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ABSTRACT: Chronic obstructive pulmonary disease (COPD) is a leading cause of global morbidity and mortality, characterized 
by progressive airway and alveolar remodeling. The disease pathogenesis is commonly driven by chronic environmental insults, 
leading to airway obstruction, emphysema, and chronic bronchitis. This review synthesizes emerging evidence that altered epithelial 
cell behavior and dysfunctional epithelial-mesenchymal interactions serve as pivotal drivers of COPD pathogenesis, orchestrating 
failed repair and structural degeneration. We detail how altered responses of airway (ciliated, club, basal, goblet) and alveolar (AT1 
and AT2) epithelial cells lead to cellular senescence, metaplasia, defective regeneration, and barrier disruption, acting as primary 
instigators of pathogenesis. We also summarize current knowledge on the mechanisms of activation and pathogenic role of 
mesenchymal cells, which drive peribronchiolar fibrosis, alveolar destruction, and metabolic reprogramming, alongside the 
compromised reparative function of mesenchymal stem cells (MSCs). We emphasize how distinct mesenchymal niches (e.g., 
PDGFRαPos MANCs, FGF10Pos lipofibroblasts, SFRP1Pos fibroblasts) and distinct epithelial stem/progenitor subpopulations 
critically contribute to pathogenesis. Key signaling pathways—including FGF10/FGFR2b, WNT, Hippo, NOTCH, and TGF-β—
mediate epithelial-mesenchymal transition (EMT), stem cell niche function, and structural remodeling. By dissecting how epithelial 
injury responses and mesenchymal niche failure collaboratively drive COPD progression, we identify actionable targets to disrupt 
pathogenesis and restore endogenous repair. We propose targeting EMT, including inhibiting EMT/fibrosis, promoting alveolar 
regeneration, MSC-based therapies, exosome-delivered biomolecules, and precision cell transplantation strategies, as promising 
future therapeutic strategies. 
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1. Introduction 

Chronic Obstructive Pulmonary Disease (COPD) ranks as the third leading cause of morbidity and mortality 
globally according to the World Health Organization [1]. The disease primarily manifests as persistent dyspnea that 
progresses to disability, complicated by acute, life-threatening exacerbations, which are often triggered by infections or 
tobacco use, particularly in the elderly. Following recent viral pandemics, a significant proportion of survivors 
developed chronic respiratory syndromes due to impaired lung homeostasis, ineffective repair, or incomplete 
regeneration [2–4]. 
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COPD progression involves robust immune cell infiltration, epithelial/endothelial-mesenchymal transition 
(EMT/EndMT), and fibroblast-to-myofibroblast transition. These transformations drive airway/vascular remodeling, 
alveolar bronchiolization, and aberrant alveolar wall changes. Close epithelial-mesenchymal proximity enables critical 
signaling for stem cell niches, maintaining tissue homeostasis and directing injury repair through mesenchymal-derived 
signals [5]. 

Epithelial and mesenchymal cells constitute the primary lung airways and alveolar structures along with the 
connective tissues as well as the extracellular matrix (ECM) in maintaining the homeostasis environment. The 
epithelium lines the internal surfaces of the lungs, while the stroma comprises the connective tissue and vasculature. 
Disruption of this homeostatic balance by disease can lead to the exhaustion of airway epithelial stem cells and 
mesenchymal remodeling, contributing to chronic pulmonary diseases like COPD. 

Epithelial heterogeneity and lineage functions are well-characterized in lung development and disease. Proximal 
airways contain distinct cell types, including myoepithelial cells, basal cells, club cells, ciliated cells, goblet cells, and 
tuft cells [6–8]. Basal cells, marked by tumor protein 63 (TP63) and keratin 5 (KRT5), act as stem cells in the trachea, 
capable of migrating, proliferating, and differentiating into ciliated and club cells to restore lung function after injury 
[9–11]. In the distal regions of the mouse lungs, the epithelial lining is simpler, composed primarily of club and ciliated 
cells [10,12,13]. Club cells, marked by secretoglobin family 1A member 1 (SCGB1A1, also known as CC10 or CCSP) 
and cytochrome P450 family 2 subfamily f polypeptide 2 (CYP2F2), exhibit regenerative capacity in response to injury, 
such as naphthalene-induced damage [12]. Bronchioalveolar stem cells (BASCs) at the terminal bronchioles and 
alveolar junctions are marked by both Scgb1a1and surfactant protein C (SP-C) that regenerate bronchiolar/alveolar 
epithelia [12–17]. The alveolar units, responsible for gas exchange, are composed of alveolar Type 2 cells (AT2s) and 
AT1 cells surrounded by heterogeneous mesenchymal cells. AT2 cells are recognized as potent stem cells in response 
to injury. Several subpopulations of AT2 cells have been identified, including Axin2Pos bipotent, Sca1Pos, Krt8Pos 
transitional, Cd44High, and Pd-l1HighSp-CLow cells, which contribute to alveolar repair and regeneration [18–31]. 

