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1. Introduction

The quadrotor is a complex system characterized by nonlinear dynamics, controllability challenges due to lineariza-

tion, actuator saturation, and the need for accurate state estimation [1]. Quadrotors have already become an integral

part of modern society and are widely deployed across various application domains [2]. Numerous control strategies have

been developed and published, including PID [3], Fuzzy-PID [4], Linear Quadratic Regulator (LQR) [5], and various

forms of the backstepping algorithm [6]. More recently, research has expanded into advanced control topics such as

fault-tolerant systems and reinforcement learning [7], deep reinforcement learning for parameter identification [8], sliding

mode control [9], adaptive neuro-fuzzy control [10], deep learning-based control [11], and robust model reference adaptive

control [12]. Despite this progress, a noticeable gap remains in the literature regarding the integration and testing of dif-

ferent subsystems within a complete quadrotor system. The sequential development of the system, from initial modeling

through to simulation and validation is rarely documented in a unified manner. This work aims to address that gap by

presenting a comprehensive treatment of the quadrotor system, including all critical stages from dynamic modeling to

flight simulation.

The translational and rotational dynamics of the quadrotor are modeled separately and coupled through a rotation

matrix. Gravity is treated as a persistent disturbance, and a hover thrust is introduced as a feedforward control input

to compensate for it. This approach simplifies the state-space modeling and facilitates the implementation of a Linear

Quadratic Regulator (LQR). The actuator dynamics are represented using the transfer function of a brushless motor.

For state estimation, two extended Kalman filters (EKFs) are employed: one for estimating the translational states and

another for estimating the body rates, from which the rotational states are inferred. The LQR controller is designed

based on the full set of estimated states.

This paper also addresses several critical aspects of control system design for quadrotors: (1) linearizing the nonlinear

dynamics without compromising controllability, (2) identifying disturbance inputs and applying feedforward control to

compensate for them, (3) determining an appropriate control loop frequency based on actuator rise time, and (4) designing

multiple extended Kalman filters for a complex, multi-subsystem model. The paper is organized as follows: Section 2

presents the quadrotor dynamic model as two separate submodels for translational and rotational motions. Section 3

presents the model linearization and linear state space model of the quadrotor. Section 4 presents the linear quadratic

regulator. Section 5 presents how actuator dynamics and sensors are included in the system. Section 6 presents the LQG,

https://doi.org/10.70322/dav.2025.10014
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which includes sensor integration and EKF state estimation to get rid of sensor noise. Section 7 presents the results, and

Section 8 provides the conclusions.

2. Dynamic Modeling of a Quadrotor

2.1. Translational Motion

Figure 1 shows a quadrotor [B] after undergoing a translational motion (x, y, z) and a rotational motion (ψ, θ, φ) with

respect to the Earth frame [E]. The lift forces generated by the four propellers are f1, f2, f3, f4; hence, the net upward

force with respect to [B] is given by:

Figure 1. Quadrotor forces torques and motion.

F = f1 + f2 + f3 + f4 (1)

= kf (ω2
1 + ω2

2 + ω2
3 + ω2

4) (2)

where kf is the lift coefficient and ωi; i = 1, 2, 3, 4 are propeller speeds (RPM). The linear motion of the quadrotor with

respect to [E] is described using Newton’s laws of motion as follows:ẍÿ
z̈

 =
1

m
E
BR(ψ, θ, φ)

0

0

F

 +

 0

0

−g

− 1

m
Cd

ẋẏ
ż

 (3)

In this equation, the first term on the right-hand side represents the acceleration of the quadrotor due to the propeller

force acting along Bz, transformed to the Earth frame [E] using the z-y-x Euler rotation matrix (A4). The second term

corresponds to the acceleration caused by gravity, which acts vertically downward with respect to [E]. The third term

accounts for the deceleration of the quadrotor due to air drag. The air drag matrix Cd, which includes the drag coefficients

Cx, Cy, Cz along the x -, y-, and z -directions, is given by:

Cd =

Cx 0 0

0 Cy 0

0 0 Cz


By expanding Equation (3), the three translational acceleration components of the quadrotor are obtained as follows:

ẍ = (cosψ sin θ cosφ+ sinψ sinφ)
F

m
− Cx
m
ẋ (4)

ÿ = (sinψ sin θ cosφ+ cosψ sinφ)
F

m
− Cy
m
ẏ (5)

z̈ = cos θ cosφ
F

m
− Cz
m
ż − g (6)
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2.2. Rotational Motion

As shown in Figure 1, the propeller forces acting at a distance l from the center of mass generate torques τx, τy, and

τz about the principal axes of the quadrotor.

