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ABSTRACT: For the sustainable management of natural resources and to understand how the climate affects the landscape, 
accurate land use and land cover (LULC) classification is essential. Robust classification techniques and high-quality datasets are 
necessary for precise and effective LULC classification. The effectiveness of various combinations of satellite data and 
classification techniques must be carefully evaluated to help choose the optimal strategy for LULC classification, given the growing 
availability of satellite data, geospatial analysis tools, and classification techniques. This study focuses on the LULC classification 
of Jalandhar, Punjab, India, using machine learning (ML) algorithms and visual image interpretation. Sentinel-2 satellite data, with 
its high spatial and spectral resolution, has been utilized for feature extraction and classification. Python was employed for 
implementing various ML algorithms, including Random Forest (RF), Support Vector Machine (SVM), K-Nearest Neighbor (KNN), 
Gradient Boosting (GB), Multi-Layer Perceptron (MLP), and Decision Tree (DT), while ArcGIS was used to classify LULC using 
visual image interpretation and for maps preparation. Agriculture was the dominant class across all methods, with GB estimating 
1774.26 sq.km, followed by plantation (268.13 sq.km) and built-up areas (171.76 sq.km). Waterbodies were mapped with high 
precision due to their distinct spectral features, with estimates ranging from 18.34 sq.km (GB) to 26.05 sq.km (Visual interpretation). 
Among all models, GB outperformed others with the highest overall accuracy (95.0%) and a kappa value of 0.94, followed by RF 
(94.2%), and SVM (93.8%). Visual interpretation achieved a comparative accuracy of 90.1%, though it showed limitations in 
distinguishing spectrally mixed classes like plantation and built-up. This study concludes that while Visual interpretation remains 
a useful and accessible method, especially for real-time interpretation, ML-based approaches, particularly GB and RF, offer superior 
accuracy and reliability. The study highlights the importance of visual interpretation for a better accurate LULC at a regional level; 
meanwhile, leveraging advancements in ML algorithms in a hybrid approach will enhance the accuracy in many-fold. 
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1. Introduction 

The information on land use and land cover is not just needed for today’s research era, but is an essential 
requirement in urban planning, regional planning, environmental impact assessment, and activities like natural and 
disaster risk management. Detecting changes over time is the best way to understand landscape transformation and its 
prediction. In the real-world land use is the way of using a parcel of land by living beings as per their requirement, while 
land cover means the physical condition of land resources present on the earth. They are both correlated with each other. 
Land use and land cover change assessment is truly required for a number of purposes, which are basically for the 
welfare of humans in the way of rapid and unstoppable growth in the population and because of extreme economic and 
industrial development. Changes in land use and land cover have multiple effects on the environment and human health 
in different ways, such as ecosystem loss, floods and droughts, depletion in groundwater, forest and land degradation, 
soil and water erosion and many more. Moreover, in public and private sectors, the demand for a deep study of land use 
and land cover is very high due to its vast utilization. Moreover, classification of land use land cover is the process of 
assigning different classes and categorizing them in metropolitan, agriculture, woodland, water, built-up, horticulture, 
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grasslands and mountains, etc. The Anderson classification is one of the standard classification systems for displaying 
the utilized land and its coverage [1]. 

Satellite remotely sensed data comprises various LULC class information that must be extracted using advanced 
technologies. LULC changes are very dynamic in nature and need to be monitored on the basis of spatial and temporal 
changes. Traditional pixel-based approaches often face challenges in dealing with the inherent heterogeneity and 
complexity of remote sensing data. They fail to capture the spatial context and relationships among neighboring pixels, 
limiting their ability to extract high-level features and accurately classify land cover and land use (LULC) categories. 
In contrast, Object Based Image Analysis (OBIA)exploits the spatial and contextual information provided by image 
objects, resulting in improved classification accuracy and more robust analysis. A considerable body of literature has 
been dedicated to the development and application of OBIA techniques in remote sensing datasets. One of the key 
components of OBIA is image segmentation, which partitions an image into homogeneous and coherent objects. 
Various segmentation algorithms have been proposed, ranging from region-based methods such as mean-shift and graph 
cuts to edge-based methods like watershed and morphological techniques. These algorithms aim to delineate objects 
based on spectral, spatial, and textural characteristics, effectively capturing the inherent heterogeneity of remote sensing 
imagery. The technologies ranging from visual interpretation, semi–automatic OBIA to deep learning have been 
explored in extracting the image information. 

