

https://doi.org/10.70322/dav.2025.10013

Article

An Approach to Simulation & Navigation of Autonomous
Unmanned Aerial Vehicle in 3D
Mubeen Ahamed Kabir Ribayee 1,2, Ogbonnaya Anicho 1 and Emanuele Lindo Secco 2,*

1 AI Lab, School of Computer Science and the Environment, Liverpool Hope University, Liverpool L16 9JD, UK;
22011771@hope.ac.uk (M.A.K.R.); anichoo@hope.ac.uk (O.A.)

2 Robotics Lab, School of Computer Science and the Environment, Liverpool Hope University, Liverpool L16 9JD, UK

* Corresponding author. E-mail: seccoe@hope.ac.uk (E.L.S.)

Received: 27 June 2025; Accepted: 8 September 2025; Available online: 17 September 2025

ABSTRACT: Drone simulation refers to the emulation of Unmanned Aerial Vehicles (UAVs) in a virtual environment, replicating
real-world conditions to study and test the behavior, performance, and functionalities of drones. This paper explores the simulation
of UAVs in the Unreal Engine environment using MAVProxy (Micro Air Vehicle Proxy) and the Python library DroneKit. By
leveraging the computational capabilities of computers, this approach enables precise visualization and control of UAV flight
dynamics in three dimensions. The use of Blueprints in Unreal Engine facilitates a cost-effective and accessible simulation process,
allowing engineers and scientists to refine their UAV designs before real-world deployment. Results show the applicability of this approach
vs. different environments, where an alternative approach also emerges as a viable option for visualizing textured buildings. This approach
shows the power of open-source collaboration in advancing innovative solutions in the dynamic field of science and technology.

Keywords: UAV; Drones; Unreal Engine; Blueprints; MAVLink (Micro Air Vehicle Link); SITL (Software in The Loop);
3D-visualization

© 2025 The authors. This is an open access article under the Creative Commons Attribution 4.0 International
License (https://creativecommons.org/licenses/by/4.0/).

1. Introduction

An Unmanned Aerial Vehicle (UAV) or drone is a vehicle without a pilot. An Unmanned Aerial System (UAS)
allows communication with the physical drone [1]. These aircraft, operated remotely or autonomously, provide
widespread applications across diverse fields, from recreational use and aerial photography to industrial and military
purposes [2]. Drones’ versatility is showcased through tasks such as surveillance, agriculture, search and rescue
operations, package delivery, and scientific research. Thanks to their sensors, cameras, and communication systems,
these devices can carry out a wide array of tasks, making them invaluable tools in modern society [3,4].

From a historic viewpoint, the evolution of UAVs commenced in the 1940s, marking a pivotal period in
aeronautical history. The significance of these developments gained further prominence during the Iraq and Afghan
Wars in the 2000s [5]. A highly reliable UAV was developed in the 1990s and became of interest for some universities
and other academic institutions [5]. Later, researchers and technologists directed their endeavors towards the
enhancement of both hardware and software systems. In 1997, DARPA (Defense Advanced Research Project Agency)
set up a project of Micro Air Vehicle (MAV). The primary objective of the MAV project was to engineer a drone with
a diameter not exceeding 15 cm [5,6]. Meanwhile, a transformative milestone was achieved in 2009 thanks to a
collaboration between 3D Robotics and the Swiss Federal Institute of Technology in Zurich [6]. This cooperation
brought to the development of the ArduPilot Mega (APM), an open-source autopilot system that heralded a new era in
UAV autonomy [5,6]. In 2014, a study was conducted by M. Muhammad et al., where an autonomous quadcopter was
introduced for home delivery, employing an Android device as the onboard processing unit, and connecting to the APM
flight controller. The use of the Raspberry Pi (RPI) as the onboard processing unit was highlighted, enabling the
execution of resource-intensive applications such as image processing, object tracking, and path planning, which are
unfeasible on mobile devices alone [7,8]. Lisanti et al., in 2015 presented a system for quadcopter-assisted drug
shipments, featuring an Android application for clients and pharmacies to request medicines. This research extends its

Drones and Autonomous Vehicles 2025, 2, 10013 2 of 17

scope by accommodating multiple destination points from registered users, incorporating load calculations, and
achieving full autonomy using the GUIDED mode [9]. In 2016, Cameron Roberts designed a GPS-guided quadcopter
with the Raspberry Pi connected to the Navio Flight Controller. This implementation received waypoints directly from
users through a Secure Shell (SSH) protocol, lacking path planning considerations. The absence of user remote access
and a Graphical User Interface (GUI) for submitting requests were identified as limitations. Moreover, power
estimation and path planning were omitted from the author's considerations [10]. In a study by Salih M. et al., in 2018,
a monitoring system utilizing a quadcopter with an attached camera to the Raspberry Pi was introduced to evaluate
video transfer using different protocols. The study lacked user interaction with the system, path planning, and a
notification system [11].

In this context, drone’s simulation has emerged as an essential aspect of training and development in the realm of
UAVs. Simulations allow the implementation of virtual environments that mirror the characteristics and behavior of
real-world drones, offering users a risk-free platform for practice. This is particularly crucial for operators—whether
they are beginners or experienced—who need to refine their piloting skills and to develop effective strategies for
navigating challenges in different scenarios. Simulation environments also play a significant role in software and
hardware testing: developers can use these simulations to refine drone’s technologies, ensuring their reliability and
efficiency before deploying them in real-world situations. The ability to conduct scenario testing, including adverse
weather conditions and emergency situations, contributes to the overall safety and preparedness of drone operations.
Furthermore, drone simulation serves as a valuable tool for regulatory compliance training.

In practical applications, the integration of a companion computer such as the Raspberry Pi [3] or Nvidia Jetson
Nano plays a pivotal role in executing control over a quadcopter. This control is achieved, for example, by interfacing
with the drone's flight controller: typically, a Pixhawk can be combined with a Drone-Kit API in order to facilitate the
transmission of the commands by means of MAVLink. This framework easily extends the capabilities of the autopilot
software, enabling the execution of other tasks such as image processing, path planning, obstacle collision detection
and more, surpassing the inherent capabilities of the flight controller on its own. However, the actual testing of these
integrated systems using physical drones introduces inherent challenges, including significant costs associated with
wear and tear, potential hardware failures, and unforeseen accidents. Researchers often turn to simulation environments
for preliminary testing and development to mitigate these challenges and reduce potential damage.