τx = kf l(ω
2
4 − ω2

2) (7)

τy = kf l(ω
2
1 − ω2

3) (8)

τz = km(ω2
1 − ω2

2 + ω2
3 − ω2

4) (9)

The torques τx and τy are produced by the thrust forces generated by the propellers, while τz results from the

aerodynamic drag of the propellers. The symbol km denotes the propeller drag coefficient. These torques induce

rotational motion in the quadrotor. According to Euler’s rotational dynamics, τ = Iω + ω × Iω, the rotational motion

of the quadrotor can be expressed as follows:τxτy
τz

=

Ix 0 0

0 Iy 0

0 0 Iz


ω̇xω̇y
ω̇z

+

ωxωy
ωz

×
Ix 0 0

0 Iy 0

0 0 Iz


ωxωy
ωz


=

Ixω̇xIyω̇y

Izω̇z

+

ωxωy
ωz

×
IxωxIyωy

Izωz


=

Ixω̇xIyω̇y

Izω̇z

+

(Iz − Iy)ωyωz

(Ix − Iz)ωxωz
(Iy − Ix)ωxωy

 (10)

where Ix, Iy, and Iz are the moments of inertia of the quadrotor about the axes Bx, By, and Bz, respectively. It is

assumed that the three principal axes of the quadrotor are aligned with Bx, By, and Bz, such that the products of inertia

between these axes are zero. From Equation (10), the angular accelerations of the quadrotor about the axes Bx, By, and
Bz are derived as follows:

ω̇x = [τx − (Iz − Iy)ωyωz]/Ix (11)

ω̇y = [τy − (Ix − Iz)ωxωz]/Iy (12)

ω̇z = [τz − (Iy − Ix)ωxωy]/Iz (13)

These equations describe how the quadrotor executes rolling, pitching, and yawing motions in response to the torques

τx, τy, and τz.

2.3. System Parameters

A custom-built quadrotor is used for the estimation of system parameters. The total weight of the quadrotor is 0.730

kg, with each motor and propeller assembly weighing 0.082 kg. The diagonal motor-to-motor distance measures 0.36 m.

Accordingly, the principal moments of inertia are approximately calculated as Ix = 5.0 × 10−3, Iy = 6.0 × 10−3, and

Iz = 8.0× 10−3. Typical values for other parameters are kf = 2.7× 10−6 and km = 2.1× 10−7. From Equation (2), the

propeller RPM required for the quadrotor to hover is computed as follows:

ωh =

√
mg

4kf
= 814.3RPM (14)

3. Model Linearization at Hover State

The equations of motion for the quadrotor, given by (4)–(6) and (11)–(13), capture the nonlinear dynamics that

must be linearized around an appropriate flight condition to enable the design of a linear controller. For this purpose,

the hover state is selected as the operating point for model linearization.
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3.1. Linearization of Translational Dynamics

At the hover state, the pitch and roll angles are zero, i.e., θ = φ = 0, while the yaw angle ψ can assume any heading.

For simplicity, ψ = 0 is assumed. The vertical force balance at hover is given by Fh = mg. Under these conditions, the

translational dynamics described in (4)–(6) are linearized as follows:

ẍ = gθ − Cx
m
ẋ (15)

ÿ = −gφ− Cy
m
ẏ (16)

z̈ =
1

m
F − Cz

m
ż − g (17)

It is important to note that the total vertical force is given by F = Fh + ∆F , where the imbalance component ∆F

generates the vertical acceleration z̈.