The use of satellite images has increased exponentially from the past decades. Satellite data provides a single shot 
of a particular area at one point in time, giving the full view of any land cover. We can say that remote sensing provides 
us with the opportunity for continuous and rapid acquisition of information on land use and land cover. Land use and 
land cover are usually produced using classification techniques, but the accuracy and processing time are still 
challenging for our community. The Sentinel-2 (A&B) satellite data product is the latest generation earth observation 
mission specially designed for coastal and land applications. Due to its free access, it has a wide swath with high spatial 
resolution rage from 10–60 m. A wide range of studies have been conducted using Sentinel-2 satellite imageries i.e., 
LULC mapping, crops and orchard classification, monitoring of forest stress, surface water mapping, etc., but spatially 
in the study of LULC mapping, Sentinel-2 data has been tested and showed very high potential [2–5] However, because 
it is a recent type of satellite imagery, very few studies have been conducted for land use and land cover classification 
using machine learning algorithms. 

Visual image interpretation is one of the traditional classification approach which has been used extensively in 
terms of obtaining land use land cover mapping but as it is time consuming approach the new advanced image 
processing approaches have been developed such as unsupervised algorithms (i.e., ISODATA, K-mean algorithm, 
Affinity Propagation (AP), fuzzy c-means algorithm etc.), supervised algorithms such as maximum likelihood, machine 
learning algorithms i.e., artificial network (ANN), k-Nearest Neighbors (KNN), decision tree (DT), support vector 
machines (SVM) and random forest (RF) and deep learning algorithms i.e., CNN etc. [6,7]. Thus, several studies have 
been conducted using machine learning algorithms to compare their accuracies to determine which algorithm is better 
among themselves or other algorithms. LULC classification is incomplete. Figure 1 shows different techniques and 
approaches for LULC classification in Remote Sensing and Geographic Information System (GIS). 

This particular study aims to understand the results of LULC using different machine learning algorithms [8–12] 
and visual image interpretation algorithm. This study also includes the assessment of accuracy of all the algorithms 
along with their comparison with each other. Several studies have been implemented to determine which classification 
algorithm is best for land use and land cover classification. Limited studies have been conducted, and a comparison of 
machine learning algorithms with visual interpretation has not yet been conducted using Sentinel-2 satellite data 
spatially in the Jalandhar district of Punjab, India. The objectives are to evaluate the performance of six classifiers, i.e., 
RF, Gradient boosting, SVM, KNN, multilayer perceptron along with visual interpretation and evaluate the best 
classification accuracy of the classification results. This study highlights the comparative analysis of traditional 
approaches like visual interpretation by an expert for delineating different LULC classes vs. the established ML 
algorithms, i.e., RF, Gradient boosting, SVM, KNN, and multilayer perceptron, which have demonstrated promising 
results in similar studies. The study also emphasizes the importance of visual interpretation for a more accurate LULC 
map at a regional level; meanwhile, leveraging advancements in ML algorithmsin a hybrid approach will enhance the 
accuracy in many-fold. This study Results of this research can be helpful for many upcoming studies to understand the 
performance of traditional and modern classifiers, to make the selection of an approach to be used for their research. 
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Figure 1. Different Techniques and Approaches for LULC Classification. 

2. Materials and Methods  

2.1. Study Area 

The current study was conducted in the Jalandhar district of Punjab, India, as shown in Figure 2. District Jalandhar 
is a central part of the Punjab, and it falls in the Doab region of the Punjab. It lies between the North latitude 30°8′ and 
31°37′ and East longitude 75°08′ and 76°18′. In the southern part, it is bounded by the Sutlej River, which separates it 
from the Firozpur district of Punjab. 