Mesenchymal niche studies in COPD are comparatively limited. Recent advances have revealed the lineage 
hierarchies of mesenchymal cells in lung diseases. Zepp et al., identified a population of platelet derived growth factor 
receptor alpha positive (PdgfrαPos) mesenchymal alveolar niche cells (MANCs), which are WNT-responsive and critical 
for maintaining AT2 cells in the mouse distal lung [32]. Pdgfrα also serves as a marker for lipofibroblasts and supports 
AT2 function [6,33]. Furthermore, recent studies identified another distinct population of PdgfraPos cells, emerging from 
the proximal airway niche following naphthalene-induced club cell depletion, termed Repair Supportive Mesenchymal 
Cells (RSMCs) [30,31]. Derived from the Acta2Pos lineage, these cells exhibit enhanced capacity to support club-cell 
regeneration in vitro and express high levels of Fibroblast growth factor 10 (Fgf10), a key growth factor for branching 
morphogenesis and lung repair in response to bleomycin-induced injury in mice, human idiopathic pulmonary fibrosis 
(IPF), and COPD [34–38]. 

Beyond these populations, Axin2Pos mesenchymal cells contribute to de novo airway smooth muscle cells (ASMC) 
formation after injury, ASMCs expressing leucine-rich repeat-containing G-protein coupled receptor 6 (Lgr6) promote 
epithelial repair through a Wnt-Fgf10-signaling axis [39,40]. Other notable mesenchymal populations include secreted 
frizzled related protein 1 positive (Sfrp1Pos) transitional fibroblasts and collagen triple helix repeat containing 1 positive 
(Cthrc1Pos) myofibroblasts, recognized as the primary collagen producers during pulmonary fibrosis [41–43]. The 
spatial distribution between epithelial and mesenchymal cells facilitates direct cell-cell contact and intercellular 
communications mediated by secreted components such as growth factors, exosomes. Key signaling pathways, 
including TGF-β, FGF, Hippo, PPARγ, WNT, and SHH, tightly regulate these communications, ensuring tissue 
homeostasis and promoting repair. 

While the intricate epithelial and mesenchymal interplay has been extensively documented as a central driver in 
the pathogenesis of pulmonary fibrosis, parallel investigations within the COPD context remain remarkably scarce. 
Although IPF and COPD exhibit distinct core pathological features, they share fundamental dysregulations in key 
biological processes governed by epithelial-mesenchymal crosstalk. These shared pathological mechanisms include 
aberrant epithelial-mesenchymal signaling, dysregulated cellular proliferation and differentiation, and impaired stem 
cell-mediated regeneration [44]. In this review, we aim to elucidate alterations in epithelial and mesenchymal cell 
lineages and their interactions that contribute to COPD phenotypes. By synthesizing the current body of knowledge on 
these cellular transformations, interactions, and regulatory mechanisms, we seek to illuminate potential future research 
avenues and identify novel COPD therapeutic targets. 
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2. Epithelial Cell Response in COPD 

Disruptions in epithelial cell function are a primary cause of COPD progression, driven by processes such as 
cellular senescence, apoptosis, ferroptosis, and inflammation [45–48]. These pathological events lead to epithelial cell 
damage, exhaustion, and impaired attempts at regeneration. Chronic exposure to cigarette smoke, the leading risk factor 
for COPD, along with repeated respiratory infections, induces significant alterations in epithelium, including the loss 
of ciliated cells [49–51], an increase in goblet cell numbers, shortened cilia and reduced ciliary beat frequency, all of 
which compromise the airway’s ability to clear mucus and pathogens [52–54]. Epithelial injury triggers a persistent 
immune response, driving alveolar destruction (emphysema) and airway remodeling, often resulting in peribronchial 
fibrosis and an increase in airway smooth muscle mass [50,55]. These changes also result in excess mucus 
hyperproduction, a key feature of chronic bronchitis (Figure 1A) [56,57]. 