3.2. Linearization of Rotational Dynamics

At the hover state, the body angular rates are very small; therefore, assuming ω̇xω̇y ≈ ω̇yω̇z ≈ ω̇xω̇z ≈ 0, the

rotational dynamics in (11)–(13) can be linearized as follows:

ω̇x = τx/Ix (18)

ω̇y = τy/Iy (19)

ω̇z = τz/Iz (20)

From Equation (A11), the Euler anguler rates corresponding to the body angular rates at a given Euler orientation

are expressed as follows:

ψ̇ = (sinφωy + cosφωz)/ cos θ (21)

θ̇ = cosφωy − sinφωz (22)

φ̇ = ωx + tan θ sinφωy + tan θ cosφωz (23)

By differentiation, Euler angular accelerations are obtained as follows:

ψ̈ =
cθ(sφω̇y + ωyφ̇cφ) + sφωysθθ̇

c2θ
+

cθ(cφω̇z − ωzsφφ̇) + cφωzsθθ̇

c2θ
(24)

θ̈ = cφω̇y − sφωyφ̇− sφω̇z − ωzcφφ̇ (25)

φ̈ = ω̇x + tθSφω̇y + ωy(tθcφφ̇+ sφθ̇/c2θ) +

tθcφω̇z + ωz(cφθ̇/c
2θ − tθsφφ̇) (26)

Due to the fact that θ ≈ φ ≈ 0 at the hover state,

ψ̈ = ω̇z + ωyφ̇ (27)

θ̈ = ω̇y − ωzφ̇ (28)

φ̈ = ω̇x + ωz θ̇ (29)

Then, because ωyφ̇ ≈ ωzφ̇ ≈ ωz θ̇ ≈ 0 at hover state,

ψ̈ = ω̇z (30)

θ̈ = ω̇y (31)

φ̈ = ω̇x (32)

Therefore, from Equations (18)–(20), the linearized Euler angular accelerations are as follows:
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ψ̈ = τx/Ix (33)

θ̈ = τy/Iy (34)

φ̇ = τz/Iz (35)

3.3. State Space Model of the Quadrotor

From the linearized translational dynamics (15)–(17), translational states and control input are identified as x, y, z and

F . From the linearized rotational dynamics (33)–(35), the rotational states and respective control inputs are identified as

ψ, θ, φ, and τz, τy, τz, respectively. Then, the state vector and the control vector are assembled as (x, y, z, ẋ, ẏ, ż, ψ, θ, φ, ψ̇, θ̇,

φ̇)T , and (F, τz, τy, τz)
T . Linearized dynamics can be arranged into the state space model [13] shown below.

ẋ(t)12×1 = A12×12x(t)12×1 + B12×4u(t)4×1

The state-space model is presented in detail in (36). However, the acceleration due to gravity term −g in (17) is not

included explicitly in the state-space model (36); instead, it is treated as a persistent disturbance within the translational

dynamics. The force required to counteract gravity, Fh = mg, is introduced as a feedforward input. This approach

relieves the feedback control system from having to compensate for the disturbance caused by gravity.



ẋ

ẏ

ż

ẍ

ÿ

z̈

ψ̇

θ̇

φ̇

ψ̈

θ̈

φ̈



=



0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 −Cx/m 0 0 0 g 0 0 0 0

0 0 0 0 −Cy/m 0 0 0 −g 0 0 0

0 0 0 0 0 −Cz/m 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0





x

y

z

ẋ

ẏ

ż

ψ

θ

φ

ψ̇

θ̇

φ̇



+



0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

1/m 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1/Iz

0 0 1/Iy 0

0 1/Ix 0 0




F

τx

τy

τz

 (36)

4. Quadrotor Control with Linear Quadratic Regulator

The Linear Quadratic Regulator (LQR) is a full state feedback optimal controller [14] which generates control u

subject to the minimization of a cost J =
∫ t
0
(xTQx + uTRu). LQR requires all twelve states available for feedback;

hence, the measurement vector takes the form ŷ(t)12×1 = C12×12x(t)12×1 + D12×4u(t)4×1 as expanded in (37). The

measured states ŷ(t) are used as input to the LQR. The LQR requires the state cost weights Q12×12 and control cost

weights R4×4 to be specified arbitrarily and appropriately. The matrix Q contains on its diagonal the cost weights

assigned to the twelve state variables, and R contains on its diagonal the cost weights assigned to the four control inputs.