 

Figure 2. Map of the Study Area. 
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On the north-west, Kapurthala district intervenes between the Jalandhar territory and Bias River, and it shares its 
boundaries with Hoshiarpur district on the north-east. Sutlej River is the major natural drainage channel in the state, 
which is observed in the area. The average annual rainfall received by the district is about 703 mm and about 70% of 
the overall rainfall is during monsoon from the month of July to September (CGWB 2016, 2018 ) & [13]. District faced 
temperature from the range of 5 °C in winters to 45 °C in summer. As it can be seen in Figure 2 study area is Agriculture 
dominant where Paddy and Wheat are the major cereals grown in Kharif and Rabi season respectively. Overall flow 
chart of methodology is shown in Figure 3. 

 

Figure 3. Framework of Methodology. 

2.2. Acquisition of Satellite Data 

To conduct this study, the open-source high spatial resolution multi-spectral Sentinel-2 satellite data has been used 
and acquired on 4 October 2022. Satellite data is acquired and downloaded from the open-source Copernicus hub. 
Sentinel-2A and Sentinel-2B were launched using the European launcher VEGA. The Copernicus Sentinel-2 mission is 
made up of two polar-orbiting satellites that are aligned in the same sun-synchronous orbit at 180 degrees apart. A satellite 
image of the study area can be seen in Figure 2, and specifications of satellite data are given in Table 1. 

Table 1. Specifications of Sentinel-2 Satellite Data. 

Sensor Bands Wavelength (µm) Resolution (m) Swath (km) 

Sentinel-2A 

B1—Coastal aerosol 0.443 60 

290 

B2—Blue 0.49 10 
B3—Green 0.56 10 
B4—Red 0.665 10 

B5—Vegetation Red Edge 0.705 20 
B6—Vegetation Red Edge 0.74 20 
B7—Vegetation Red Edge 0.783 20 

B8—NIR 0.842 10 
B8A—Vegetation Red Edge 0.865 20 

B9—Water vapour 0.945 60 
B10—SWIR—Cirrus 1.375 60 

B11—SWIR 1.61 20 
B12—SWIR 2.19 20 
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2.3. Satellite Data Pre-Processing 

Pre-processing of any satellite data is one of the important steps which needs to be taken care of, as it helps to 
remove noise and enhance the quality of the satellite data to better identify land use and land cover identification and 
classification. Before using the data, it is mosaicked and Geo-referenced. Satellite data was pre-processed using ArcGIS 
and ERDAS imagine software. Study area was clipped as per the district boundary as the last step before applying any 
classification algorithm. 

2.4. LULC Classification Scheme and Training Samples 

For running machine learning algorithms training samples are very much required. In this study different training 
samples were created as per our five major LULC classes i.e., agriculture, built-up, plantation, waterbody and fallow & other. 

Training samples were generated manually based on image interpretation elements, also called photo elements, 
and ancillary data such as maps and ground observations, were used to identify the land cover classes. A total of 750 
training samples have been created, as shown in Table 2. These samples were selected from diverse parts of the study 
area to reflect intra-class variability and ensure better generalization by the ML classifiers. Once digitized, the training 
polygons were exported in shapefile format and used to extract pixel values from the relevant Sentinel-2 bands. The 
number and distribution of training samples can also affect the classification accuracy, which is why the number of 
training samples of all LULC classes was the same. 

Table 2. LULC Classes and Training Samples. 

S/N LULC Classes Description of Classes Number of Training Samples 
1 Agriculture Cropland 150 
2 Built-up Residential, commercial, industrial, transport 150 
3 Plantation Orchids, roadside trees etc. 150 
4 Waterbody Natural (Lake, River) and manmade 150 
5 Fallow & Other Open fields, barren, rocks, wasteland etc. 150 

Grand Total  750 

The image-derived pixel samples were standardized through feature scaling, and then the dataset was split using a 
70:30 ratio for training and validation, respectively. Care was taken to apply stratified sampling so that the proportion 
of each class remained balanced across both subsets. 

2.5. Algorithms Used for LULC Classification 

To classify LULC in the study area, a total of six algorithms are used, and these are divided into two categories, 
i.e., Machine Learning Algorithms (RF, SVM, KNN, DT, GB and MLP) [14–19] and Visual Image Interpretation 
Algorithm and all algorithms used in this study are discussed below in Table 3. 

Table 3. Description of all six Algorithms used for the study. 

