict geometric constraints. The model can generate protein structures with complex 
topologies exceeding 600 residues and demonstrates a 10–20% improvement in design success rate over prior methods. 
Furthermore, it significantly accelerates the generative process-structures with 100 residues can be produced in 
approximately 11 seconds. Nonetheless, the imposition of fine-grained, residue-level geometric constraints increases 
sampling complexity and occasionally yields physically implausible motifs, particularly under stringent design specifications. 
This may be because the model is difficult to efficiently explore the high-dimensional conformational space and satisfy fine 
local constraints simultaneously during the iterative denoising process. In the absence of external potential energy guidance, 
it is easy to generate geometrically reasonable but stereochemically or energetically unstable structures. 

Complementing these efforts, Liu et al. [23] introduced SCUBA-D (Side Chain-Unknown Backbone Arrangement-
Diffusion), a novel generative framework that operates independently of external structure prediction tools such as 
RoseTTAFold [57]. During diffusion, SCUBA-D conditions generation on the backbone coordinates of predefined 
catalytic residues and incorporates protein sequence representations as geometric constraints. SCUBA-D introduces an 
adversarial loss function during training to improve the model’s robustness and generalizability. This mechanism 
effectively reduces the risk of generating unrealistic structures when encountering out-of-distribution samples. 
Remarkably, SCUBA-D is highly efficient, capable of generating a 100-residue backbone in approximately 30 seconds 
on an RTX 3090 GPU. The framework also demonstrated excellent control over the placement of functionally critical 
residues, achieving an average all-atom RMSD of 0.1 Å, comparable to that of RFdiffusion. 

3.2. Flow Matching Unlocks Next-Gen Enzyme Backbone Design 

Advances in diffusion models have significantly accelerated the progress of de novo enzyme design, enabling the 
generation of highly diverse and geometrically constrained protein backbones. However, one key limitation of 
diffusion-based approaches is their computational inefficiency during inference. Generating high-quality samples often 
requires thousands of forward passes, rendering large-scale sampling computationally prohibitive, particularly for 
models with substantial parameter counts. To address this challenge, flow matching has emerged as an efficient 
alternative [58]. Flow matching [59] models are based on continuous-time ordinary differential equations (ODEs) or 
stochastic differential equations (SDEs) that define smooth transformations (flows) from a noise distribution to the 
target data distribution (Figure 2B). Compared to diffusion models, flow-based approaches offer higher sampling 
efficiency, enable continuous trajectory generation, and provide greater flexibility for incorporating conditional 
guidance, thereby improving control over structural and functional attributes. 
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Figure 2. Application of GAI in enzyme backbone design. (A) Protein diffusion models are trained to recover protein structures 
corrupted by noise, progressively denoising random Gaussian inputs to generate coarse geometric point-cloud representations that 
are subsequently refined into complete enzyme backbones with well-defined secondary structures. (B) Two continuous-time 
processes (Xt, 0 ≤ t ≤ 1) transforming a source sample X0 to a target sample X1. (Left) A flow matching process, where the sample 
evolves deterministically along a smooth trajectory in continuous state space via an ODE-defined velocity field. (Right) A diffusion 
process, where the sample undergoes stochastic evolution with noisy intermediate states, converging to the target distribution 
through an SDE-driven reverse denoising process. 

Expanding beyond diffusion-based sampling, FrameFlow [60] was introduced in 2023 as a protein backbone 
generation framework based on SE(3) [61] flow matching, representing a substantial improvement over the previous 
diffusion-based model FrameDiff [62]. As the first model to apply flow matching in SE(3) space, FrameFlow learns 
continuous vector fields that efficiently transform Gaussian noise into structured protein conformations. Its architecture 
incorporates the Invariant Point Attention (IPA) mechanism originally developed in AlphaFold and employs SE(3)-
equivariant graph neural networks to capture geometric relationships and structural constraints between residues. 
Compared to the diffusion-based sampling of FrameDiff, FrameFlow adopts an ODE-based generation strategy that 
reduces the number of sampling steps by approximately fivefold and doubles the design efficiency. These features make 
it particularly well-suited for constructing large and diverse backbone libraries, capable of generating a 100-residue 
backbone in just 5.7 s (on an NVIDIA A100 GPU). Despite its promising computational performance, however, 
FrameFlow has not yet undergone in vitro experimental validation. The foldability and functional viability of its 
generated structures remain to be systematically assessed. 