The two matrices are specified as shown in (39) and (40) by assigning a cost weight of 80 to x, y, z, ψ, θ, φ, a cost weight of

40 to ẋ, ẏ, ż, ψ̇, θ̇, φ̇, and a cost weight of 50 for F, τx, τy, τz. By specifying these weights, an LQR with the right amount

of aggressiveness can be created. Given the A,B,Q,R, the LQR gain matrix was created in Matlab using the command

KLQR = lqr(A,B,Q,R). The LQR gain matrix KLQR reads all twelve states and generates four control inputs. As

the system A,B,Q,R is linear and time-invariant, KLQR for the quadrotor control becomes a constant matrix as shown

in (38).
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

x̂

ŷ

ẑ
ˆ̇x
ˆ̇y
ˆ̇z

ψ̂

θ̂

φ̂
ˆ̇
ψ
ˆ̇
θ
ˆ̇
φ



=



1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 1





x

y

z

ẋ

ẏ

ż

ψ

θ

φ

ψ̇

θ̇

φ̇



+



0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0




F

τx

τy

τz

 (37)

KLQR =


0 0 1.26 0 0 1.43 0 0 0 0 0 0

0 −1.26 0 0 −1.40 0 0 0 5.18 0 0 0.92

1.26 0 0 1.40 0 0 0 5.20 0 0 0.93 0

0 0 0 0 0 0 1.26 0 0 0.91 0 0

 (38)

Q= 40



2 0 0 0 0 0 0 0 0 0 0 0

0 2 0 0 0 0 0 0 0 0 0 0

0 0 2 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 2 0 0 0 0 0

0 0 0 0 0 0 0 2 0 0 0 0

0 0 0 0 0 0 0 0 2 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 1



(39)

R= 50


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 (40)

5. Actuators and Sensors

5.1. Propeller Speed

The force and four torques determined by the LQR are produced by adjusting the propeller speeds. By simultaneously

solving (2), (7), (8), and (9), the propeller speeds corresponding to a given F, τx, τy, τz can be obtained as follows.

ω1 = 0.5
√
F/Kf + τz/Km + 2τy/Kf l (41)

ω2 = 0.5
√
F/Kf − τz/Km − 2τx/Kf l (42)

ω3 = 0.5
√
F/Kf + τz/Km − 2τy/Kf l (43)

ω4 = 0.5
√
F/Kf + τz/Km − 2τx/Kf l (44)

The force is always positive, whereas the torques can take on both positive and negative values depending on the

maneuver. As a result, Equations (41)–(44) may not yield physically feasible propeller speeds for certain combinations of
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F, τx, τy, τz. Therefore, it is essential to design the quadrotor parameters m, l, kf and plan waypoints carefully to ensure

that valid propeller speeds can always be computed [15].

5.2. Actuators Dynamics

Quadrotor propellers are driven by brushless DC (BLDC) outrunner motors. BLDC motors have a kv rating, which

specifies the speed in RPM per volt of input. According to [16], the dynamics of a DC motor can be described by the

following transfer function.

Ω(s)

V (s)
=

1

KDC

kvkτ
LJeqs2 + (Lbeq +RJeq)s+Rbeq + kbkτ

(45)

Here, Ω(s) and V (s) represent the Laplace transforms of the motor’s RPM and control voltage, respectively. Reason-

able values for the actuator parameters were selected as follows: motor speed rating kv = 1250 RPM/V, motor torque

constant kτ = 0.026 Nm/A, motor back EMF constant kb = 0.002 V/RPM, series resistance R = 0.063 Ω, equivalent

friction beq = 0.02, equivalent inertia Jeq = 4× 10−5 kg·m2, supply voltage v = 14.8 V, PWM frequency fpwm = 16 kHz,

and armature inductance L = R/(2
√

3πfpwm) = 3.6× 10−7 H. Using these values, the actuator’s RPM response to a 1

V input is shown in Figure 2.

Figure 2. Block diagram of the simulation platform.

From the second-order motor dynamics given in (45), the undamped natural frequency is ωn =
√

(Rbeq + kbkτ )/(LJeq)

= 2996 rad/s. According to [16], the corresponding rise time of the motor response is approximately tr ≈ 3.6/ωn = 1.2

ms, which is evident in Figure 3. Based on this, the control loop frequency was set to 200 Hz, allowing 5 ms for the

actuators to respond between consecutive commands.