S/N Algorithms Description of Algorithms 

1 Random Forest (RF) 

Random forests are an ensemble learning technique that combines 
multiple/random decision trees to generate predictions. To apply RF, 
you need to set up the number of features (mtry) and the number of 
trees (ntree). Because it can handle large and complex datasets and 
provides outstanding classification accuracy, it is quite popular 
among researchers for LULC classification. A majority vote is used to 
assign classes. 
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2 Support Vector Machine (SVM) 

Support vector machines, or SVMs, create a model that divides the 
classes into a hyperplane by optimizing the margin between them. But 
binary classification was their first goal. Due to its excellent accuracy 
and low training cost, this technique is also well-liked by researchers 
studying LULC classification. 

3 K-Nearest Neighbor (KNN) 

After storing all the existing examples, a specific type of instance-
based learning model, known as a KNN, classifies new instances 
based on similarity measurements. The distance fractions are utilized 
to identify the samples that are closest to the unknown samples, and 
the KNN class attributes are computed using the average of the 
response variables. (Noi and Kappas, 2017). 

4 Gradient Boosting (GB) 

This approach combines multiple weak models, like decision trees, to 
create a powerful model. It iteratively creates new models and then 
fixes the shortcomings of previous models (a process called boosting) 
using that training data. Xtreme Gradient Boosting, sometimes known 
as XGBoost, is an improved gradient boosting method. Due to its 
exceptional performance and efficacy, it is widely used in numerous 
applications, such as regression and classification. 

5 Multilayer Perceptron (MLP) 

For LULC classification, this method, also known as an artificial 
neutral network is frequently used. Its construction consists of three 
layers: the output layer, the hidden layer, and the input layer. It 
requires many training samples because of its high computing 
requirements. 

6 Decision Tree (DT) 

For LULC classification, this method—also known as an artificial 
neutral network—is frequently used. Its construction consists of three 
layers: the output layer, the hidden layer, and the input layer. It 
requires many training samples because of its high computing 
requirements. 
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7 Visual Interpretation 

A manual on-screen visual interpretation algorithm is used to digitize 
different LULC classes that are present in the research region. 
Interpretation keys, or more precisely, the photo elements i.e., size, 
shape, color, texture, association, shadow, tone, site, and pattern are 
the basis of the digitization. A 1:6000 scale is used to map each class 
in this investigation. 

2.6. Data Processing 

Model development and classification were performed using Scikit-learn, an open-source machine learning toolkit 
in Python. Each classifier was configured based on prior research and empirical testing. The RF model was constructed 
with 300 decision trees, which provided a balance between performance and computational cost. The DT classifier, on 
the other hand, employed a maximum depth of 10 to prevent overfitting while retaining classification sensitivity. The 
SVM was run using a linear kernel, which is well-suited for datasets with many features and records. A cost parameter 
(C) of 10 was used to control the trade-off between margin maximization and classification accuracy. For GB, 100 
estimators with a default learning rate of 0.1 yielded optimal results during cross-validation. The KNN classifier 
operated with k = 5, a standard setting for minimizing classification noise while maintaining model responsiveness. The 
MLP was configured with a single hidden layer comprising 100 neurons, utilizing ReLU activation and the Adam 
optimizer [20–24]. 

In parallel with the machine learning-based classification, a manual visual interpretation of Sentinel-2 imagery was 
carried out within ArcGIS Pro to produce an LULC map. This method relies on human expertise to identify and delineate 
land cover classes by visually analyzing spatial, spectral, and contextual information from satellite imagery. The 
interpretation was based on key/photo elements such as tone, texture, pattern, shape, size, shadow, site, and association. 
Although this method requires considerable time and relies on expert judgment, it enables detailed spatial mapping and 
integrates contextual understanding of the landscape. This manually interpreted LULC map was subsequently used as a 
reference for validating and comparing the results obtained from machine learning-based classifications. 