A standard simulation setup encompasses the integration of SITL running concurrently with the MAVLink protocol
facilitated by MAVProxy [4]. This configuration is integral for exchanging messages between components. MAVProxy
acts as the intermediary responsible for transmitting and receiving messages from the simulated drone, which, in the
case of this project, is an SITL copter. The implementation of such a simulation scenario enables developers to emulate
and test various aspects of the drone’s behavior in a controlled and safe virtual environment. A DroneKit-Python script
plays an important role in this framework, serving as the conduit for sending commands to the drone. This script links
with a MAVProxy, leveraging the MAVLink protocol to communicate instructions to the simulated drone through a UDP
or TCP connection. Through this integration, the DroneKit-Python script serves as a commander, sending high-level
prompts into the MAVLink messages that the SITL copter can then interpret. The MAVProxy middleware efficiently
handles the translation and communication processes, providing a seamless interaction between the scripted commands
and the simulated drone.

In the visualization aspect of the simulation, a Ground Control Station (GCS) is also used to supply a graphical
representation of the drone's activities. The most famous GCSs are Mission Planner, QGroundControl and APM
Planner 2. Unfortunately, this software does not offer spatial data since it visualize flight paths in 2D. To address this
limitation, we want to explore whether the Unreal Engine could be implemented for the visualization, offering an
immersive 3D environment for monitoring and analyzing the simulated drone's behavior. This graphical representation
enhances the debugging and testing processes, allowing developers to observe and validate the impact of commands
and scripts in a visually intuitive fashion. Figure 1 shows a flowchart representation of the proposed setup that we have
just described.

Drones and Autonomous Vehicles 2025, 2, 10013 3 of 17

Figure 1. The main structure and setup of the proposed architecture.

Therefore, this work aims to design an Unreal Engine based simulation in 3D, which can be a visualization tool
for an SITL copter drone sending and receiving messages through a MAVLink protocol. The proposed system integrates
the Unreal Engine, MAVLink protocol and the DronKit library in a unique fashion in order to visualize and control
UAV flight in 3 dimensions. The specific objectives include:

 Setting up an SITL copter module on a console window
 Designing a MAVLink protocol that connects to the drone via SITL or TCP, and sending and receiving messages
 Implementing a script that can automate and monitor a mission for the drone
 Integrating an Unreal Engine level that can simulate the globe with real global coordinates and geolocate the drone

accurately according to the simulated drone setup
 Analyzing the flight path of the drone using plots.

2. Materials and Methods

The integration of Cesium with Unreal Engine to design a 3D visualization of drone simulations represents a
transformative leap in the realm of UAV technology. This innovative system offers a multitude of advantages,
revolutionizing training, research and development, urban planning, emergency response, precision agriculture,
environmental monitoring, and various commercial applications. Table 1 shows some of the main advantages of such
an approach.

Table 1. Benefits of the proposed approach.

Benefits Description

Realistic Visualization

One of the primary advantages of this system lies in its ability to deliver a realistic and immersive
visualization experience. Leveraging the power of the Unreal Engine, renowned for its unmatched
graphical fidelity, and Cesium, a platform synonymous with geospatial visualization, this integrated
system crafts a high-fidelity 3D environment that faithfully replicates the complexities of real-world
scenarios.

Spatial Context

Adding a layer of spatial context to drone simulations is a pivotal aspect which is facilitated by the
integration of Cesium. The geospatial capabilities of Cesium enable the incorporation of real-world
data, allowing users to simulate missions in specific geographic locations. This spatial context proves
invaluable in applications such as urban planning. Moreover, the system allows for a detailed
assessment of the environmental factors and of the variations in the terrain, providing a holistic view
that is indispensable in diverse fields (i.e., emergency interventions, agricultural applications).

Dynamic Environments

Dynamic environments are a hallmark of real-world scenarios, and this system excels in simulating
such dynamics. This functionality is instrumental in testing and refining drone responses vs.
unpredictable situations. For instance, emergency response teams can benefit from this feature to
simulate disaster scenarios with changing conditions and support the decision’s process.

Drones and Autonomous Vehicles 2025, 2, 10013 4 of 17

Interaction & Exploration

Interaction is another key strength of the Unreal Engine, especially when coupled with the geospatial
skills of Cesium. Users, including drone operators and mission planners, can interact with the
simulation in real-time. This interactivity allows for adjustments to flight paths, exploration of different
perspectives, and on-the-fly decision-making. In essence, users are not just passive observers but
contribute to more engaging and effective training and planning.

Multi-User Collaboration

Multi-user collaboration is another distinctive advantage of the proposed architecture. In scenarios
where teamwork and coordination are paramount, multiple users can simultaneously be involved within
the simulation. This feature facilitates collaborative training scenarios, joint mission planning exercises,
and real-time decision-making, replicating the team dynamics of the actual UAV missions.

Versatility

Whether used for drone pilot training, research and development of autonomous systems, urban
planning simulations, or precision agriculture scenarios, the system is a versatile tool. Its adaptability is
particularly noteworthy, making it applicable in different industrial scenarios with a set of use cases and
requirements.

Risk-Free
Training

One of the significant advantages lies in the provision of a risk-free training environment for drone
pilots and operators. With the ability to practice maneuvers, emergency responses, and complex
missions in the simulation, pilots can enhance their skills without the risk of damaging physical UAVs.

Efficient Algorithm
Testing

Efficiency in algorithm testing is another dimension where this system shines. Researchers and
developers can test different algorithms optimizing the performance of autonomous systems.

Data-driven Decision
Making

Users can analyze simulated data, assess mission outcomes, and extract insights for the optimization of
further tasks. Such a data-driven approach contributes to the development of better informed decision-
making approaches in real-world drone missions, ensuring continuous improvement as well.

Cross-Industry
Applicability

The cross-industry applicability of this system is a key factor that broadens its impact. Its capabilities
cater to diverse industries, including but not limited to agriculture, infrastructure, defense, and research,
making the system an asset for a different set of applications.

Headspace for Future
Technologies

As we look toward the future, this integrated system has the potential to unlock even more possibilities.
The incorporation of Augmented and Virtual Reality technologies could elevate the simulation
experience, allowing users to immerse themselves further for even more realistic training and planning
scenarios. Additionally, the integration of blockchain technology could enhance data security and
transparency, crucial for applications in sensitive areas such as defense and surveillance.

A notable and inspiring initiative in this domain is the Royal Air Force's (RAF) collaboration with VRAI [12],
culminating in the groundbreaking Project Sphinx. This collaborative venture not only underscores the importance of
cutting-edge technologies but also mirrors the approach embraced by the project at hand, leveraging Unreal Engine 5,
Cesium, and similar tools for creating a Virtual All-Domain Environment (VADE) [13]. The goal was to develop
immersive XR (eXtended Reality) simulations tailored to train troops in aerial missions, emphasizing both aircrew and
ground operators. Now, with Cesium being open source [14], much of its potential is now unlocked and available to
users with ideas. The integration of Cesium for Unreal Engine to simulate drone missions in 3D holds promising
prospects across various domains. Some potential opportunities this project could offer are reported in Table 2.