Pushing the field further toward function-directed design, the Baker laboratory introduced RFdiffusion2 in 2025 
[19,20], a next-generation deep learning framework that enables direct protein backbone generation based solely on the 
spatial positions of functional groups—without requiring predefined sequences or exhaustive rotamer sampling. By 
incorporating a flow matching strategy, RFdiffusion2 learns the distribution of protein structures that support designated 
catalytic geometries, thereby avoiding the combinatorial explosion that limits traditional design workflows. 
Experimental validation involved three distinct catalytic motifs—an aldolase, a cysteine protease, and a zinc hydrolase. 
Fewer than 96 designed sequences were tested for each case, yet active catalysts were successfully identified for all 
three functional sites. In benchmarking studies, RFdiffusion2 generated 41 distinct catalytic site configurations, 
significantly outperforming the original RFdiffusion model, which succeeded in only 16 cases. These results highlight 
the model’s superior design capacity, geometric generalization, and practical utility in scaffold construction for 
functionally critical active sites. 
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Recent advances (Table 1) in structure-driven protein design highlight a transition from residue-level modeling to 
atomic-level precision, shifting the focus from structure generation to function-oriented molecular engineering. 
Innovations in generative strategies-particularly the adoption of flow matching and ODE-based sampling-have 
substantially accelerated backbone construction. Despite these advances, most current approaches still rely on post hoc 
side-chain packing and sequence optimization, which can limit overall design fidelity and throughput. The development 
of end-to-end, all-atom generative models capable of co-designing both sequence and structure holds immense potential 
for increasing design accuracy, efficiency, and scalability, ultimately paving the way for fully integrated pipelines in 
enzyme design. 

Table 1. Summary of recent studies in backbone design. 

Category Model 
Release 
Date 

Key Innovation Constraint and Performance 

Diffusion 
Model 

ProtDiff/SMCDiff 
[51] 

2022 First diffusion model for backbone design 
Length < 80 residues; cannot distinguish 
left- and right-handed helices. 

FrameDiff [62] 2023 
SE(3)-equivariant local frame diffusion for 
backbone design 

Length < 500 residues 
100-residue backbone in 4.4 s (NVIDIA 
A100) 

RFdiffusion [22] 2023 
Designs backbone based on provided 
geometric data of possible active site 
configurations 

Length < 600 residues 
100- residues in 11 s (NVIDIA A4000) 

SCUBA-D [23] 2024 
A backbone design model trained 
independently to overcome the limitations of 
pretrained models 

100- residues in 30 s  
(RTX 3090) 

Flow 
Matching 

FrameFlow [60] 2023 
Uses flow matching instead of a diffusion 
model to directly learn the structural 
transformation trajectory 

100- residues in 5.7 s (NVIDIA V100) 

RFdiffusion2 [20] 2025 
Requires only a defined theozyme active 
site, without pre-indexed atomic positions or 
preset rotamers 

150- residues in 5 min (NVIDIA A40, 
including backbone design, sequence 
design, and evaluation) 

4. Sequence Design on Fixed Backbones 

Once the backbone has been defined, identifying a suitable amino acid sequence to fully describe the protein 
involves a level of complexity that goes far beyond first impressions [63]. This is because it requires inferring an amino 
acid chain that can reliably fold into a given three-dimensional backbone structure that is not only energetically optimal 
but also structurally stable. This “reverse” process(Figure 3A), wherein the goal is to design a sequence compatible with 
a predefined structure, is known as the inverse protein folding problem [24]. 