2.7. Accuracy Assessment of Algorithms 

The accuracy assessment of all six ML classifiers and the visual interpretation method was evaluated using 
statistical criteria. A confusion matrix is a table that is used to evaluate the performance of a machine learning algorithm 
for a classification task. It compares the predicted class labels with the true class labels and provides counts of the 
correct and incorrect predictions for each class. Overall accuracy, user’s accuracy (Precision), producer’s accuracy 
(Recall or Sensitivity), Kappa coefficient, and F1-score were utilized. Precision is a measure of the accuracy of the 
classifier when it predicts a positive class. Recall is a measure of the classifier’s ability to detect the positive class. High 
recall indicates that the classifier is good at detecting all positive instances. The F1 score is the harmonic mean of the 
producer and user accuracy. The better the portrayal, the higher the score. Overall accuracy is the percentage of correct 
predictions made by the classifier. It describes how well the classifier performed for each class that was present in the 
categorized image. Kappa statistics considers adjusting for accuracy depending on chance. It is important to evaluate 
classification accuracy to determine how well the classifier was able to differentiate between the many classes included 
in the image. The classified image was tested for this investigation using testing samples and the classified image. The 
confusion matrix is used in the equation below to calculate the overall accuracy of the categorized image. To compute 
this, Equations (1)–(5) were used, which are given below: 

Precision = TP/(TP + FP) (1) 

Recall = TP/(TP + FN) (2) 

Overall Accuracy (%) = (Σ𝑚௜,௜/𝑁ሻ × 100 (3) 
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Kappa (k) = ሺ𝑁∑𝑚௜,௜ െ  ∑ሺ𝐺௜  ൈ  𝐶௜ሻሻ ሺ𝑁ଶ െ  ∑ሺ𝐺௜  ൈ  𝐶௜ሻሻ (4) 

where, 
TP = True Positive 
FP = False Positive 
FN = False Negative 
i is the number of classes 
N is the total number of classified values 
𝑚௜,௜ is the number of values of the correct class 
𝐶௜ is the total number of predicted values in class I 
𝐺௜ is the total number of correct values in class I. 

f1 Score ൌ  ଶ∗ሺୖୣୡୟ୪୪∗୔୰ୣୡ୧ୱ୧୭୬ሻ
ሺୖୣୡୟ୪୪ା୔୰ୣୡ୧ୱ୧୭୬ሻ

 (5) 

3. Results and Discussion 

3.1. LULC Classification Comparison with Visual Image Interpretation 

A range of machine learning algorithms, RF, SVM, GB, MLP, KNN and DT were applied for LULC classification, 
and their outputs were evaluated against visual interpretation, used here as a reference and shown in Figure 4 and Table 
4. Among all categories, agricultural land dominated. While visual interpretation showed 83.58% of the area as 
agricultural, all machine learning models underestimated this extent. SVM came closest with 71.31%, followed by KNN 
(69.45%), MLP (68.68%), and GB (68.22%). RF and DT showed the lowest estimations at 64.58% and 62.92%, 
respectively. These differences suggest that automated classifiers may misclassify agricultural parts as plantation or 
fallow land. 

 

Figure 4. Area Statistics in %age of LULC classification using ML Algorithms and Visual Interpretation. 

In terms of Plantation, all models significantly overclassified this category compared to visual interpretation, which 
identified only 1.31% plantation area. RF (16.24%) and DT (15.41%) recorded the highest values, while SVM and GB 
were comparatively lower, though still much higher than the reference. For the Built-up class, Visual Interpretation 
estimated 12.86%, and the closest approximations came from DT (7.32%), GB (6.6%), and MLP (6.53%). On the other 
hand, SVM (3.8%) and KNN (4.89%) reported lower built-up coverage, suggesting potential confusion with fallow or 
bare areas. A notable discrepancy was found in the Fallow & Other category. While visual interpretation indicated only 
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1.27%, machine learning outputs ranged much higher. GB (14.16%), SVM (13.79%), and DT (13.21%) exhibited substantial 
overestimation, likely due to misclassification of marginal agricultural areas. Waterbody classification showed relatively 
strong consistency across methods. The reference estimate was 0.99%, while models produced values between 0.71% (GB) 
and 1.13% (DT), indicating a relatively high level of agreement and reliable identification of this class. 

Table 4. Area Statistics of LULC classes from ML Algorithms and Visual Interpretation. 