Table 2. Potential impacts of the proposed approach.

Impact Description

Training and Education

Virtual Flight Training: the 3D simulation platform holds significant promise as a comprehensive
training tool for drone pilots.
Educational Tool: fields such as aeronautics, geography, and engineering can harness the power of 3D
simulation as an invaluable educational tool to offer students immersive and hands-on experiences.

Research and Development

Autonomous Systems Testing: Researchers and developers can use the 3D simulations to test and
refine algorithms for autonomous drone systems. This contributes to advancements in artificial
intelligence and machine learning.
Mission Planning: The platform provides a versatile environment for experimenting and optimizing
mission planning algorithms.

Urban Planning and
Infrastructure Management

Drone Integration: Urban planners could use the simulation tool to study seamless integration of
drones into urban environments. This may include tasks such as traffic monitoring, emergency
response, and infrastructure inspection.
Risk Assessment: 3D simulated drone’s missions could support the assessment of potential risks
associated with deploying drones in complex urban landscapes. Urban planners and decision-makers
may also use these data to inform regulatory frameworks and risk mitigation strategies.

Drones and Autonomous Vehicles 2025, 2, 10013 5 of 17

Emergency Response and
Disaster Management

Preparedness Training: emergency response teams can conduct preparedness training, refining
strategies for using drones in search and rescue missions.
Real-time Decision Support: the platform’s evolution could include features for providing real-time
data during disasters, offering critical insights to coordinate an efficient response.

Precision Agriculture

Crop Monitoring: expanding the simulation tool to include precision agriculture scenarios should
enable farmers to visualize and plan drone missions for crop monitoring, pest control, and yield
estimation [15]. This should in turn contribute to the optimization of agricultural practices and
resource management.

Environmental Monitoring

Wildlife Conservation: Conservationists may leverage simulations to study the impact of drone
missions vs wildlife monitoring and conservation.
Ecosystem Analysis: Environmental researchers can apply simulations to study the ecosystems and to
monitor the environmental changes over time, looking at the impact of human activities on nature.

Commercial Applications

Industry-specific simulations: tailoring the simulation to specific industries, such as oil and gas,
construction, automobiles [2,16], or mining, provides companies with a powerful planning and
monitoring tool. Simulating drone missions within complex industrial environments can also aid in
the optimization of daily life activities while ensuring safety.
Regulatory Compliance: the platform's evolution could assist companies in adhering to regulatory
requirements within current legal frameworks. This feature is crucial for industries where compliance
is a key requirement.

Integration with Emerging
Technologies

Extended Reality (XR) integration: future advancements may see the integration of Extended Reality
technologies, enhancing user immersion in the simulation, pushing the boundaries of simulation
realism [17]
Blockchain Integration: Incorporating blockchain technology into the simulation enhances data
security and transparency. This is particularly crucial in applications related to defense and
surveillance, where secure and tamper-proof data are paramount.

Global Collaboration

Cloud-based collaboration: transitioning the simulation platform to a cloud-based model enables
global collaboration and data sharing. Researchers, industries, and governmental agencies can
collaborate seamlessly, sharing insights and data for a more comprehensive understanding of drone
missions [14]
Standardization: efforts to standardize simulation protocols and data formats foster a collaborative
ecosystem for drone mission simulation across borders. Standardization facilitates interoperability and
promotes a unified approach to drone mission simulation on a global scale.

The diverse applications and potential advancements outlined underscore the transformative impact that simulating
drone missions in 3D using Cesium for Unreal Engine can have across various domains. As technology evolves, the
project stands at the forefront of innovation, opening new possibilities for the effective deployment and management of
autonomous UAVs.

2.1. DroneKit-SITL

Like the broader SITL concept, Drone Kit-SITL facilitates this simulation without the need for physical hardware,
enabling developers to test and validate their code in a controlled virtual environment before deployment on actual
drones. The fundamental principle underlying Drone Kit-SITL involves interfacing with the ArduPilot autopilot
software through the Drone Kit API. This interface empowers developers to command the simulated drone's controller,
typically Pixhawk, using MAVLink messages. This level of abstraction enables the emulation of real-world scenarios
and interactions, offering a comprehensive testing ground for applications and scripts that interact with the drone's
autopilot. It is worth noting the versatility of Drone Kit-SITL, allowing the simulation of various types of vehicles,
including planes, copters, and rovers. This adaptability aligns with the diverse landscape of UAV applications, enabling
developers to tailor their simulations to the specific characteristics and requirements of different drone configurations.
Drone Kit-SITL is designed to run on multiple operating systems, including Linux, Windows, and Mac OS, enhancing
its accessibility for developers across different platforms. The convenience of this cross-platform compatibility
facilitates widespread adoption and collaboration in the drone development community. In this project, however, an
SITL is implemented for the Copter module running purely in a Windows environment, although common practice for
such a simulation would be to use a virtual Linux system for the Drone Kit API environment, and the MAVLink setup
in Windows, running on the same machine.

In practical terms, the utilization of Drone Kit-SITL in a simulated environment mirrors the behavior of actual
drones, providing a reliable basis for testing and debugging code. This simulation-driven approach not only mitigates
the challenges and costs associated with physical testing but also accelerates the development cycle by offering rapid
iteration and debugging capabilities. As such, Drone Kit-SITL becomes an invaluable resource for developers seeking

Drones and Autonomous Vehicles 2025, 2, 10013 6 of 17

to ensure the robustness, reliability, and efficiency of companion computer systems, such as Raspberry Pi or Nvidia Jetson
Nano, before deploying them onto physical UAVs. The integration of Drone Kit-SITL into the development workflow
exemplifies a strategic and pragmatic approach to advancing the state of autonomous drone systems, leveraging the power
of simulation to refine and optimize software components in a controlled and reproducible environment.

Implementing simulations using SITL on a virtual drone replicates the functionalities and outcomes observed in
real-world scenarios. The use of the ArduPilot autopilot software ensures consistency between simulated and actual
drone behavior. This simulation-driven approach not only circumvents the challenges associated with physical testing
but also offers a controlled and repeatable environment for refining and validating the companion computer's
functionalities before deploying onto physical drones. The symbiotic relationship between companion computers and
simulation environments thus becomes indispensable in advancing the development and reliability of autonomous drone
systems. More about the Drone Kit-SITL can be found in its documentation provided in [18].