A direct approach to addressing these issues is to use deep learning to learn the mapping between the structure and 
sequence. (Figure 3B). Early progress was marked by the introduction of ESM-IF1 [64] and ProteinMPNN [24] in 2022, 
which became foundational models in AI-driven protein sequence design. ESM-IF defines inverse folding as a structure-
to-sequence problem, focusing primarily on the protein backbone structure while disregarding the complexity of side 
chains. By leveraging 12 million protein structures predicted by AlphaFold2 and using the coordinates of the N, Cα, 
and C atoms as backbone inputs, ESM-IF employs an autoregressive framework to predict the natural amino acid 
sequence from the three-dimensional positions of the backbone atoms. In contrast, ProteinMPNN is built upon the 
general message-passing neural network (MPNN) framework, has been applied to de novo sequence design for carbonic 
anhydrases and artificial luciferases. (These applications are discussed in detail in the case study section.) It utilizes 
experimentally determined protein crystal structures and incorporates interatomic distance features. Importantly, instead 
of using a fixed decoding order from the N to C terminus, ProteinMPNN adopts an order-agnostic autoregressive 
approach for sequence generation, thereby overcoming a key limitation of conventional autoregressive models, which 
generate amino acids sequentially and can only condition on past residues but not future ones. By inverting the structure 
prediction process, ESM-IF1 designs sequences that fit given backbone traces, achieving a sequence recovery of 51%. 
ProteinMPNN attains a recovery rate of 52.4%. 

In 2023, PiFold was proposed by Li et al. [65], introducing expressive structural features and a novel PiGNN 
module. Based on the local coordinate system of each residue, the model constructs distance, angle, and orientation 
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features on both nodes and edges to ensure rotational and translational invariance. At the same time, learnable virtual 
atoms are incorporated to capture complementary information from real atoms. Furthermore, unlike previous 
autoregressive or iterative models (Table 1) [66–68], PiFold completely removes the autoregressive decoder by stacking 
additional PiGNN layers, enabling one-shot protein sequence generation without sacrificing accuracy. Experiments 
show that PiFold could achieve 51.66% recovery on CATH 4.2, while the inference speed is 70 times faster than the 
autoregressive competitors. 

 

Figure 3. Sequence design on fixed backbones. (A) Overview of Inverse folding: a predefined protein backbone is provided as 
input to predict amino acid sequences compatible with the target structure. Candidate sequences are evaluated on the energy 
landscape to identify low-energy solutions with favorable folding propensities. (B) A backbone-based sequence design framework 
is where structural information of the backbone is encoded and decoded into a compatible sequence, enabling recovery of secondary 
structure elements and overall fold. (C) All-atom sequence design framework that augments backbone features with explicit side-
chain and ligand representations through an additional backbone–ligand encoder, thereby enabling the decoder to generate 
sequences optimized not only for backbone compatibility but also for atomic-level interactions and binding requirements. 

Subsequently, numerous inverse folding frameworks were developed (Table 2) [69–73], aiming to improve 
sequence recovery accuracy and generative efficiency. However, like earlier inverse folding models, these approaches 
remained focused on backbone-based design and lacked the capacity to tailor proteins for specific biochemical functions. 
This limitation is particularly critical in enzyme design, where atomic-level control over active sites and ligand 
interactions is essential. To bridge this gap, the introduction of LigandMPNN [25] in 2025 represented a breakthrough 
by enabling protein sequence generation in the context of explicit ligand environments, which has been demonstrated 
in the de novo sequence design of serine hydrolases and metal hydrolases, with these applications discussed in detail in 
the case study section, particularly for serine hydrolases. The model constructs distinct graph representations for the 
protein backbone, ligand atoms, and their mutual interactions, allowing it to capture fine-grained geometric, chemical, 
and physical properties of the binding site. LigandMPNN automatically optimizes residue types and side-chain 
conformations by incorporating ligand-aware features, enhancing binding interface complementarity. Beyond sequence 
generation, it also predicts side-chain rotamer angles (chi angles), ensuring the designed structures closely resemble 
experimentally validated conformations. This development marks a critical step toward functionally aware sequence 
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design. LigandMPNN exhibits excellent sequence recovery accuracy in protein design, achieving 63.3% for residues 
near small molecules, 50.5% near nucleotides, and 77.5% near metals, significantly higher than ProteinMPNN. (50.4%, 
34.0%, 40.6% respectively). Furthermore, the model excels in side-chain packing accuracy, with a chi1 score of 86.1% 
near small molecules, and high generation efficiency, designing 100 residues in just 0.9 s on a single CPU. 