Figure 3. Motor speed response for a 1V input to the electronic speed controller (ESC).
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5.3. Sensor Integration

Sensors are used to measure state variables. For the quadrotor, GPS, barometer, airspeed sensors, and rate gyros

can be used to measure all twelve states, either directly or indirectly. The GPS measures position x̄, ȳ, the barometer

measures altitude z̄, and the airspeed sensors measure relative airspeed ¯̇x, ¯̇y, ¯̇z. Euler angles and their rates cannot be

measured directly; therefore, rate gyro sensors are used to measure body rates ω̄x, ω̄y, ω̄z, from which the Euler rates
¯̇
ψ,

¯̇
θ,

¯̇
φ are estimated using the relationship in (A11). The measured Euler angles ψ̄, θ̄, φ̄ are then obtained through

discrete integration. The measured full state ȳ = (x̄, ȳ, z̄, ¯̇x, ¯̇y, ¯̇z, ω̄x, ω̄y, ω̄z,
¯̇
ψ,

¯̇
θ,

¯̇
φ)T is fed into the LQR. Assuming

standard deviations of 1 mm, 2 mm, and 3 mm in the x, y, z directions, respectively, the sensor noise covariances are

calculated as QGPSx = 10−6, QGPSy = 4× 10−6, and QBaro = 9× 10−6. Asusming a standard deviation of 2 mrad s−1

in the rate gyros the corresponding noise covariance is QGyro = 4× 10−6. Similarly, assuming a standard deviation of 5

mm s−1 in air speed sensor, the noise covariance is QAirSpeed = 2.5× 10−5.

6. LQG Regulator with State Estimation

The LQR is extended to a linear quadratic Gaussian (LQG) regulator by incorporating feedback from Kalman filter

estimates. The Kalman filter, using the measured states ȳ, plant dynamics, and the process and sensor noise covariances,

produces state estimates ŷ [17]. The standard Kalman filter, which requires either a linear plant or a fixed linearized

model, fails in state estimation because the quadrotor’s high nonlinearity causes the true states to diverge significantly

from their estimates when deviating from the hover state. Therefore, the extended Kalman filter (EKF), which uses a

state-dependent linearized model x(k + 1) = x(k) + ẋ(k)T , is employed [18]. The measured states x̄ are connected as

inputs to the EKF [19]. The translational and rotational states of the quadrotor can be efficiently estimated using two

extended Kalman filters.

6.1. Extended Kalman Filter for Translational State Estimation

From (4)–(6), the transitional state vector is x(k) = [x(k), y(k), z(k), ẋ(k), ẏ(k), ż(k)]T . The first derivatives of this

state vector are identified as follows:

ẋ(k) =



ẋ1(k)

ẋ2(k)

ẋ3(k)

ẋ4(k)

ẋ4(k)

ẋ6(k)


=



x4(k)

x5(k)

x6(k)

(cψsθcφ+ sψsφ) Fm −
Cx

m x4(k)

(sψsθcφ+ cψsφ) Fm −
Cy

m x5(k)

cθcφ Fm −
Cz

m x6(k)− g


(46)

Using (46) in the state transition x(k + 1) = x(k) + ẋ(k)T , an EKF is constructed to estimate the translational

states.

6.2. Extended Kalman Filter for Rotational State Estimation

From the rotational dynamics (11)–(13), the rotational state vector is x(k) = (ωx, ωy, ωz)
T . The first derivative of

these states are identified as follows:

ẋ(k) =

ẋ1(k)

ẋ2(k)

ẋ3(k)

 =

[τx − (Iz − Iy)x2(k)x3(k)]/Ix

[τy − (Ix − Iz)x1(k)x3(k)]/Iy

[τz − (Iy − Ix)x1(k)x2(k)]/Iz

 (47)

Using (47) in the state transition x(k+ 1) = x(k) + ẋ(k)T , an EKF is constructed to estimate the rotational states.

6.3. Simulation

The simulation is built with the nonlinear quadrotor dynamics under linear quadratic Gaussian control. The simu-

lation framework is built using the subsystems presented in Sections 2–5. Figure 2 illustrates how these subsystems are

interconnected to form the complete simulation framework.

Bottom layer : The controller compares the reference and actual states to generate the required force and torques.