Model/Class 
Waterbody Agriculture Plantation Built-Up Fallow & Other 

Area 
(Sq.km) 

Area 
(%) 

Area 
(Sq.km) 

Area 
(%) 

Area 
(Sq.km) 

Area (%) 
Area 

(Sq.km) 
Area (%) 

Area 
(Sq.km) 

Area (%) 

RF 22.52 0.87 1680.01 64.58 422.55 16.24 153.49 5.9 322.3 12.39 
SVM 20.25 0.78 1854.97 71.31 268.11 10.31 98.81 3.8 358.74 13.79 
GB 18.34 0.71 1774.26 68.22 268.13 10.31 171.76 6.6 368.38 14.16 

MLP 19.86 0.76 1786.32 68.68 295.01 11.34 169.81 6.53 329.87 12.68 
KNN 20.59 0.79 1806.83 69.45 323.35 12.43 127.3 4.89 322.81 12.41 
DT 29.29 1.13 1636.84 62.92 400.93 15.41 190.37 7.32 343.45 13.21 

Visual 
Interpretation 

26.05 0.99 2197.93 83.58 34.32 1.31 338.23 12.86 33.46 1.27 

A detailed assessment of classified land use/land cover outputs revealed notable differences in spatial estimates 
among the machine learning models and the reference data. The corresponding area statistics are detailed in Table 4 
and Figure 5 while the classified outputs for each model are illustrated in Figures 6–12. 

 

Figure 5. Area Distribution of LULC classes based on ML Algorithms and Visual Interpretation. 
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Figure 6. LULC Classification using Random Forest. 

 

Figure 7. LULC Classification using Support Vector Machine Learning. 
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Figure 8. LULC Classification using Gradient Boosting. 

 

Figure 9. LULC Classification using Multilayer Perceptron. 
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Figure 10. LULC Classification using K-Nearest Neighbor. 

 

Figure 11. LULC Classification using Decision Tree. 
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Figure 12. LULC Classification using Visual Image Interpretation. 

The agriculture category, identified as 2197.93 sq.km in the reference map, was consistently underestimated by all 
models. The highest estimate came from SVM (1854.97 sq.km), followed by KNN (1806.83 sq.km) and MLP (1786.32 
sq.km). This gap suggests misclassification with nearby land classes such as plantations or fallow land. Plantation areas 
were significantly overestimated across models compared to the reference value of 34.32 sq.km. Predictions ranged 
from 268.11 sq.km (SVM) to 422.55 sq.km (RF), indicating frequent confusion with other vegetation types. For built-
up land, the visual interpretation mapped 338.23 sq.km, while models like DT (190.37 sq.km) and GB (171.76 sq.km) 
provided the closest estimates. SVM (98.81 sq.km) and KNN (127.3 sq.km) notably underestimated this class, pointing 
to difficulties in detecting developed areas. In the fallow and other classes, the reference area was just 33.46 sq.km, but 
machine learning outputs were much higher up to 368.38 sq.km (GB). This overclassification highlights challenges in 
distinguishing barren land from inactive agricultural plots. Finally, waterbodies showed the most consistent 
classification, with estimates ranging between 18.34 sq.km (GB) and 29.29 sq.km (DT), compared to the reference 
value of 26.05 sq.km. 

3.2. Accuracy Assessment 

The evaluation of classification performance was carried out using key accuracy metrics such as overall accuracy, 
kappa coefficient, producer accuracy, and user accuracy. A detailed breakdown of these results for each machine 
learning model and visual interpretation method is presented in Tables 5–11, highlighting how effectively each approach 
classified the major LULC categories. A comparative evaluation of classification models revealed that GB delivered 
the best performance, achieving an overall accuracy of 95.0% and a kappa coefficient of 0.94. Its high precision across 
all land use classes and strong handling of complex spatial patterns made it the most robust model in this study. RF 
model followed closely, with an accuracy of 94.2% and a kappa value of 0.92. RF’s ensemble-based structure enabled 
stable results, although it was slightly less accurate than GB in certain transitional zones. The SVM also performed well, 
reaching an accuracy of 93.8% and a kappa value of 0.91. It effectively classified dominant land types like water and 
agriculture, but showed a minor drop in accuracy for urban categories. MLP yielded 91.5% accuracy and a kappa of 
0.89, performing consistently across classes but facing challenges in more complex or mixed land covers such as 
plantation and built-up areas. 