In summary, ESM-IF1 and ProteinMPNN laid the groundwork for backbone-based sequence design. Building on 
this foundation, the advent of LigandMPNN marks a pivotal step toward atomistic, ligand-aware sequence design by 
explicitly incorporating ligand information into the generative process. 

Table 2. Summary of recent studies in Inverse folding. 

Inverse Folding Models Method Main Architecture 
ESM-IF1 [64] Backbone Transformer [74]; Autoregressive 

ProteinMPNN [24] Backbone Message Passing Neural Network[75]; Autoregressive 
PiFold [65] Backbone Graph Neural Network [76] 
GCA [66] Backbone Graph Neural Network; Autoregressive 

StructGNN [67] Backbone Graph Neural Network; Autoregressive 
GVP [68] Backbone Graph Neural Network; Autoregressive 

GRADE-IF [69] Backbone Diffusion Model 
LaGDif [70] Backbone Diffusion Model 

Bridge-IF [71] Backbone Diffusion Model 
CarbonDesign [72] Backbone Transformer; Markov random fields model 

MapDiff [73] Backbone Diffusion Model 
LigandMPNN [25] Backbone + Ligand Message Passing Neural Network; Autoregressive 

5. Virtual Screening to Ensure Success in De Novo Enzyme Design 

Artificial enzymes with potential catalytic functions can be designed from scratch by precisely constructing active 
catalytic sites using quantum chemical methods, subsequently tailoring backbones with generative models, and 
completing amino acid sequence design via inverse folding models [22,77]. However, in practice, many of these 
candidate enzymes often exhibit deviations in catalytic geometries, misfolding, low activity, or even complete activity 
loss, which largely limit their experimental feasibility and functional reliability. 

To improve the success rate of enzyme design and reduce the number of non-functional candidates, filtering steps 
are typically introduced after sequence design. A common strategy is to use Rosetta to filter candidate designs. 
FastRelax [78] is applied to the designs to relieve local strain and optimize overall stability. The resulting structures are 
evaluated for their ability to recapitulate the catalytic motif geometry, confirming that the spatial arrangement of 
catalytic residues is maintained to preserve chemical functionality. The shape complementarity between the substrate-
binding pocket and the substrate is assessed to ensure that the binding site can accommodate the substrate snugly and 
support effective catalysis (Figure 4A). On this basis, structure prediction tools such as AlphaFold2 (Figure 4B) [79] 
were applied to evaluate folding constraints and eliminate designs unlikely to adopt correct folds. Designs were 
considered acceptable if they achieved RMSD < 2.0 Å, with TM-score > 0.5 reported as a supplemental criterion [80]. 

In addition, molecular dynamics (MD) simulations are frequently employed at this stage to probe the 
conformational stability of designed scaffolds and to assess whether catalytic residues and substrate-binding pockets 
remain geometrically compatible under dynamic conditions (Figure 4C). By monitoring side-chain rearrangements, 
hydrogen-bonding persistence, and local flexibility across nanosecond-to-microsecond trajectories [81], MD provides 
a virtual screening layer that helps eliminate candidates prone to unfolding or incapable of maintaining catalytically 
relevant interactions [82–84]. 