2.2. MAVLink and MAVProxy

The Micro Air Vehicle Link (MAVLink) protocol assumes a pivotal role, serving as a lightweight communication
protocol designed specifically for exchanging information between systems onboard the vehicle, such as the autopilot,
and external ground control stations or companion computers. Details of the MAVLink protocol are reported in
Appendix A.

MAVLink plays a crucial role in enabling communication between the autopilot software, such as ArduPilot, and
external entities like ground control stations or companion computers (Figure 2). This facilitates the implementation of
sophisticated tasks and functionalities on companion computers, such as image processing, path planning, and other
intelligent operations that complement the core capabilities of the autopilot. In the context of simulation environments
like Software in The Loop (SITL), MAVLink ensures that the communication dynamics between simulated components
accurately mirror those of real-world scenarios. This enables developers to test and validate their companion computer
scripts or applications in a simulated environment before deploying them on physical UAVs.

Figure 2. The MAVLink Message Structure.

All these steps are carried out by MAVProxy, short for Micro Air Vehicle Proxy, a versatile and lightweight
command-line GCS tool widely used in the realm of UAVs. Developed to work seamlessly with the MAVLink protocol,
MAVProxy serves as a communication proxy between a ground control station, companion computers, and the autopilot
system on the UAV. One of MAVProxy's primary functions is to facilitate the transmission of MAVLink messages,
enabling bidirectional communication between ground control stations and UAV systems. This intermediary role makes
it an essential component for relaying commands, telemetry data, and mission information between various elements in
a UAV ecosystem. Another notable feature of MAVProxy is its support for multiple transport layers, including serial,
UDP, TCP, and more. This flexibility allows MAVProxy to adapt to various communication mediums and network
configurations, enhancing its utility in diverse UAV applications. More implementations for MAVProxy and MAVLink
can be found in [19] and [20].

2.3. DroneKit-Python

In the field of UAV development, DroneKit-Python emerges as a robust and versatile framework, facilitating the
seamless integration of companion computers with UAV systems. Developed by 3D Robotics, DroneKit-Python serves
as a Python API that empowers developers to communicate with autopilots using MAVLink. This open-source toolkit
is particularly designed to interact with ArduPilot, a popular open-source autopilot software.

The primary advantage of DroneKit-Python lies in its simplicity and ease of use. Python, a widely adopted and
user-friendly programming language, ensures developers can quickly grasp and implement UAV-related functionalities
using DroneKit-Python. This accessibility is further augmented by a comprehensive set of documentation and examples

Drones and Autonomous Vehicles 2025, 2, 10013 7 of 17

provided by the DroneKit community, fostering a supportive environment for novice and experienced developers.
Although the downside of this is that it does not support Python 3.1, and can only be run using Python 2.1 [21], which
is considered as deprecated on January 2020.

DroneKit-Python enables the creation of scripts that run on companion computers, such as Raspberry Pi [3,6] or
Nvidia Jetson Nano, allowing these devices to communicate with the autopilot. This communication occurs through the
MAVLink protocol, facilitating the exchange of commands, telemetry data, and mission information between the
companion computer and the autopilot system. One of the key features of DroneKit-Python is its support for high-level
commands. Developers can use pre-defined functions and methods to instruct the UAV to perform specific actions
without delving into the intricacies of low-level MAVLink message creation. This abstraction simplifies the scripting
process and accelerates the development cycle, making it more accessible for a broader range of developers [22].

The framework also supports the creation and execution of mission plans, allowing developers to define a sequence
of waypoints, commands, and actions that the UAV should follow autonomously. This capability is essential for
applications such as aerial surveying, surveillance, and precision agriculture, where pre-defined mission plans enhance
the efficiency and autonomy of UAV operations. Moreover, DroneKit-Python facilitates real-time monitoring and
visualization of telemetry data, enabling developers to assess the status of the UAV, receive live updates, and make
informed decisions during mission execution. This aspect is crucial for debugging, testing, and refining UAV
applications, ensuring optimal performance and reliability.

2.4. Unreal Engine

Unreal Engine (by Epic Games) has evolved into a premier and versatile game development engine that extends
its influence far beyond its gaming roots. Its transformative impact is felt across diverse industries, establishing itself
as a formidable force in virtual production, architecture, automotive design, and simulation [23]. Since we must simulate
an entire planet (i.e., rendering millions of polygons with real-world lighting and shadows calculations while still
maintaining real-time rendering), Unreal Engine integrates features like Nanite, World Partition and Lumen.

At the forefront of Unreal Engine 5’s arsenal is Nanite, a revolutionary technology that fundamentally transforms
the handling of geometry in real-time rendering. Nanite employs a virtualized micro-polygon approach, allowing artists
unprecedented freedom to create intricate and highly detailed 3D models without constraints imposed by traditional
polygon budgets [24]. On the other side, World Partition addresses the challenges posed by large and open-world
environments, providing an efficient spatial partitioning system within Unreal Engine. By dynamically streaming in
relevant portions of the world based on the player's location, World Partition optimizes memory usage and enhances
overall performance [25]. Finally, Lumen is a game-changing global illumination solution that redefines the dynamics
of real-time lighting. Lumen is a fully dynamic, global illumination system that eliminates the need for pre-baked
lighting scenarios. By realistically simulating indirect lighting, reflections, and the interplay of light in the virtual world,
Lumen enhances visual fidelity and realism [26].

2.5. Cesium

Cesium is a JavaScript library that has emerged as a pivotal tool in the realm of web-based geospatial visualization.
Renowned for its open-source nature, this library empowers developers to craft dynamic and interactive 3D globes and
maps directly within web browsers. Leveraging the capabilities of WebGL, Cesium enables high-performance rendering
of geospatial data, eliminating the need for plugins and facilitating smooth, hardware-accelerated graphics directly
within the browser environment [27].

One of the standout features of Cesium lies in its support for dynamic data visualization. The library allows
developers to animate and update visualizations in response to changing spatial and temporal data, providing an asset
for applications requiring real-time tracking, weather pattern visualization, and time-dependent information. Cesium has
extended its reach by offering integration with Unreal Engine. Unreal Engine and Cesium together contribute towards the
visualization of the drone simulation flying around the virtual globe with reference to real-world coordinates [28].

2.6. Anaconda

Anaconda, a widely used open-source distribution of Python and R programming languages, offers a versatile and
personalized experience for data scientists and developers. Anaconda provides a comprehensive platform designed to
meet the specific needs of users in the realm of data science and analytics. The package manager, conda, allows for the
easy installation and management of libraries, dependencies, and tools. Anaconda provides diverse pre-built packages

Drones and Autonomous Vehicles 2025, 2, 10013 8 of 17

and libraries for data analysis, machine learning, and scientific computing. Anaconda's user interface and integrated
development environments (IDEs) enable users to interactively explore and manipulate data as well [29].