These are then translated into reference motor speeds (RPM), and the corresponding control voltages needed to achieve
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these RPMs are calculated. The four voltages are then applied as inputs to the motor block, which produces the motor

RPMs.

Middle layer: The four motor RPMs generate three torques around the quadrotor’s axes, which excite its nonlinear

rotational dynamics, resulting in body rates about the three axes. These body rates are measured by the three rate gyro

sensors; however, due to sensor noise, EKF2 is used to accurately estimate the body rates. Using the estimated body

rates along with the current Euler angles, the Euler rates are computed. Integrating the Euler rates yields the updated

Euler angles.

Top later: The four RPMs from the motor block produces the force on the quadrotor with respect to the quadrotor

frame in its present orientation. This force excites nonlinear translational dynamics, which involved feed-forward gravity

compensation and the orientation (Euler angles). Translational dynamics produces linear accelerations of the quadrotor

and successive integrations produce linear velocity and position. Linear position is detected by GPS and barometer but

the signals are contaminated with noise. Hence the EKF1 is used to estimate linear positions accurately.

The Matlab/Simulink implementation of the simulation framework is illustrated in Figure 4, with subsystems iden-

tified as BLDC motors, LQR controller, reference state, EKF1 (translational state estimator), EKF2 (rotational state

estimator), and sensors. The reference state is set to x = −4 m, y = 2 m, z = 20 m, and ψ = 0.1π rad.

Figure 4. Matlab Implementation: decoupled dynamics, LQR, two extended Kalman filters, motor dynamics, sensor noise, and

feedforward compensation of gravity.

The simulation was successfully executed on two platforms: Acer Nitro 5 with an Intel Core i7 (2.2 GHz), 16 GB

RAM, Windows 11, running Matlab-Simulink R2023b; and Lenovo ThinkPad with an Intel Core Ultra 7 (1.4 GHz),

32 GB RAM, Windows 11, running Matlab-Simulink R2024b.

7. Results and Discussion

The results are shown in Figure 5. The top row of Figure 5a–e illustrates the rotational motion, while the bottom

row Figure 5f–j depicts the translational motion. The quadrotor’s initial state is zero for all variables, and the control

input begins at t = 1 s. Figure 5g shows a large positive acceleration in the z-direction, a moderately strong negative

acceleration in the x-direction, and a small positive acceleration in the y-direction. These accelerations correspond

accurately to the position errors of 20 m, −4 m, and 2 m in the z, x, and y directions, respectively. Figure 5h shows the
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corresponding linear velocities, and Figure 5i demonstrates that the quadrotor reaches the reference state smoothly and

stabilizes there steadily.

Figure 5. Quadrotor flight results under LQG control with state estimates from extended Kalman filters.

Figure 5a shows a large negative torque around the quadrotor’s y-axis at t = 1 s, pushing it along the negative

x-direction toward the goal position at x = −4 m. At the same time, Figure 5c displays a sharp negative body rate

around the y-axis, followed shortly by a positive y-axis body rate. This sequence allows the quadrotor to start moving in

the negative x-direction, then slow down and stop at the reference position. Similarly, Figure 5d shows a corresponding

negative pitching followed by positive pitching. Figure 5e illustrates the aggressive pitch control and moderate roll

control required to move the quadrotor by −4 m along the x-direction and 2 m along the y-direction. Both pitch and roll

angles return to zero at the reference state, while the yaw angle smoothly reaches 0.1π rad. The LQR controller drives

the quadrotor to the reference state smoothly, without overshoot or oscillations, in about 5 s. Both EKFs successfully

estimate the translational and rotational states despite noise in the GPS, barometer, and rate gyros. Forces, torques,

accelerations, velocities, and Euler angles all exhibit smooth variations.

Limitations

This quadrotor simulation is based on the nonlinear quadrotor dynamics under the linear quadratic Gaussian (LQG)

ocntrol along with extended Kalman filters for state estimation. Hence, the motion prediction and state estimation remain

accurate as long as the system’s nonlinearity is confined within a small range of variation. To satisfy this requirement,

the quadrotor’s path should be planned to avoid aggressive roll and pitch maneuvers. The simulation platform has the

provision to include and test different controllers for research and educational purposes.

