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ABSTRACT: The quadrotor is an underactuated, nonlinear system that presents significant challenges in both modeling and
control design. This work develops a decoupled control framework based on the translational (Newtonian) and rotational (Eulerian)
dynamics of the quadrotor. A Linear Quadratic Gaussian (LQG) regulator is implemented for control, with two extended Kalman
filters employed for state estimation in the respective dynamic subsystems. The full design process, from dynamic modeling to
flight simulation presented in detail. Key elements include nonlinear simulation, model linearization, state-space representation,
feedforward compensation, Linear Quadratic Regulator (LQR) gain tuning, actuator dynamics, sensor noise, LQG design, and
extended Kalman filter. The limitations of applying linear control to a nonlinear system are also presented.
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1. Introduction

The quadrotor is a complex system characterized by nonlinear dynamics, controllability challenges due to lineariza-
tion, actuator saturation, and the need for accurate state estimation [1]. Quadrotors have already become an integral
part of modern society and are widely deployed across various application domains [2]. Numerous control strategies have
been developed and published, including PID [3], Fuzzy-PID [4], Linear Quadratic Regulator (LQR) [5], and various
forms of the backstepping algorithm [6]. More recently, research has expanded into advanced control topics such as
fault-tolerant systems and reinforcement learning [7], deep reinforcement learning for parameter identification [8], sliding
mode control [9], adaptive neuro-fuzzy control [10], deep learning-based control [11], and robust model reference adaptive
control [12]. Despite this progress, a noticeable gap remains in the literature regarding the integration and testing of dif-
ferent subsystems within a complete quadrotor system. The sequential development of the system, from initial modeling
through to simulation and validation is rarely documented in a unified manner. This work aims to address that gap by
presenting a comprehensive treatment of the quadrotor system, including all critical stages from dynamic modeling to
flight simulation.

The translational and rotational dynamics of the quadrotor are modeled separately and coupled through a rotation
matrix. Gravity is treated as a persistent disturbance, and a hover thrust is introduced as a feedforward control input
to compensate for it. This approach simplifies the state-space modeling and facilitates the implementation of a Linear
Quadratic Regulator (LQR). The actuator dynamics are represented using the transfer function of a brushless motor.
For state estimation, two extended Kalman filters (EKFs) are employed: one for estimating the translational states and
another for estimating the body rates, from which the rotational states are inferred. The LQR controller is designed
based on the full set of estimated states.

This paper also addresses several critical aspects of control system design for quadrotors: (1) linearizing the nonlinear
dynamics without compromising controllability, (2) identifying disturbance inputs and applying feedforward control to
compensate for them, (3) determining an appropriate control loop frequency based on actuator rise time, and (4) designing
multiple extended Kalman filters for a complex, multi-subsystem model. The paper is organized as follows: Section 2
presents the quadrotor dynamic model as two separate submodels for translational and rotational motions. Section 3
presents the model linearization and linear state space model of the quadrotor. Section 4 presents the linear quadratic

regulator. Section 5 presents how actuator dynamics and sensors are included in the system. Section 6 presents the LQG,
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which includes sensor integration and EKF state estimation to get rid of sensor noise. Section 7 presents the results, and
Section 8 provides the conclusions.
2. Dynamic Modeling of a Quadrotor

2.1. Translational Motion

Figure 1 shows a quadrotor [B] after undergoing a translational motion (z,y, z) and a rotational motion (¢, 8, ¢) with
respect to the Earth frame [E]. The lift forces generated by the four propellers are f1, fa, f3, f4; hence, the net upward
force with respect to [B] is given by:

,',, E[xl Y, Z, w. el (p]T
£z
Ex y

[E]

Figure 1. Quadrotor forces torques and motion.