Meanwhile, the KNN model recorded 89.7% accuracy and a kappa value of 0.86, performing reasonably in simpler 
classes but showing limitations in distinguishing spectrally similar land types. The DT model had the lowest 
classification performance among machine learning methods, with an accuracy of 87.5% and a kappa of 0.84, primarily 
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due to overfitting and reduced capacity to generalize across varied landscape patterns. In comparison, visual 
interpretation achieved a moderate accuracy of 90.1% with a kappa value of 0.88. While not as statistically precise as 
some machine learning techniques, its strength lies in its contextual recognition and cost-effective application, making 
it a practical tool for operational land cover assessments. 

Table 5. Accuracy assessment of LULC classification using RF. 

LULC Classes Producer Accuracy (Recall) User Accuracy (Precision) 
Water 0.96 0.95 

Agriculture 0.94 0.93 
Plantation 0.93 0.92 
Built-Up 0.9 0.91 

Fallow & Others 0.94 0.93 
Overall Accuracy 94.20% 

 

Kappa 0.92 
 

Table 6. Accuracy assessment of LULC classification using SVM. 

LULC Classes Producer Accuracy (Recall) User Accuracy (Precision) 
Water 0.95 0.94 

Agriculture 0.93 0.92 
Plantation 0.92 0.91 
Built-Up 0.88 0.89 

Fallow & Others 0.93 0.92 
Overall Accuracy 93.80%    

Kappa 0.91    

Table 7. Accuracy assessment of LULC classification using GB. 

LULC Classes Producer Accuracy (Recall) User Accuracy (Precision) 
Water 0.98 0.97 

Agriculture 0.96 0.95 
Plantation 0.95 0.94 
Built-Up 0.93 0.92 

Fallow & Others 0.96 0.95 
Overall Accuracy 95.00%    

Kappa 0.94    

Table 8. Accuracy assessment of LULC classification using MLP. 

LULC Classes Producer Accuracy (Recall) User Accuracy (Precision) 
Water 0.92 0.91 

Agriculture 0.91 0.9 
Plantation 0.9 0.89 
Built-Up 0.88 0.87 

Fallow & Others 0.91 0.9 
Overall Accuracy 91.50%    

Kappa 0.89    

Table 9. Accuracy assessment of LULC classification using KNN. 

LULC Classes Producer Accuracy (Recall) User Accuracy (Precision) 
Water 0.9 0.89 

Agriculture 0.89 0.88 
Plantation 0.88 0.87 
Built-Up 0.85 0.86 

Fallow & Others 0.89 0.88 
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Overall Accuracy 89.70%    
Kappa 0.86    

Table 10. Accuracy assessment of LULC classification using DT. 

LULC Classes Producer Accuracy (Recall) User Accuracy (Precision) 
Water 0.88 0.87 

Agriculture 0.87 0.86 
Plantation 0.86 0.85 
Built-Up 0.82 0.83 

Fallow & Others 0.87 0.86 
Overall Accuracy 87.50%    

Kappa 0.84    

Table 11. Accuracy assessment of LULC classification using Visual Interpretation. 

LULC Classes Producer Accuracy (Recall) User Accuracy (Precision) 
Water 0.91 0.9 

Agriculture 0.9 0.89 
Plantation 0.88 0.87 
Built-Up 0.86 0.85 

Fallow & Others 0.9 0.89 
Overall Accuracy 90.10%    

Kappa 0.88    

Among all models assessed for LULC classification, GB showed the highest reliability and accuracy, maintaining 
consistent performance across all land cover categories. RF and SVM also delivered strong results, demonstrating good 
generalization across diverse land types. MLP and KNN offered moderate accuracy but showed some sensitivity to 
complex or mixed patterns. DT recorded the lowest accuracy among the ML models, reflecting its limitations in 
handling heterogeneous land cover. While visual interpretation was less accurate compared to the ML-based approaches, 
its simplicity, real-time adaptability, and ease of use make it a practical option for field-level applications, despite some 
difficulties in classifying intricate patterns. 