 

Figure 1. Cellular dynamics in lung homeostasis and COPD. (A) The left panel illustrates key cell types and their spatial distribution 
in the airway and alveolar regions, including human terminal respiratory bronchioles (TRB) under healthy conditions (Homeostasis), 
club cells, ciliated cells, basal cells, goblet cells, tuft cells, neuroendocrine cells, BASCs (mouse), AT0 (human), AT2, and AT1 
cells. Specific cell markers, adjacent fibroblasts, and the extracellular matrix (ECM) are also depicted. The right panel shows 
changes in cellular states and marker expression during COPD, highlighting airway remodeling, hyperplasia of goblet and basal 
cells, flattened ciliated cells, and a fibrotic phenotype. These cellular and signaling alterations are associated with key COPD 
symptoms and pathological features, including metabolic dysregulation, emphysema, inflammation, and fibrosis. (B) The dynamic 
interactions between ASMCs, RSMCs, and key signaling pathways, including the FGF10-FGFR2b axis, WNT signaling, EGFR 
activation, and NOTCH signaling in “Airway Niche”. (C) The “Alveolar Niche,” focusing on the interactions between AT2 cells 
and adjacent fibroblasts via FGF10-FGFR2b and PDGFRα signaling. It emphasizes the role of PPARγ-regulated lipid metabolism, 
showcasing the importance of the lipofibroblast niche in supporting AT2 cells. The involvement of TGF-β signaling in EMT is also 
shown, linking to fibrosis with downstream effects mediated by Cthrc1Pos MYFs. 
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2.1. Airway Epithelial Cell Responses in COPD 

2.1.1. Ciliated Cells 

Ciliated epithelial cells line the airway and maintain effective mucociliary clearance by moving mucus and trapping 
pathogens out of the respiratory tract [58]. In COPD, smoking and aging critically impair the structure and function of 
these cells, leading to inefficient clearance of mucus [59,60]. One of the molecular pathways affected involves Spinster 
2 (SPNS2), which regulates sphingosine-1-phosphate (S1P) secretion. Reduced SPNS2 levels in ciliated cells impair 
macrophage phagocytosis, further compromising lung defense mechanisms [61]. Additionally, receptor-interacting 
protein kinase 1 (RIPK1) levels are notably elevated in the ciliated cells of COPD patients. RIPK1 contributes to airway 
inflammation and remodeling, and blocking RIPK1 has been shown to reduce emphysema and lung function decline 
(Figure 1A) [62]. 

2.1.2. Club Cells 

Club cells, predominantly found in bronchioles, are important for airway repair, immunomodulation, anti-
inflammatory functions, and detoxification [63]. In COPD, there is a notable reduction in club cells, which correlates 
with the disease’s severity [64]. These cells produce SCGB1A1, which modulates immune responses and inhibits 
harmful enzymes, thereby reducing inflammation and promoting repair mechanisms [65–68]. When club cells are 
ablated in animal models, there is a loss of epithelial regeneration capacity, resulting in squamous metaplasia and 
fibrosis, changes also observed in the airways of COPD patients [69]. Notably, CCSP therapy has shown promise in 
reducing inflammation and supporting lung repair, highlighting its potential as a therapeutic target in COPD [70–72]. 
Furthermore, club cells also act as facultative stem cells, with the ability to regenerate alveolar epithelial cells after 
injury. Recent studies have demonstrated that club cells can differentiate into AT2 cells, contributing to alveolar repair during 
emphysema (Figure 1A) [73,74]. However, club cell-derived AT2 cells exhibit defects in generating alveolar structures in 
COPD compared to healthy controls, suggesting an impaired regenerative response in the disease state [74]. 

2.1.3. Basal Cells 

Basal cells serve as stem cells for the airway epithelium, playing a key role in maintaining and regenerating the 
epithelial lining, which is heavily impacted by smoking [75]. These cells are responsible for maintaining the stem cell 
pool through self-renewal and for giving rise to differentiated progenitors that form ciliated and secretory cells. In 
COPD, basal cell hyperplasia is observed, along with mucous hyperplasia, contributing to chronic airway remodeling 
[76]. Basal cells reside in the basal layer of the epithelium, just above the basement membrane, where they can interact 
with underlying stromal and immune cells. This interaction is likely crucial for the development of airway fibrosis and 
inflammation [77,78]. Basal cells express markers such as KRT5, KRT13, and TP63, which are critical for their 
differentiation and the formation of the normal airway epithelium [79–81]. While basal cells are typically involved in 
repair processes following injury, their regenerative capacity is diminished, leading to persistent remodeling of the 
airway in COPD [79,82,83]. Additionally, basal cells express Epidermal Growth Factor Receptor (EGFR), which is 
activated by EGF produced by ciliated cells in response to cigarette smoke, further driving airway remodeling (Figure 
1A) [51,84]. 

2.1.4. Goblet Cells 

Goblet cell hyperplasia is a prominent characteristic of COPD that contributing to airway obstruction [85]. 
Increased mucin production and hypersecretion of mucus are driven by goblet cell proliferation through the NOTCH 
signaling pathway [85]. Goblet cells not only act as progenitors to ciliated cells but also play a key role in rapidly 
escalating mucus production in response to airway insults [86]. Overproduction of mucus in chronic bronchitis 
aggravates airflow limitation by blocking small airways, leading to epithelial remodeling and airway collapse [87]. 
Despite their clinical significance, the precise mechanisms behind goblet cell hyperplasia in COPD remain poorly 
understood, and therapeutic options are limited. Recent research on pulsed focused ultrasound offers potential as a novel 
strategy for selectively reducing goblet cell hyperactivity, providing a promising avenue for COPD treatment [88]. 
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2.2. Additional Airway Epithelial Cells 

In addition to the well-characterized epithelial cell types described above, several less-studied cell types in the 
airway epithelium—including ionocytes, pulmonary neuroendocrine cells (PNECs), and tuft cells—may significantly 
contribute to the COPD pathogenesis. 