F
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where ky is the lift coefficient and w;;i = 1,2,3,4 are propeller speeds (RPM). The linear motion of the quadrotor with
respect to [E] is described using Newton’s laws of motion as follows:

x ! 0 0 ! T
Z F —g z

In this equation, the first term on the right-hand side represents the acceleration of the quadrotor due to the propeller
force acting along Zz, transformed to the Earth frame [E] using the z-y-r Euler rotation matrix (A4). The second term
corresponds to the acceleration caused by gravity, which acts vertically downward with respect to [E]. The third term
accounts for the deceleration of the quadrotor due to air drag. The air drag matrix Cy, which includes the drag coefficients
Cy,Cy, C, along the z-, y-, and z-directions, is given by:

C. 0 0
Ca=|0 ¢C, 0
0 0 C.

By expanding Equation (3), the three translational acceleration components of the quadrotor are obtained as follows:

Z = (costsiné cos ¢ + sin sin @)

ST
31830

J = (sintsinfcos ¢ + cos)sin @)

Z = cos@cosqﬁi—%é—g (6)
m m
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2.2. Rotational Motion

As shown in Figure 1, the propeller forces acting at a distance I from the center of mass generate torques 7, 7, and
T, about the principal axes of the quadrotor.

T = kpl(wi —wi) (7)
Ty = kfl(wf - w%) (8)
T, = knW?—w?+ w§ —w?) (9)

The torques 7, and 7, are produced by the thrust forces generated by the propellers, while 7, results from the
aerodynamic drag of the propellers. The symbol k,, denotes the propeller drag coefficient. These torques induce
rotational motion in the quadrotor. According to Euler’s rotational dynamics, 7 = Iw + w X Iw, the rotational motion
of the quadrotor can be expressed as follows:

T I, 0 O |ws Wy I, 0 0] |ws

Ty =10 I, Of|wy|+|wy|Xx|0 I, 0wy

T, 0 0 I.||w, Wy 0 0 I.|]|w,
_Imo'JI_ Wy Iw,

= Tywy | + |wy | X | Iywy

_Izwz_ Wy 1w,

(10, | [(I. - I)wyw.

= Iywy | +| Iy — L) wyw, (10)
(

| .0, | I, — I )wgwy

B

where I, I, and I, are the moments of inertia of the quadrotor about the axes "z, By, and Bz, respectively. It is

assumed that the three principal axes of the quadrotor are aligned with 2z, By, and £z, such that the products of inertia
between these axes are zero. From Equation (10), the angular accelerations of the quadrotor about the axes Zx, By, and

B2 are derived as follows:

Wy [T — (I — Iy)wyw,] /I, (11)
wy = [ry = (o = L)wew:]/I, (12)
W, = [ — Iy — Ip)wawy] /L. (13)

These equations describe how the quadrotor executes rolling, pitching, and yawing motions in response to the torques

Tz, Ty, and 7.

2.8. System Parameters

A custom-built quadrotor is used for the estimation of system parameters. The total weight of the quadrotor is 0.730
kg, with each motor and propeller assembly weighing 0.082 kg. The diagonal motor-to-motor distance measures 0.36 m.
Accordingly, the principal moments of inertia are approximately calculated as I, = 5.0 x 1073, I, = 6.0 x 1073, and
I, = 8.0 x 1073. Typical values for other parameters are k; = 2.7 x 107% and k,,, = 2.1 x 1077 From Equation (2), the
propeller RPM required for the quadrotor to hover is computed as follows:

wn = |29 _ 8§14.3RPM (14)
Ak,

3. Model Linearization at Hover State

The equations of motion for the quadrotor, given by (4)—(6) and (11)—(13), capture the nonlinear dynamics that
must be linearized around an appropriate flight condition to enable the design of a linear controller. For this purpose,

the hover state is selected as the operating point for model linearization.
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3.1. Linearization of Translational Dynamics

4 of 13

At the hover state, the pitch and roll angles are zero, i.e., § = ¢ = 0, while the yaw angle 1) can assume any heading.

For simplicity, 1» = 0 is assumed. The vertical force balance at hover is given by F}; = mg. Under these conditions, the

translational dynamics described in (4)—(6) are linearized as follows:

i
3

It is important to note that the total vertical force

generates the vertical acceleration Z.