8. Conclusions

This paper presents a thorough analysis of the quadrotor system and its controller design. Translational motion

was modeled using Newtonian dynamics, and rotational motion was modeled using Eulerian dynamics. The nonlinear

model was simulated in MATLAB/Simulink, while a linearized model was used for the linear quadratic Gaussian (LQG)

controller. Gravity was treated as a persistent disturbance, compensated by introducing a hover force as feedforward

control. The quadrotor model was linearized at the hover state, and a state-space model was obtained while preserving

controllability. A set of sensors including GPS, barometer, airspeed, and rate gyro was included with sensor noise. An
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extended Kalman filter was used to estimate translational states from the noisy GPS, barometer, and airspeed measure-

ments, while another extended Kalman filter estimated body rates from the noisy rate gyro measurements. The estimated

states were fed to the LQG controller, and the flight simulation was successfully executed using MATLAB/Simulink on

two hardware platforms. This work provides a complete quadrotor simulation platform that can be used by researchers,

academics, and students for research, teaching, and self-learning.

Appendix A. XYZ Euler Rotation

Figure A1 shows a moving frame [B], which is initially coincident with the Earth frame [E], undergoing three

successive rotations around its own axes Bz → By → Bx.

Figure A1. Z-Y-X Euler Rotation.

The intermediate positions of the moving frame after each rotation are denoted by [B′], [B′′] and [B]. The three

rotation matrices are given as follows:

Rz(ψ) =

cosψ − sinψ 0

sinψ cosψ 0

0 0 1

 (A1)

Ry(θ) =

 cos θ 0 sin θ

0 1 0

− sinφ 0 cosφ

 (A2)

Rx(φ) =

1 0 0

0 cosφ − sinφ

0 sinφ cosφ

 (A3)

In Euler rotation, the orientation of the moving frame [B] with respect to the fixed frame [E] is determined by series

multiplication E
BR = Rz(ψ)Ry(θ)Rx(φ) which produces the following rotation matrix.

E
BR =

cψcθ cψsθsθ − sψcθ cψsθcφ+ sψsφ

sψcθ sψsθsφ+ cψcφ sψsθcφ− cψsφ
−sθ cθsφ cθcφ

 (A4)

where S and C are shorthand notations for sin() and cos().

Appendix B. Body Rates and Euler Rates

As shown in Figure A1 Euler rotations ψ θ and φ are referred to the axes B′z,B
′′
y , and Bx. The body rates Bω of

frame [B] due to Euler angle rates are generated as follows.

Bω = φ̇ Bx + θ̇ BB′′y + ψ̇ BB′z (A5)
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where BB′′y and BB′z are the two unit vectors B′′y and B′z written with respect to frame [B]. Frame [B′′] is related to

frame [B] through the rotation matrix Rx(φ) as [B′′xB
′′
yB
′′
z ]T = Rx(φ)[BxByBz]

T , which leads to

B′′y = cosφBy − sinφBz (A6)

Similarly, frame [B′] is related to [B] through Ry(θ)Rx(φ) as [B′xB
′
yB
′
z]
T = Ry(θ)Rx(φ)[BxByBz]

T , which leads to

B′z = − sin θBx + cos θ sinφBy + cos θ cosφBz (A7)

Substitution from (A6) and (A7) into (A5) results

Bω = (φ̇− sθψ̇)Bx + (cφθ̇ + cθsφψ̇)By + (cθcφψ̇ − sφθ̇)Bz (A8)

from which the body axis rates are obtained as follows.ωxωy
ωz

 =

 φ̇− sin θψ̇

cosφθ̇ + cos θ sinφψ̇

cos θ cosφψ̇ − sinφθ̇

 (A9)

Once rearranged, body rates can be related to Euler rates through the following transformation matrixωxωy
ωz

 =

 − sin θ 0 1

cos θ sinφ cosφ 0

cos θ cosφ − sinφ 0


ψ̇θ̇
φ̇

 (A10)

And, the inverse transformation which is useful to determine Euler angle rates form body rates is as follows.ψ̇θ̇
φ̇

 =

0 sec θ sinφ sec θ cosφ

0 cosφ − sinφ

1 tan θ sinφ tan θ cosφ


ωxωy
ωz

 (A11)
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