2.7. Mission Planner

The Mission Planner is a comprehensive software application used in the field of UAVs and drones. Developed to
facilitate mission planning, monitoring, and control of UAVs, Mission Planner offers a versatile platform for users to
customize and optimize their drone operations [30]. In particular U Mission Planner involves a personalized approach
to planning and executing drone missions: users can plan flights, set waypoints, and customize various parameters based
on their specific needs. The software's user-friendly interface enables real-time adjustments, providing a high level of
flexibility during mission planning. The real-time monitoring capabilities of Mission Planner allow users to track their
drone's status, telemetry data, and camera feeds during the mission. This level of detail contributes to efficient decision-
making and enhances the overall control users have over their UAVs.

3. Implementation and Software Development

To implement the system, the first stage relies on the installation of the different packages and libraries. The process
refers to the execution of software on a Windows 11 Machine and Python 2 [31].

3.1. Framework

The framework requires the installation of 4 main packages, namely the Phython 2, the Mission Planner, the Unreal
Engine and the Design of a Simulation Level. The process allows the setting of a BP_UDP connection as shown in
Figure 3. Details of the installation have been reported in Appendix B.

Figure 3. The BP_UDP Blueprint Visual Script.

3.2. Implementation

The correct path for the Anaconda installation and the location of ‘simple_goto.py’ script should be set in the batch
file, along with the correct environment name, according to the specific user installation procedures and system file
paths. Figure 4 shows a snippet of the code. An instance of Mission Planner is kept open for a top-down graphical
visualization of the drone’s path. While establishing the MAVLink protocol, Mission Planner automatically connects to
the UDP through port 14550.

Drones and Autonomous Vehicles 2025, 2, 10013 9 of 17

Figure 4. Snippet of the simple_goto.py.

A dronekit-sitl instance for a copter is also initialized by running the following command in a terminal window, in
which the pydrone2 environment is activated.

dronekit-sitl copter --home=−35.361707,149.168534,0,180

The command initializes a copter drone in the geolocation (−35.361707, 149.1685234). Once the command is run,
Figure 5 can be seen, which indicates successful activation, and is ready to listen for MAVLink connection requests.

Figure 5. The DroneKit-SITL Initialization.

In a second terminal with the same environment activated, MAVLink protocol is initiated using the following
command.

python C:\Users\nihaa\anaconda3\envs\pydrone2\Scripts\mavproxy.py --master tcp:127.0.0.1:5760 --out
udp:127.0.0.1:14550 --out udp:127.0.0.1:14551 --out udp:127.0.0.1:14552

This opens MAVLink protocol to connect to the SITL drone module using TCP at port 5760, and send or receive
commands through UDP ports 14550, 14551 and 14552. Mission Planner uses port 14550 to receive messages from the
drone, 14551 by Unreal Engine and 14552 by the ‘simple_goto.py’ script to send location data to Unreal Engine. The
result can be seen in Figure 6.

Drones and Autonomous Vehicles 2025, 2, 10013 10 of 17

Figure 6. The MAVProxy Terminal is connecting to SITL with TCP at port 5760.

The Python script ‘simple_goto.py’ controls the simulated drone through MAVLink commands. This script
essentially performs a simple mission where the drone takes off, moves to specified waypoints, and returns to the launch
location. The ‘__future__’ module allows you to use features from future versions of Python in older versions and solves
most of the compatibility issues that occur with using Python 2.1. The script uses argparse to parse command-line
arguments. It expects a connection string (e.g., the UDP address) to connect to the drone. If no connection string is
provided, the script starts a Software in The Loop (SITL) simulator using dronekit_sitl. The connection string is then set
according to the SITL instance. The script establishes a connection to the drone using the provided connection string
and waits until the vehicle is ready. Waypoints (point1 and point2) are then set, and the drone is commanded to move
to these points using ‘vehicle.simple_goto()’. A 30 s delay is added after each destination to allow for the update to be
detected. The script also commands the drone to return to the launch (home) location in Return to Launch (RTL) mode
and then to wait for 5 s. Finally, the script closes the connection to the drone using ‘vehicle.close()’ and, if SITL was
started, stops the simulator using ‘sitl.stop()’.

To run the script, the following command has to be typed within a terminal where the environment has been
activated:

python simple_goto.py --connect udp:127.0.0.1:14552

To make the whole terminal process as automatic, a batch script ‘batch_script.bat’ is implemented, which runs all
the terminal commands one by one. The script operates as it follows:

 It opens a terminal, initializes conda and activates the pydrone2 environment, and then initializes the dronekit-sitl module.
 A 5 s delay is executed before opening the second conda terminal and running the mavproxy.py script. The delay

ensures that the SITL is setup successfully, such as the MAVProxy connecting to the drone. Then, a further 15 s
delay is executed. This ensures that the MAVLink is established and that the Ready to Fly message is displayed,
such that the ‘simple_goto.py’ script can be run as well

 After this delay, a 3rd terminal is opened and the ‘simple_goto.py’ script is initialized with the connection string

4. Results

Following the setup and initial testing, the virtual drone flies to an initial location, which was set with the following
coordinates (−35.361354, 149.165218) and then to a second location set at (−35.363244, 149.168801). The visualized
positions of the drone were real-time updated within the Unreal Engine, as shown in Figure 7. The same positions can
also be reported and visualized within the Mission Planner window, which also shows the path traced by the drone
(Figure 8).

Drones and Autonomous Vehicles 2025, 2, 10013 11 of 17

Figure 7. The Unreal Engine Visual.

Figure 8. The Flight Path Traced by the Drone: flying towards Waypoint 2 and Returning to Launch on the left and right panels,
respectively.

Different locations were tested, including building areas, to see how the Cesium OSM buildings were adding up to
the virtualization of the project. Figures 9 and 10 show two other locations where the drone’s fly was simulated, namely
Denver (USA) and Sydney (Australia), respectively.

Figure 9. The 3D Visual of Denver (USA).

Drones and Autonomous Vehicles 2025, 2, 10013 12 of 17

Figure 10. The 3D Visual of Sydney (Australia).

Since the DynamicPawn and OSM buildings integrate a pre-defined collision logics, a drone can fly through a
building, even if it crashes when impacting the walls. Another issue occurring within the current setup is that sometimes
the world shows a bright flash. To avoid that, enabling the Auto Exposure and Extend default Luminance range options
in the Auto Exposure settings is recommended. These adjustments can be accessed through the Edit menu, followed by
Project Settings, and then navigating to Engine -> Rendering. It is also recommended to use the CesiumSunSky object, a
primary light source for the Unreal Engine world, which employs real-world brightness levels surpassing the standard Unreal
Engine Directional Light. This adjustment ensures a more stable and visually consistent rendering of the environment.