8.2. Linearization of Rotational Dynamics

At the hover state, the body angular rates are very small; therefore, assuming wyw, ~ wyw,

Cy .
—ad — Y 1
99— "y (16)
iF—%,é—g (17)
m m

is given by F' = F}, + AF, where the imbalance component AF

rotational dynamics in (11)—(13) can be linearized as follows:

Wy
Wy

Wz

= sz/Iw (18)
= 1/l (19)
= 1./L (20)

From Equation (A11), the Euler anguler rates corresponding to the body angular rates at a given Euler orientation

are expressed as follows:

¢ = (singw, + cos¢w,)/ cosd (21)
0 = cosgpuw, — singw, (22)
é = wy+tanBsin ¢pwy + tan b cos pw, (23)
By differentiation, Euler angular accelerations are obtained as follows:
. cb(spuwy, + wyd')cgﬁ) + sgbwysf)é
/lzzj - 2 +
%0
ch(cow, — wzs2¢¢) + cow, 00 (24)
%0
0 = cowy — sowyd — SPw, — W chP (25)
d = .+ t9Spw, + wy(wcqbgz.b + sgzﬁé/cz&) +
thcdu, + w, (cdh /20 — thspd) (26)

Due to the fact that 0 ~ ¢ ~ 0 at the hover state,

72} = w,+ wyé) (27)
b = @y —w.é (28)
¢ = Wy +w.b (29)
Then, because wyalﬁ R wzgﬁ ~ w.0 ~ 0 at hover state,
Vo= w, (30)
0 Wy (31)

Therefore, from Equations (18)—(20), the linearized Euler angular accelerations are as follows:
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v = 1o/, (33)
) = 7/l (34)
¢ = 1./L. (35)

3.8. State Space Model of the Quadrotor

From the linearized translational dynamics (15)—(17), translational states and control input are identified as z, y, z and
F'. From the linearized rotational dynamics (33)—(35), the rotational states and respective control inputs are identified as
¥,0, ¢, and 7, T, T,, respectively. Then, the state vector and the control vector are assembled as (z,y, z, &, ¥, 2,1, 0, ¢, z/}, 9,
gi))T, and (F,7,,7,,7.)". Linearized dynamics can be arranged into the state space model [13] shown below.

X(t)12x1 = A12x12X(t)12x1 + Biaxau(t)ax1

The state-space model is presented in detail in (36). However, the acceleration due to gravity term —g in (17) is not
included explicitly in the state-space model (36); instead, it is treated as a persistent disturbance within the translational
dynamics. The force required to counteract gravity, Fj, = mg, is introduced as a feedforward input. This approach

relieves the feedback control system from having to compensate for the disturbance caused by gravity.

[ ] 00 0 1 0 0 00 0 00 0\][z] [oO 0 0 0 ]
¥ 000 0 1 0 00 0 00 0 ||y o 0 0 0

3 000 0 0 1 00 0 00 0]z o 0 0 0
i 0 00 —Co/m 0 0 0 g 0 00 0||& o 0 0 0
i 000 0 —Cy/m 0 0 0 —g 0 0 0|5 o o0 o0 o0|[F
i _[ooo0 0 0 ~C./m 0 0 0 0 0 O 2l Ym0 0 0 | |7 (36)
0 000 0 0 0 00 0 1 00 || 0 0 0 0 ||m
6 000 0 0 0 00 0 0 1 0]]|6 o 0o 0 0|l
é 000 0 0 0 00 0 00 1]|]|¢ o 0 0 0
0 000 0 0 0 00 0 00 0|]|v o 0 0 1/I
g 000 0 0 0 00 0 00 0|6 o 0 1/, 0
9] 00 0 0 0 0 00 0 00o00O0/)|¢] |0 1/L 0 0

4. Quadrotor Control with Linear Quadratic Regulator

The Linear Quadratic Regulator (LQR) is a full state feedback optimal controller [14] which generates control u
subject to the minimization of a cost J = fot (xTQx + uTRu). LQR requires all twelve states available for feedback;
hence, the measurement vector takes the form §(t)12x1 = Ci12x12X(t)12x1 + D12xau(t)sx1 as expanded in (37). The
measured states y(t) are used as input to the LQR. The LQR requires the state cost weights Q12x12 and control cost
weights Ryx4 to be specified arbitrarily and appropriately. The matrix Q contains on its diagonal the cost weights
assigned to the twelve state variables, and R contains on its diagonal the cost weights assigned to the four control inputs.
The two matrices are specified as shown in (39) and (40) by assigning a cost weight of 80 to x,y, z, 1,0, ¢, a cost weight of
40 to ,9, 2, QL, 0, $, and a cost weight of 50 for F), 1., 1,,T,. By specifying these weights, an LQR with the right amount
of aggressiveness can be created. Given the A, B, Q, R, the LQR gain matrix was created in Matlab using the command
Krgor = lgr(4, B,Q, R). The LQR gain matrix Krgr reads all twelve states and generates four control inputs. As
the system A, B, Q, R is linear and time-invariant, K1gr for the quadrotor control becomes a constant matrix as shown
in (38).
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5. Actuators and Sensors
5.1. Propeller Speed