Current computational approaches struggle to accurately capture enzymatic preorganization, and although MD 
simulations provide dynamic insights, their high cost, limited sampling, and difficulty in modeling multi-state catalytic 
cycles mean that critical side-chain–transition state interactions are often missed, resulting in many designed enzymes 
with low catalytic efficiency [18,85]. To address this, the Baker laboratory developed PLACER (Protein-Ligand 
Atomistic Conformational Ensemble Resolver), an all-atom modeling network for protein–ligand interactions (Figure 
4D) [85]. PLACER takes as input the coordinates of the protein backbone surrounding a binding or catalytic pocket, 
together with atomic-level descriptions of the bonded geometry of small molecules and side chains. Using a graph 
neural network, it generates predicted protein–ligand binding conformations through a denoising process and iteratively 
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refines them to form a conformational ensemble. Simulating multiple key states along the catalytic cycle, including the 
apo, substrate-bound, and tetrahedral intermediate states, PLACER enables assessment of structural compatibility 
across dynamic conformations, guiding the rational optimization of enzyme design. 

 

Figure 4. Computational strategies for structural and functional evaluation in de novo enzyme design. (A) Rosetta-based relaxation 
and filtering. Candidate enzyme models undergo energy minimization (e.g., FastRelax) to relieve local strain and optimize 
backbone/side-chain packing. The resulting structures are assessed for catalytic residue geometry (satisfaction of catalytic 
distance/angle/dihedral constraints) and binding-site complementarity (shape and interaction compatibility with the substrate), 
ensuring that the active site is chemically plausible. (B) Designs are evaluated with AlphaFold2, using RMSD, TM-score, and 
pLDDT to filter out structures unlikely to fold correctly. (C) Molecular dynamics simulations probe whether catalytic residues, 
active-site geometry, and substrate-binding pocket remain stable under thermal fluctuations, examining global structural stability, 
side-chain dynamics, interaction networks, flexibility, and binding stability over time. (D) PLACER generates atomistic ensembles 
across key catalytic states (including, but not limited to, apoenzyme: apo, transition states: TS1, TS2, and reactive intermediate: RI) 
to assess catalytic preorganization. Scoring combines geometric and confidence metrics (RMSD, FAPE, pLDDT, alignment scores) 
to prioritize designs with both static and dynamic fidelity. 

In summary, de novo enzyme design combines multiple computational strategies to generate functional catalysts. 
Post-design filtering, such as structure relaxation, catalytic motif validation, substrate-pocket assessment, and folding 
evaluation-helps remove unstable or misfolded candidates. Finally, atomistic modeling tools like PLACER allow 
simulation of dynamic conformational states to assess catalytic compatibility. Together, these methods form an 
integrated, structure-and function-informed workflow that guides the rational design and optimization of artificial 
enzymes. Overall, PLACER integrates deep learning with enzymology knowledge to conformational ensembles for 
protein–ligand complexes, enabling the evaluation of conformational changes during dynamic catalysis, and thereby 
guiding the rational optimization of enzyme design. 

6. Case Study 

In the long-term vision of computational protein design, the de novo creation of enzymes capable of catalyzing 
arbitrary chemical reactions has remained a central objective [18,81]. Traditional approaches typically rely on 
embedding a small theoretical model of catalytic residues (theozyme) into natural protein scaffolds, as exemplified by 
Retro-Aldol enzymes [15] and Kemp elimination catalysts [14]. However, this strategy is constrained by the fixed 
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scaffold, and as a result, the designed enzymes typically exhibit activities several orders of magnitude lower than those 
of natural enzymes. 