As an alternative approach to the combination of Cesium and Bing data, Google's Photogrammetry Data emerges
as a viable option for visualizing textured buildings. Cesium for Unreal offers users a pre-defined photogrammetry
tileset, and the option of using a locally stored tileset in .json format provides a flexible choice for developers seeking
to enhance the visual fidelity of their scenes. Figure 11 shows an example of using Cesium with Google’s
photogrammetry data instead of Bing’s Aerial imagery, in location (53.390826, −2.892320), which places the virtual
drone above Our Institution in the UK, namely Liverpool Hope University.

Figure 11. The 3D Visual of Liverpool Hope University, using Google’s Photogrammetry Tileset.

Another common issue we encountered in this study is that sometimes the simulated drone would not connect to
the Mission Planner, or sometimes two simultaneous drones would be connected to the Mission Planner, instead of one
to the Unreal Engine and one to the Mission Planner. This issue can be solved by opening Mission Planner and Unreal

Drones and Autonomous Vehicles 2025, 2, 10013 13 of 17

Engine before running the Python Script. This issue is rare, however, it disables the connection with the Unreal Engine,
freezing the simulation and displaying 2 drones within the Mission Planner, as shown in Figure 12.

Figure 12. The dual drone issue, as it appears in the Mission Planner.

5. Conclusions

The 3D simulation of an SITL copter drone with Unreal Engine connected through MAVLink and controlled
through a DroneKit-Python script has been implemented, established, and analyzed. The study utilized various versions
of DroneKit-Python and its dependencies. Various results were seen from various location experiments and found to
have simulated the flight path of the missions. This study can be a prospect for future studies on drone imagery and
drone missions. A set of limitations and future developments has been identified. The main limitation is that using
Unreal Engine is a heavy resource. A minimum of 4 core CPUs with 2 GB of VRAM, 8 GB of RAM, and 50 GB of
ROM storage is required to run the software, let alone the project setup [32]. In this context, the hardware requirement
also makes it a less feasible project for researchers.

A realistic simulation of a drone flying over a city can be performed thanks to the proposed system. The Unreal
Engine module allows a user to connect a controller to the engine, thereby enabling free-roam possibilities within the
engine itself, without the need of a DroneKit-Python script. Path planning, obstacle detection, collision, and
environmental influence simulation, such as wind and turbulence, can be established and researched. Moreover, the
system could be integrated with other technologies and human-device interfaces, enhancing the user experience and
navigation planning, combined with intuitive interactions between the user and the UAV [33–37].

Appendix A

MAVLink facilitates seamless and efficient communication, transmitting critical data, commands, and telemetry
information in a standardized format. MAVLink operates on a publish-subscribe architecture, enabling multiple
components to exchange information without direct point-to-point connections. This architecture enhances the
modularity and extensibility of UAV systems, as new components can be added or removed without necessitating
significant changes to the overall communication infrastructure.

The MAVLink protocol presents a distinct advantage owing to its inherent flexibility and support for various
transport layers and mediums. Its lightweight structure allows seamless transmission through diverse channels,
including Wi-Fi, Ethernet (TCP/IP Networks), and serial telemetry operating at sub-GHz frequencies such as 433 MHz,
868 MHz, or 915 MHz. This adaptability in frequency bands enables extensive communication ranges, which is crucial
for remotely controlling unmanned systems. With a maximum data rate reaching 250 kbps, MAVLink proves versatile,

Drones and Autonomous Vehicles 2025, 2, 10013 14 of 17

though the range is subject to environmental conditions, noise levels, and antenna configurations, typically extending
up to 500 m.

A complementary alternative involves leveraging network interfaces, predominantly Wi-Fi or Ethernet, to transmit
MAVLink messages through IP Networks. Autopilots supporting the MAVLink protocol often accommodate both UDP
and TCP connections at the transport layer. The choice between UDP and TCP hinges on the application's reliability
requirements. UDP, being a datagram protocol, prioritizes the need for a connection and lacks a mechanism for ensuring
reliable message delivery. However, it serves as a lightweight alternative suitable for real-time and loss-tolerant message
streaming. In contrast, being a reliable connection-oriented protocol, TCP incorporates an acknowledgement
mechanism, enhancing transfer reliability at the expense of potential congestion and heavier connection management.

A typical MAVLink message is represented in Figure 2 (please find the Figure within the text of the paper). As
shown in the Figure, there are 8 important fields, which take between 8 and 263 bytes in length, according to the
following legend:

 STX—this is the first byte and represents the start of a MAVLink frame. In MAVLink 1.0, STX is equal to 0xFE.
 LEN—this is the second byte, representing the length of the message in bytes, and is encoded into 1 byte.
 SEQ—the third byte denotes the sequence number of the message, encoded in 1 byte, and takes values from 0 to 255.
 SYS—it is the fourth byte representing the system ID, denoting which system is sending the message. In MAVLink

1.0, the system ID 255 is typically allocated for ground control stations.
 COMP—this points to the component ID, denoting which component of the system is sending the message. In

MAVLink, there are 27 components, but if there is no component in the mentioned system, this ID is not used.
 MSGID—the sixth byte refers to the type of message embedded in the payload. For example, MSGID 0 refers to a

message of type HEARTBEAT.
 PAYLOAD—this is the part of the MAVLink message that contains the information needed to be parsed. It can

take a maximum of 255 bytes.
 CHECKSUM—the last two bytes of the message, the checksum is mainly used to check the integrity of the message

during transmission.

Appendix B

To implement the proposed system, the first stage relies on the installation of the different packages and libraries
whose details have been reported in the Appendix. The framework preparation and process refer to the execution of
software on a Windows 11 Machine and Python 2. The framework requires the installation of 4 main packages, namely
(1) Python 2, (2) the Mission Planner, (3) the Unreal Engine and finally (4) the Design of a Simulation Level.

Appendix B.1. Installing Python 2

It is important to know that Python 2 has been deprecated since January 2020 [31]. Anaconda is recommended for
easy installation in this project. From the Anaconda website (https://www.anaconda.com/download, accessed on 15
September 2025), the Windows version of the setup is downloaded. It is noted that the setup is available for Mac OS
and Linux as well. Once downloaded, the setup is downloaded and installed. The following command is run next in a
terminal to add the Anaconda directory to PATH so that the terminal commands running in the later processes can be
automated. This can be done using the command

setx PATH “%PATH%;C:\path\to\your\conda\Scripts”

Once the installation is complete, an Anaconda Prompt is opened from the Windows Start menu. To set up a Python
2.7 environment, the following command is run. In this command, the env_name is chosen to be pydrone2.

conda create --name <env_name> python=2.7

When asked for confirmation, press Y, and the installation will commence. Once the environment is created, it can
be activated using the ‘conda activate <env_name>’ command. The installation can be verified by running ‘python --
version’ after activating the environment. It should return the Python version that is being installed. An alternative to
this would be to download Python 2.7 from Python’s official website and find the appropriate version package. Once
installed, pip should be installed after that by downloading the get_pip.py script (reference and source
(https://bootstrap.pypa.io/pip/2.7/get-pip.py, accessed on 15 September 2025)) and running this script from the installed
Python 2.x version. While this process is tiresome and overcomplicated, it is less resource consuming and lightweight
than Anaconda installation.