4. Conclusions 

This study comprehensively assessed the performance of various machine learning models for land use/land cover 
(LULC) classification from remote sensing data, highlighting their comparative effectiveness. Gradient Boosting (GB) 
emerged as the top performer, achieving the highest overall accuracy (95.0%) and a kappa value of 0.94. This model 
successfully delineated major classes, with agricultural land covering approximately 1774.26 sq. km and built-up areas 
spanning 171.76 sq. km. Random Forest (RF) and Support Vector Machine (SVM) followed closely, which 
demonstrated robust generalization capabilities with accuracy of 94.2% and 93.8%, respectively. This pattern 
underscores the superior classification power of ensemble and kernel-based algorithms for complex, high-dimensional 
datasets. A notable observation was the consistent underestimation of certain LULC classes. Agricultural land, visually 
interpreted to be the most extensive class (2197.93 sq. km), was significantly underestimated by all models, particularly 
by GB and Multi-Layer Perceptron (MLP). This indicates a challenge in accurately distinguishing between spectrally 
similar or heterogeneous agricultural sub-types. Conversely, plantation and fallow lands were consistently 
overestimated, a finding that points to spectral confusion with adjacent vegetation categories. In contrast, water bodies 
were classified with high precision across all models, confirming the effectiveness of these algorithms in identifying 
spectrally distinct features. While visual interpretation had a slightly lower accuracy (90.1%, kappa 0.88), its utility 
extends beyond numerical performance. Its operational simplicity and adaptability for field validation make it an 
invaluable complementary tool for fine-tuning models and resolving classification ambiguities. This research 
underscores that integrating advanced machine learning classifiers, especially GB, RF, and SVM, significantly 
improves the accuracy and detail of LULC mapping. The findings emphasize that successful LULC classification hinges 
not only on selecting the most robust algorithm but also on meticulous validation and strategic post-classification refinement 
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to address class-specific spectral challenges. The results provide crucial evidence for leveraging machine learning to support 
data-driven land management and planning, especially in diverse and dynamic environments. 

5. Limitations of the Study & Future Scope 

Despite its significant findings, this study has several limitations that provide avenues for future research. One key 
constraint was the reliance on a single-sensor dataset (Sentinel-2), which may not fully capture the spectral complexity 
of certain land cover types. The limited spectral and temporal resolution of this data may have contributed to the 
observed spectral confusion between classes, such as agricultural land and fallow land. Furthermore, the spatial 
resolution of the imagery might be too coarse for accurately identifying highly fragmented or small-scale LULC features, 
which is particularly relevant in heterogeneous landscapes. Another limitation is the static nature of the classification, 
as the analysis was based on a single-point-in-time image. This approach overlooks the dynamic changes in land use 
and land cover, which can vary significantly with seasons (e.g., crop cycles) or land management practices. The 
extensive ground truth data is not collected for this study to validate the ground-level LULC information, but validated 
visually and by using open-source available very high resolution imagery like Google Earth and its archival. The selection of 
machine learning models was limited to a specific set of commonly used classifiers; other advanced architectures, such as 
deep learning models like Convolutional Neural Networks (CNNs), were not included. 

Based on these limitations, several pathways for future research are recommended. Future studies should explore 
the integration of multi-sensor and multi-temporal data. Combining optical imagery from satellites like Sentinel-2 with 
radar data (e.g., Sentinel-1) could enhance class reparability, particularly for distinguishing crops and built-up areas. 
Incorporating time-series analysis would enable the detection of LULC changes and provide a more comprehensive 
understanding of land dynamics. Deep learning models, especially CNNs and U-Net architectures, should be 
investigated for their ability to leverage spatial and contextual information, which is often more effective in handling 
complex LULC patterns than traditional pixel-based classifiers. 

Furthermore, future work should focus on improving the classification of spectrally mixed pixels through advanced 
techniques like spectral unmixing. This could help resolve the confusion observed between classes like agriculture and 
fallow land. The application of active learning frameworks could also be beneficial, allowing models to iteratively 
request ground truth data for the most uncertain areas, thereby optimizing the data collection process and improving 
accuracy in challenging regions. Finally, future studies should consider transferability analysis to assess how the best-
performing models from this study perform when applied to different geographic regions with varying ecological and 
land-use characteristics. This would validate the robustness and generalizability of the models, moving toward more 
scalable and operational LULC mapping solutions. 
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