The force and four torques determined by the LQR are produced by adjusting the propeller speeds. By simultaneously

solving (2), (7), (8), and (9), the propeller speeds corresponding to a given F, 7, T,, 7, can be obtained as follows.

wi = O05\F/Kf+ 7Ky + 27, /K[l (41)
wy = 0.5\/F/Kf 1)K — 274/ K (42)
ws = O05\F/Kp+ 7./ Ky — 21,/ K[l (43)
wi = 05\F/Kp+ 1)K, —2m, /Kl (44)

The force is always positive, whereas the torques can take on both positive and negative values depending on the

maneuver. As a result, Equations (41)—(44) may not yield physically feasible propeller speeds for certain combinations of
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F, 7,7y, .. Therefore, it is essential to design the quadrotor parameters m,[, ky and plan waypoints carefully to ensure
that valid propeller speeds can always be computed [15].

5.2. Actuators Dynamics

Quadrotor propellers are driven by brushless DC (BLDC) outrunner motors. BLDC motors have a kv rating, which
specifies the speed in RPM per volt of input. According to [16], the dynamics of a DC motor can be described by the

following transfer function.

Qs) 1 koks
V(s)  Kpc LJegs® + (Lbeg + RJeq)s + Rbeg + ki

(45)

Here, Q(s) and V (s) represent the Laplace transforms of the motor’s RPM and control voltage, respectively. Reason-
able values for the actuator parameters were selected as follows: motor speed rating k, = 1250 RPM/V, motor torque
constant k. = 0.026 Nm/A, motor back EMF constant k, = 0.002 V/RPM, series resistance R = 0.063 €, equivalent
friction b., = 0.02, equivalent inertia J., = 4 x 107> kg-m?, supply voltage v = 14.8 V, PWM frequency fpuwm = 16 kHz,
and armature inductance L = R/(2v/37 fpwm) = 3.6 x 1077 H. Using these values, the actuator’s RPM response to a 1

V input is shown in Figure 2.

Gravity
compensation
Nonlinear
RPM to . GPS and
Translational I EKF1
force . barometer
dynamics
Nonlinear
RPM to Rotational |—» Rate gyros | EKF2 N Body rates to _’J-
toraue D i Euler rates
ynamics
Ref
Torque

Motor RPM to and [
. e [—| controller state
dynamics voltage force

to RPM

Figure 2. Block diagram of the simulation platform.

From the second-order motor dynamics given in (45), the undamped natural frequency is wy, = \/(Rbeq + kvkr)/(LJeq)
= 2996 rad/s. According to [16], the corresponding rise time of the motor response is approximately ¢, ~ 3.6/w, = 1.2
ms, which is evident in Figure 3. Based on this, the control loop frequency was set to 200 Hz, allowing 5 ms for the

actuators to respond between consecutive commands.

Motor Speed for 1V ESC Input
1400

1200

1000 - /

soor  /

600

Speed [RPM]

400

200 +f

0
0 0.002 0.004 0.006 0.008 001 0.012 0014 0.016 0.018
Time (seconds)

Figure 3. Motor speed response for a 1V input to the electronic speed controller (ESC).
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5.3. Sensor Integration

Sensors are used to measure state variables. For the quadrotor, GPS, barometer, airspeed sensors, and rate gyros
can be used to measure all twelve states, either directly or indirectly. The GPS measures position Z, gy, the barometer
measures altitude Z, and the airspeed sensors measure relative airspeed ,, 2. Euler angles and their rates cannot be
measured directly; therefore, rate gyro sensors are used to measure body rates w,,w,,w,, from which the Euler rates