With the advancement of deep learning, artificial luciferases were designed in 2023 using a “family-wide 
hallucination” approach. These de novo enzymes overcome limitations of natural enzymes in stability and substrate 
specificity, with the most notable variant being small (13.9 kDa), thermostable (>95 °C), and exhibiting superior 
specificity with catalytic activity comparable to natural luciferases [21]. Yet their initial activity still required 
improvement through mutagenesis, highlighting the need for new methods. In 2024, Hu et al. developed the Generative 
Redesign in Artificial Computational Enzymology (GRACE) workflow [86], integrating RFdiffusion for backbone 
generation, ProteinMPNN for sequence optimization, and molecular dynamics for screening. Applied to carbonic 
anhydrase, GRACE designed two functional sequences from a pool of 10,000 candidates, achieving activities up to 400 
WAU/mL. Despite these advances, the overall success rate and catalytic performance of de novo enzymes remain low, 
largely because designs have focused on simplified active sites optimized for a single state. 

In 2025, the David Baker laboratory achieved the de novo design of a serine hydrolase [18], integrating GAI and 
multistate constraints, marking a shift from static to dynamic scaffold design. In the early stages, the first two design 
rounds built simple Ser-His dyad active sites with a single oxyanion hole contact, using RFdiffusion to generate the 
backbones and LigandMPNN to design the corresponding sequences. Round 1 designs were filtered using AlphaFold2, 
yielding 139 functional sequences from 214 K candidates, while Round 2 designs were further screened with PLACER 
ensembles of the apo state to ensure key Ser-His hydrogen bonding, resulting in 261 sequences. These steps improved 
the fraction of activated serines and detectable esterase activity, though the designs remained limited to the initial 
nucleophilic attack. To enhance success, the third round added a histidine-stabilizing catalytic acid and a second 
oxyanion hole donor, expanding PLACER screening to the acyl-enzyme intermediate (AEI), yielding the first de novo 
enzyme capable of multiple turnovers. Multistate design with LigandMPNN and FastRelax further optimized reaction 
coordinates and active-site geometry. Integration with RFdiffusion produced complete enzymes with novel oxyanion 
hole networks, generating “momi” (kcat/Km = 1240 M−1ꞏs−1), optimized to “momi120” (4300 M−1s−1), and extended to 
PET hydrolase mimics (“momi120_103”), achieving up to 2.2 × 105 M−1ꞏs−1. Crystallography confirmed entirely non-
natural folds surpassing traditional directed evolution. 

Similarly, David Baker’s laboratory applied the GAI method RFdiffusion2 to metal hydrolases [19], starting from 
DFT-modeled active-site geometries to generate zinc enzyme backbones and optimize sequences, achieving catalytic 
efficiencies up to 23,000 M−1ꞏs−1. In addition，in 2025, Sarel J. Fleishman’s team [87] employed a non-generative de 
novo design approach, combining TIM-barrel fragment assembly with PROSS [88] and FuncLib [89] active-site 
optimization to produce the stable Kemp elimination enzyme Des27.7, achieving a catalytic efficiency of 123,000 
M−1ꞏs−1, close to the median of natural enzymes. 

Recent advances in de novo enzyme design demonstrate that effective catalyst development relies on the 
coordinated integration of complementary computational strategies. Following the theoretical enzyme model, the 
precise specification of catalytic active sites establishes the geometric foundation for reactivity. Functional realization 
of these sites is enabled by scaffold generation methods that provide structurally compatible backbones and inverse 
folding models that optimize sequence–structure compatibility. Explicit consideration of conformational dynamics and 
multi-state reaction pathways has emerged as a key determinant for achieving turnover and overall catalytic efficiency. 
The successful de novo design of a serine hydrolase exemplifies the importance of this integrated workflow: active-site 
engineering, de novo backbone generation, sequence optimization, and post-design dynamic evaluation collectively 
underpin the creation of entirely new enzymes with high catalytic activity. These insights underscore that systematic, 
multi-layered design strategies are essential for realizing predictable and efficient artificial enzymes. 

7. Conclusions and Perspectives 

De novo enzyme design represents a core frontier technology in synthetic biology and biomanufacturing, offering 
the potential to overcome the functional limitations of natural enzymes. Evolutionary adaptation often limits the 
catalytic activity, substrate specificity, and stability of natural enzymes, making it difficult to meet the tailored demands 
of industrial production. 