Drones and Autonomous Vehicles 2025, 2, 10013 15 of 17

Appendix B.2. Installing the Mission Planner

A package should be installed in order to install the Mission Planner. The planner can be downloaded from the
official website (https://ardupilot.org/planner/docs/mission-planner-installation.html, accessed on 15 September 2025)
and installed on the Windows machine by following the instructions.

Appendix B.3. Installing Unreal Engine

Epic Games Launcher can be downloaded from the official Epic Games website
(https://www.epicgames.com/site/en-US/home accessed on 15 September 2025) and installed. An Epic Games account
is setup to be used to sign into the Epic Games Launcher, the Unreal Engine and the Cesium Ion, and to set up the API
key later. The launcher is opened, navigating to Epic Marketplace, and downloading Cesium for Unreal, which is
available for free. Navigating to the Library tab, a new engine version (in this case, 5.1.1) is added. Once the download
location is confirmed, the app starts downloading UE5.1. While this is downloading, Cesium for Unreal plugin can be
added to the engine version 5.1. This queues the plugin to be added to UE5.1 after its installation. It takes between 30
min to a few hours to download and install them, depending on the hardware specifications and the network speed.

A Cesium Ion account is set (https://ion.cesium.com/ accessed on 15 September 2025) by connecting the Epic
Games account created earlier. A new blueprint-based project named ‘DroneSim’ is created after the installation, with
starter content disabled. It takes a while to compile the shaders for the first time. The project should be closed once it
opens successfully to install a third-party plugin for UDP connections. An appropriate version of the UDPConnection
plugin is downloaded from GitHub (https://github.com/is-centre/udp-ue4-plugin-win64/tree/master accessed on 15
September 2025) and is extracted to a new folder called ‘Plugins’ inside of the Unreal Engine’s project folder. This will
add the plugin to the project and automatically enable it. After the migration, the project is opened again. The Cesium
for Unreal plugin is activated from the Plugins window, found in Edit -> Plugins. An engine restart will be requested
to compile shaders once more. The setup takes a few minutes to complete, depending on the hardware.

Appendix B.4. Design of a Simulation Level

A new level is created by navigating to the “File” menu and selecting “New Level” , with the “Empty Level”
option chosen to ensure the absence of objects. World Bounds Checks are disabled by accessing World Settings through
the “Window” menu, specifically in the “World” -> “Advanced” category. The potential hindrance posed by enabling
World Bounds Checks is explained in relation to Pawn movement away from the origin in Unreal Engine, which may
conflict with the requirements of Cesium applications. Cesium for Unreal actors are added to the level via the Cesium
panel, with the “CesiumSunSky” located in the “Quick Add Basic Actors” section and added to the level, resulting in
the appearance of a sky-like gradient in the viewport. At this point, it is recommended to save the current level by
clicking the “Save the current level to disk” button or using the shortcut CTRL + S. A name is provided for the level,
and consideration is given to setting the new level as the project's default map to ensure automatic opening upon
restarting the project. This involves navigating to the “Edit” menu, selecting “Project Settings”, then choosing “Maps
& Modes” from the left sidebar. In the “Default Maps” section, both the “Editor Startup Map” and the “Game Default
Map” are modified to reflect the newly created level. Returning to the Cesium panel, the user is instructed to click on
the “Connect to Cesium ion” button, initiating a pop-up browser window. If not already logged in, the user is prompted
to log in using Cesium ion, Epic Games, GitHub, or Google credentials. Following successful login, permission is
granted for Cesium for Unreal to access assets. Continuing the setup process, the user is guided to create a default
Access Token for the project by clicking on the “Token” button at the top of the Cesium panel. The option to “Create a
new token” is selected within the subsequent window, and the token is renamed if desired. The “Create New Project
Default Token” button is then pressed. Moving forward, the user is prompted to add “Cesium World Terrain + Bing
Maps Aerial Imagery” through the Cesium panel. This results in terrain appearing in the level, and in the Outliner on
the right, various Cesium actors are visible, including CesiumSunSky and Cesium World Terrain. The
CesiumGeoreference actor in the Outliner is selected, emphasizing its role in determining the level's geographic location,
including latitude, longitude, and height. To address the perceived flatness of the city, the addition of detail is
recommended through the inclusion of Cesium OSM Buildings. This can be achieved by accessing the Cesium Quick
Add panel and adding Cesium OSM Buildings to the level. A Blueprint class with the parent actor as UDPReceiver is
created by right-clicking on the content browser, and choosing Blueprint Class. Renaming it to ‘BP_UDP’, it is then
dragged into the viewer window to place it in the world. The location of this blueprint does not matter, as blueprints in

Drones and Autonomous Vehicles 2025, 2, 10013 16 of 17

Unreal Engine are by default boundless. Then, the level blueprint is opened, where BP_UDP can be referenced. The
node connections are shown in Figure 3.

Author Contributions

Conceptualization, M.A.K.R. and O.A.; methodology, M.A.K.R. and O.A.; software, M.A.K.R.; validation,
M.A.K.R.; supervision, O.A.; writing—original draft preparation, M.A.K.R. and E.L.S.; final draft preparation, E.L.S.

Ethics Statement

Not applicable.

Informed Consent Statement

Not applicable.

Funding

This research received no external funding.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

References

1. Faruk TSO. Things to know before you build a drone. In Building Smart Drones with esp8266 and Arduino: Build Exciting
Drones by Leveraging the Capabilities of Arduino and ESP8266; Packt Publishing Ltd.: Birmingham, UK, 2018; Volume 7.

2. Digital Showrooms Enrich Pagani Hypercar Configuration Experiences. Available online: https://www.unrealengine.com/en-
US/spotlights/digital-showrooms-enrich-pagani-hypercar-configuration-experiences (accessed on 4 October 2023).

3. Alkadhim SA. Communicating with Raspberry Pi via MAVLink. SSRN Electron. J. 2019. doi:10.2139/ssrn.3318130.
4. Figueiredo MC, Rossetti RJF, Braga RAM, Reis LP. An Approach to Simulate Autonomous Vehicles in Urban Traffic Scenarios.