@[1,9,(;5 are estimated using the relationship in (A11l). The measured Euler angles 1,0, ¢ are then obtained through
discrete integration. The measured full state § = (;E,gj,27§,gj,§,wz7wy,wz,¢,9,¢2)T is fed into the LQR. Assuming
standard deviations of 1 mm, 2 mm, and 3 mm in the z, y, z directions, respectively, the sensor noise covariances are
calculated as Qgpss = 107%, Qapsy =4 x 107%, and Qparo = 9 x 107°. Asusming a standard deviation of 2 mrad s™!
in the rate gyros the corresponding noise covariance is Qgyro = 4 X 1075, Similarly, assuming a standard deviation of 5

1

mm s~ in air speed sensor, the noise covariance is Q girspeed = 2.5 X 102,

6. LQG Regulator with State Estimation

The LQR is extended to a linear quadratic Gaussian (LQG) regulator by incorporating feedback from Kalman filter
estimates. The Kalman filter, using the measured states y, plant dynamics, and the process and sensor noise covariances,
produces state estimates y [17]. The standard Kalman filter, which requires either a linear plant or a fixed linearized
model, fails in state estimation because the quadrotor’s high nonlinearity causes the true states to diverge significantly
from their estimates when deviating from the hover state. Therefore, the extended Kalman filter (EKF), which uses a
state-dependent linearized model x(k + 1) = x(k) + %(k)T, is employed [18]. The measured states X are connected as
inputs to the EKF [19]. The translational and rotational states of the quadrotor can be efficiently estimated using two
extended Kalman filters.

6.1. Eztended Kalman Filter for Translational State Estimation

From (4)—(6), the transitional state vector is x(k) = [z(k), y(k), z(k), 2(k), y(k), 2(k)]T. The first derivatives of this
state vector are identified as follows:

z1(k) x4(k)
(k) — i3(k)| _ z6(k)
B = Vi) = | (cwstep + susg) E — Cemah) (16)
z4(k) (ssbcop + cips )% — %xg,(k)
| Z6 (k) | i c@cqﬁ% - %xg(k) -9

Using (46) in the state transition x(k + 1) = x(k) + x(k)T, an EKF is constructed to estimate the translational
states.

6.2. Extended Kalman Filter for Rotational State Estimation

From the rotational dynamics (11)-(13), the rotational state vector is x(k) = (w,wy,w,)?. The first derivative of

these states are identified as follows:

a1 (k) (7o — (Lo — Iy)xo (k)3 (k)]/ L,
x(k) = |22(k) | = |[ry — (I. — L)21(k)w3(k)]/1y (47)
xS(k) [Tz - (Iy - Ia:)xl (k)xQ(k)]/IZ

Using (47) in the state transition x(k+ 1)

x(k) +x(k)T, an EKF is constructed to estimate the rotational states.

6.3. Simulation

The simulation is built with the nonlinear quadrotor dynamics under linear quadratic Gaussian control. The simu-
lation framework is built using the subsystems presented in Sections 2-5. Figure 2 illustrates how these subsystems are
interconnected to form the complete simulation framework.

Bottom layer : The controller compares the reference and actual states to generate the required force and torques.
These are then translated into reference motor speeds (RPM), and the corresponding control voltages needed to achieve
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these RPMs are calculated. The four voltages are then applied as inputs to the motor block, which produces the motor
RPMs.

Middle layer: The four motor RPMs generate three torques around the quadrotor’s axes, which excite its nonlinear
rotational dynamics, resulting in body rates about the three axes. These body rates are measured by the three rate gyro
sensors; however, due to sensor noise, EKF2 is used to accurately estimate the body rates. Using the estimated body
rates along with the current Euler angles, the Euler rates are computed. Integrating the Euler rates yields the updated
Euler angles.

Top later: The four RPMs from the motor block produces the force on the quadrotor with respect to the quadrotor
frame in its present orientation. This force excites nonlinear translational dynamics, which involved feed-forward gravity
compensation and the orientation (Euler angles). Translational dynamics produces linear accelerations of the quadrotor
and successive integrations produce linear velocity and position. Linear position is detected by GPS and barometer but
the signals are contaminated with noise. Hence the EKF1 is used to estimate linear positions accurately.

The Matlab/Simulink implementation of the simulation framework is illustrated in Figure 4, with subsystems iden-
tified as BLDC motors, LQR controller, reference state, EKF1 (translational state estimator), EKF2 (rotational state

estimator), and sensors. The reference state is set to x = —4 m, y =2 m, z = 20 m, and ¢ = 0.1x rad.