Recent advances in GAI are enabling true de novo enzyme design by integrating complementary strategies: QM 
calculations provide atomistic blueprints for catalytic site construction; backbone-generating and inverse folding models 
enable stable incorporation of active sites into protein frameworks; and tools such as PLACER assess structural 
compatibility across reaction coordinates. Together, these approaches substantially enhance the feasibility and success 
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of de novo enzyme design, as exemplified by GAI-designed serine hydrolases that achieve high catalytic efficiency with 
folds entirely distinct from any natural homologs. 

Future developments in GAI-driven enzyme design are expected to focus on fully integrated, mechanism-informed 
frameworks that enable rational and efficient engineering of catalytic proteins. Key directions include multiscale 
modeling that combines quantum mechanics, molecular mechanics, and AI to capture and optimize entire catalytic 
cycles; dynamic design approaches that incorporate protein motions and conformational changes directly into the design 
process; and closed-loop “design–build–test–learn” pipelines, leveraging laboratory automation to iteratively refine AI 
models. By uniting structural prediction, sequence optimization, and dynamic evaluation within a computational-
experimental workflow, these advances will make on-demand, custom enzyme design increasingly feasible, opening 
new opportunities for synthetic biology and sustainable biomanufacturing. 

Despite recent advances in de novo enzyme design, which now incorporate geometric constraints, folding 
prediction, and assessments of expressibility, designed enzymes often display only limited activity when tested 
experimentally. This discrepancy largely reflects the gap between the “static idealization” of computational models and 
the “dynamic optimization” achieved through natural evolution. Current approaches typically rely on a small number 
of idealized conformations, whereas real proteins in solution populate diverse ensembles, making the occupancy of 
catalytically competent geometries under dynamic equilibrium much lower than anticipated, thereby limiting transition-
state stabilization [90]. Moreover, effective stabilization of the transition state depends not only on the spatial 
arrangement of first-shell residues, but also on subtle contributions from local electric fields, pKa tuning, and 
polarization effects—factors often insufficiently captured by rapid computational models [91,92]. Efficient catalysis in 
natural enzymes further relies on extended residue networks that cooperate in maintaining conformational stability, 
regulating solvent access, and suppressing side reactions, yet such higher-order interactions are frequently neglected in 
automated design. In addition, mismatches between design assumptions and experimental conditions can further 
diminish or even mask latent activity [93]. 

Future strategies must integrate generative modeling, screening, and experimental validation more tightly to 
improve hit rates while retaining throughput and speed. A promising approach is the adoption of hierarchical screening 
frameworks: rapid geometric and folding filters can be applied at the early stage to down-select large candidate pools; 
intermediate tiers may incorporate evaluations of electrostatic preorganization, pKa prediction, placement of key water 
molecules, and short-timescale enhanced-sampling MD to assess catalytic robustness; and only a small subset of 
candidates would then proceed to high-accuracy QM/MM calculations and experimental testing, thereby balancing 
computational cost with predictive precision. At the same time, generative models themselves should embed physical 
constraints—for example, optimizing local electrostatics or ensemble occupancy of transition-state geometries—to 
reduce the frequency of designs that are “statistically correct but dynamically ineffective”. Equally important is closed-
loop experimental learning: small-scale but information-rich assays can provide real measurements of activity, stability, 
and expressibility, which are then fed back into the generative and scoring functions to refine predictions iteratively. 

In the long term, truly effective enzyme design will require a framework that is mechanism-driven, dynamically 
informed, and experimentally closed-loop. Such an approach would consider the entire catalytic cycle during generation, 
incorporate multiscale physical modeling during screening, and leverage automated experimental platforms for rapid 
feedback. Together, these elements could enable simultaneous optimization of catalytic activity, stability, and 
manufacturability, gradually transforming the design of high-performance enzymes from theoretical possibility into 
reproducible and scalable reality. 
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