In Proceedings of the 12th International IEEE Conference on Intelligent Transportation Systems, St. Louis, MO, USA, 4–7
October 2009.

5. Nonami K. Research and Development of Drone and Roadmap to Evolution. J. Robot. Mechatron. 2018, 30, 322–336.
6. History of ArduPilot. Available online: https://ardupilot.org/planner/docs/common-history-of-ardupilot.html (accessed on 22

May 2023).
7. Qays HM, Jumaa BA, Salman AD. Design and implementation of autonomous quadcopter using SITL Simulator. Iraqi J.

Comput. Commun. Control Syst. Eng. 2020, 20, 1–16. doi:10.33103/uot.ijccce.20.1.1.
8. Haque MR, Muhammad M, Swarnaker D, Arifuzzaman M. Autonomous Quadcopter for Product Home Delivery. In

Proceedings of the ICEEICT 2014: International Conference on Electrical Engineering and Information & Communication
Technology, Dhaka, Bangladesh, 10–12 April 2014.

9. Gatteschi V, Lamberti F, Paravati G, Sanna A, Demartini C, Lisanti A, et al. New Frontiers of Delivery Services Using Drones:
A Prototype System Exploiting a Quadcopter for Autonomous Drug Shipments. In Proceedings of the 2015 IEEE 39th Annual
Computer Software and Applications Conference, Taichung, Taiwan, China, 1–5 July 2015.

10. GPS Guided Autonomous Drone. Available online: https://www.scribd.com/document/421107398/Cameron-Roberts-Report
(accessed on 15 September 2025).

11. Al-Qaraawi SM, Salman AD, Ibrahim MS. Performance Evaluation of Ad-Hoc Based Aerial Monitoring System. Period. Eng.
Nat. Sci. 2019, 7, 1794.

12. Airmanship Data Capture Technology Flies High with a Defence Innovation Loan. Available online:
https://www.gov.uk/government/case-studies/airmanship-data-capture-technology-flies-high-with-a-defence-innovation-loan
(accessed on 4 October 2023).

13. Royal Air Force plans operations in XR with Cesium for Unreal. Available online: https://cesium.com/blog/2023/11/21/royal-
air-force-plans-operations-in-xr-with-cesium/ (accessed on 4 October 2023).

14. Why Cesium. Available online: https://cesium.com/why-cesium/ (accessed on 28 November 2023).
15. Khan N, Ray RL, Sargani GR, Ihtisham M, Khayyam M, Ismail S. Current progress and future prospects of Agriculture

Technology: Gateway to sustainable agriculture. Sustainability 2021, 13, 4883.
16. Antoinette Project: tools to create the next generation of flight simulators. Available online: https://www.unrealengine.com/en-

Drones and Autonomous Vehicles 2025, 2, 10013 17 of 17

US/blog/antoinette-project-tools-to-create-the-next-generation-of-flight-simulators (accessed on 8 September 2023).
17. Anicho O, Charlesworth PB, Baicher GS, Nagar AK. Reinforcement learning versus swarm intelligence for autonomous multi-

haps coordination. SN App. Sci. 2021, 3. doi:10.1007/s42452-021-04658-6.
18. Setting Up a Simulated Vehicle (SITL). Available online: https://dronekit-

python.readthedocs.io/en/latest/develop/sitl_setup.html (accessed on 1 September 2023).
19. Message Signing. Available online: https://mavlink.io/en/guide/message_signing.html (accessed on 16 October 2023)
20. Telemetry Forwarding. Available online: https://ardupilot.org/mavproxy/docs/getting_started/forwarding.html#mavproxy-

forwarding (accessed on 20 November 2023).
21. Installing DroneKit. Available online: https://dronekit-python.readthedocs.io/en/latest/develop/installation.html (accessed on

20 November 2023).
22. Welcome to DroneKit-Python’s Documentation! Available online: https://dronekit-python.readthedocs.io/en/latest/ (accessed

on 20 November 2023).
23. The Most Powerful Real-Time 3D Creation Tool. Available online: https://www.unrealengine.com/en-US (accessed on 20

November 2023).
24. Nanite Virtualized Geometry. Available online: https://docs.unrealengine.com/5.0/en-US/nanite-virtualized-geometry-in-

unreal-engine/ (accessed on 29 November 2023).
25. World Partition. Available online: https://docs.unrealengine.com/5.0/en-US/world-partition-in-unreal-engine/ (accessed on 29

November 2023).
26. Lumen Global Illumination and Reflections. Available online: https://docs.unrealengine.com/5.0/en-US/lumen-global-

illumination-and-reflections-in-unreal-engine/ (accessed on 29 November 2023).
27. The Platform for 3D geospatial. Available online: https://cesium.com/ (accessed on 28 November 2023).
28. Cesium for Unreal. Available online: https://cesium.com/platform/cesium-for-unreal/ (accessed on 28 November 2023).
29. About Anaconda. Available online: https://www.anaconda.com/about-us (accessed on 8 January 2024).
30. Mission Planner Overview. Available online: https://ardupilot.org/planner/docs/mission-planner-overview.html (accessed on 8

January 2024).
31. Sunsetting Python 2. Available online: https://www.python.org/doc/sunset-python-2/ (accessed on 1 July 2023).
32. Hardware and Software Specifications for Unreal Engine. Available online: https://docs.unrealengine.com/5.3/en-

US/hardware-and-software-specifications-for-unreal-engine/ (accessed on 8 November 2023).
33. De Guzman CJP, Chua A, Chu T, Secco EL. Evolutionary Algorithm-Based Energy-Aware Path Planning with a Quadrotor for

Warehouse Inventory Management. High Tech. Innov. J. 2023, 4. doi:10.28991/HIJ-2023-04-04-01.
34. Latif B, Buckley N, Secco EL. Hand Gesture & Human-Drone Interaction. Intell. Syst. Conf. 2022, 3, 299–308.
35. Chu T, Chua A, Secco EL. A Study on Neuro Fuzzy Algorithm Implementation on BCI-UAV Control Systems, ASEAN Eng. J.

2022, 12, 75–81.
36. Manolescu VD, AlZu'bi H, Secco EL. Interactive Conversational AI with IoT Devices for Enhanced Human-Robot Interaction.

J. Intell. Commun. 2025. doi: 10.54963/jic.v3i1.317.
37. Chu TSC, Chua A, Secco EL. Performance Analysis of a Neuro Fuzzy Algorithm in Human Centered & Non-Invasive BCI. In

Proceedings of Sixth International Congress on Information and Communication Technology; Springer: Singapore, 2021.