Translational
Motion

‘! xyz

o]

e s —— )
| Htﬂ

Rate Gﬁ E£KkEz
T
0oe Rotational lﬂw mqwmﬂmr (6) E.L;‘\‘(?_-'s E:Ignlles ::
= -‘I:;: Motion < JL '@_." 2 |__E} EulerAng ::
CIzly = QPR : O = = ol ] H
5 : T} : : =
RFM 1o Torman I EKF - Bady Rates "\_l | )
i T2 i FT I L{ BodyRates EulerRale }-—E " ‘ =
BLDG E sl - -
EKF1
Motors Set Waypoint Emm—
mle) Ref RPM T
H—&—T —— {1
el . g
B | k3
ik .ﬁﬂ ENE e
5 [ \ I =
= N [
PWM voltage @ :—r [ =
Kior ::| I:I:i

Figure 4. Matlab Implementation: decoupled dynamics, LQR, two extended Kalman filters, motor dynamics, sensor noise, and

feedforward compensation of gravity.

The simulation was successfully executed on two platforms: Acer Nitro 5 with an Intel Core i7 (2.2 GHz), 16 GB
RAM, Windows 11, running Matlab-Simulink R2023b; and Lenovo ThinkPad with an Intel Core Ultra 7 (1.4 GHz),
32 GB RAM, Windows 11, running Matlab-Simulink R2024b.

7. Results and Discussion

The results are shown in Figure 5. The top row of Figure 5a—e illustrates the rotational motion, while the bottom
row Figure 5f—j depicts the translational motion. The quadrotor’s initial state is zero for all variables, and the control
input begins at ¢ = 1 s. Figure 5g shows a large positive acceleration in the z-direction, a moderately strong negative
acceleration in the z-direction, and a small positive acceleration in the y-direction. These accelerations correspond

accurately to the position errors of 20 m, —4 m, and 2 m in the z, z, and y directions, respectively. Figure 5h shows the
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corresponding linear velocities, and Figure 5i demonstrates that the quadrotor reaches the reference state smoothly and

stabilizes there steadily.

i BTorques (@) 550 Motor RPM (b) i E'A\rlgqular Rates (c) i EEuler (ZYX) Rates (d) G EEuler Angles (e)
- duldt
0 = —u, * dasdt
2000 , 2 oy 2 dafdt 02
1 “2
g \
5 - 1500 “a 0 A o ——— - 0
) |
3 7, 1000 2 2 02 —
-4 @
500 4 4 04
5
6 0 6 6 0.6
0 5 10 0 5 10 0 5 10 0 5 10 0 5 10
a5 EForce (f) i EAccelraions (g) Evelocities (h) 25 ETranslation 0] EQuadrotor Position [1)]
xdd 1 =
30 ydd —y
30 2dd vz 20 20
25
20 15 % 15
20 ’ :
z 10
10 10 A
15 g_ /\ 5
0 = 5

0 -20 -5 -5
0 5 10 0 5 10 0 5 10 0 5 10 ¥ 0 4 X

Figure 5. Quadrotor flight results under LQG control with state estimates from extended Kalman filters.

Figure 5a shows a large negative torque around the quadrotor’s y-axis at ¢ = 1 s, pushing it along the negative
z-direction toward the goal position at x = —4 m. At the same time, Figure 5c¢ displays a sharp negative body rate
around the y-axis, followed shortly by a positive y-axis body rate. This sequence allows the quadrotor to start moving in
the negative z-direction, then slow down and stop at the reference position. Similarly, Figure 5d shows a corresponding
negative pitching followed by positive pitching. Figure 5e illustrates the aggressive pitch control and moderate roll
control required to move the quadrotor by —4 m along the z-direction and 2 m along the y-direction. Both pitch and roll
angles return to zero at the reference state, while the yaw angle smoothly reaches 0.17 rad. The LQR controller drives
the quadrotor to the reference state smoothly, without overshoot or oscillations, in about 5 s. Both EKF's successfully
estimate the translational and rotational states despite noise in the GPS, barometer, and rate gyros. Forces, torques,
accelerations, velocities, and Euler angles all exhibit smooth variations.

Limitations

This quadrotor simulation is based on the nonlinear quadrotor dynamics under the linear quadratic Gaussian (LQG)
ocntrol along with extended Kalman filters for state estimation. Hence, the motion prediction and state estimation remain
accurate as long as the system’s nonlinearity is confined within a small range of variation. To satisfy this requirement,
the quadrotor’s path should be planned to avoid aggressive roll and pitch maneuvers. The simulation platform has the

provision to include and test different controllers for research and educational purposes.

8. Conclusions

This paper presents a thorough analysis of the quadrotor system and its controller design. Translational motion
was modeled using Newtonian dynamics, and rotational motion was modeled using Eulerian dynamics. The nonlinear
model was simulated in MATLAB/Simulink, while a linearized model was used for the linear quadratic Gaussian (LQG)
controller. Gravity was treated as a persistent disturbance, compensated by introducing a hover force as feedforward
control. The quadrotor model was linearized at the hover state, and a state-space model was obtained while preserving

controllability. A set of sensors including GPS, barometer, airspeed, and rate gyro was included with sensor noise. An
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extended Kalman filter was used to estimate translational states from the noisy GPS, barometer, and airspeed measure-
ments, while another extended Kalman filter estimated body rates from the noisy rate gyro measurements. The estimated
states were fed to the LQG controller, and the flight simulation was successfully executed using MATLAB/Simulink on
two hardware platforms. This work provides a complete quadrotor simulation platform that can be used by researchers,
academics, and students for research, teaching, and self-learning.

Appendix A.XYZ Euler Rotation

Figure Al shows a moving frame [B], which is initially coincident with the Earth frame [E], undergoing three
successive rotations around its own axes Bz — By — Bax.

g, [E] e, [E] g, [E]
Pt 4

Figure Al. Z-Y-X Euler Rotation.

The intermediate positions of the moving frame after each rotation are denoted by [B’], [B”] and [B]. The three

rotation matrices are given as follows:

cosy —siny 0

R.(¢¥) = |siny cosyp 0 (A1)
0 0 1]
cosf 0 sind|
R,H=| 0 1 0 (A2)
—sing 0 cos¢|
1 0 0
R,(¢)= 1|0 cos¢ —sing (A3)

0 sing cos¢

In Euler rotation, the orientation of the moving frame [B] with respect to the fixed frame [E] is determined by series
multiplication R = R, (¢)R,(0)R,(¢) which produces the following rotation matrix.

cpcl  cpsfsh — sl csbep + sipso
ER = |swch stshsd + ced  sipsbed — cipse (A4)
—s6 cBs¢p e

where S and C are shorthand notations for sin() and cos().

Appendix B. Body Rates and Euler Rates

As shown in Figure A1 Euler rotations ¢ 6 and ¢ are referred to the axes B;,Bg, and B,. The body rates Bw of

frame [B] due to Euler angle rates are generated as follows.

Bw=¢B,+0PB) +4 B, (A5)
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where ®B; and ® B/ are the two unit vectors B]/ and B, written with respect to frame [B]. Frame [B”] is related to
frame [B] through the rotation matrix R, (¢) as [B}B; BY]" = R.(¢)[B.B,B.]", which leads to

B, = cos B, — sin ¢B. (A6)
Similarly, frame [B'] is related to [B] through Ry (0)R.(¢) as [B} B, B.]" = R, (0)R.(¢)[B.ByB.]", which leads to

B, = —sinfB, + cosfsin ¢B, + cosd cos pB, (A7)

Substitution from (A6) and (A7) into (A5) results

By = (¢ — s00) By + (cob + c@sqﬁﬁ)By + (cOcdtp — spB) B, (A8)
from which the body axis rates are obtained as follows.
Wy ¢ — sin 01)

wy | = |cos ¢ + cos O sin ¢ (A9)
W, cos 0 cos W — sin qzﬁé

Once rearranged, body rates can be related to Euler rates through the following transformation matrix

Wy —siné 0 1] [¥
wy| = |cosfsing cos¢ O 0 (A10)
Wy cosfcos¢p —sing O qb

And, the inverse transformation which is useful to determine Euler angle rates form body rates is as follows.

¢ 0 secfsing secfcoso| |wy
ol =10 cos ¢ —sin¢ Wy (A11)
é 1 tanfsing tanfcos¢| |w,
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