Ionocytes are recently identified epithelial cells that express high levels of CFTR (cystic fibrosis transmembrane 
conductance regulator) chloride channels, playing a crucial role in maintaining airway surface hydration. Their 
dysfunction, especially when influenced by cigarette smoke exposure, causes mucus dehydration and impaired 
mucociliary clearance, exacerbating symptoms in COPD patients [89]. PNECs are rare epithelial cells that secrete 
neuropeptides to modulate airway smooth muscle tone and immune responses. In the context of COPD, PNEC 
hyperplasia and alterations in neuropeptide secretion may exacerbate airway remodeling and chronic inflammation, 
contributing to disease progression [90]. Tuft cells, also known as brush cells in the airway, have been found to play 
roles in innate immune regulation and airway epithelial repair. They release signaling molecules that can modulate 
inflammation and contribute to the dysregulation of immune responses within the airways of COPD patients [91]. 

Therefore, airway epithelial cells are critical in the pathogenesis of COPD, contributing to chronic inflammation, 
mucus hypersecretion, airway remodeling, and alveolar destruction. A deeper understanding of these cellular responses 
is crucial for developing targeted therapies that can mitigate disease progression and improve the quality of life for 
COPD patients. 

2.3. Alveolar Epithelial Cells in COPD 

Bronchiolization of alveolar regions, a key feature of emphysema, is largely attributed to alveolar epithelial 
hyperplasia during the repair process following inflammatory damage in COPD. The alveolar epithelium consists 
mainly of AT1 and AT2 cells. AT2 cells, functioning as resident stem cells, are crucial for alveolar regeneration after 
injury [33]. 

In healthy lungs, AT2 cells tend to proliferate and differentiate into AT1 cells responsible for gas exchange [92]. 
However, in COPD Lungs, proportion of AT2 cells lose their ability to regenerate, resulting in impaired alveolar repair 
[93]. The interferon-gamma (IFN-γ) and LHX9 signaling axis has been implicated in maintaining a subset of AT2 cells 
that retain stem cell functionality and resistance to apoptosis under chronic cigarette smoke exposure [93–95]. This 
preservation is also thought to be supported by fatty acid oxidation mechanisms. Additionally, exposure to PM2.5 
particles disrupts the differentiation of AT2 cells into AT1 cells, as evidenced by reduced claudin-4 (CLDN4) 
expression in AT2 cells following exposure [96]. Recent scRNA-seq analyses of lung tissue from COPD patients have 
identified a distinct subpopulation of AT2 cells with altered metabolic processes, further contributing to the 
pathogenesis of emphysema [97]. Moreover, abnormal T cell proliferation in COPD may inhibit the renewal capabilities 
of AT2 cells, exacerbating the condition [98]. In contrast to the mouse lung, the human lung features a distinct airway 
architecture, including respiratory bronchioles—a transitional region absent in mice. Within these structures lies a 
unique secretory cell population, respiratory airway secretory (RAS) cells, which serve as unidirectional progenitors 
for AT2 cells. NOTCH and WNT signaling modulate this process. Notably, RAS cells exhibit transcriptional alterations 
associated with smoking induced COPD, leading to aberrant AT2 cell states. This human-specific progenitor population 
plays a vital role in maintaining alveolar homeostasis and is implicated in chronic lung pathology [99]. 

AT1 cells tightly adhere to pulmonary venous capillary endothelial cells, covering approximately 95% of the 
alveolar surface, and are essential for gas exchange. Damage to AT1 cells results in alveolar structure remodeling [100]. 
Previous studies in a transgenic mouse model have identified two AT1 cell subpopulations: terminally differentiated 
HopxPosIgfbp2Pos cells and plastic HopxPosIgfbp2Neg cells. Igfbp2Neg cells demonstrate in vitro transdifferentiation 
potential into AT2 cells and organoid formation (indicating an intermediate differentiation state), Igfbp2 marks terminal 
AT1 commitment [101]. However, dual recombinase-mediated lineage tracing studies—which enable specific AT1 
labeling—show that AT1 cells do not generate AT2 cells during bleomycin-induced injury in vivo [73]. Whether AT1 
cells, which align with structurally remodeled capillary endothelia, undergo damage and remodeling remains 
unknown—a key area for future investigation [102]. Therefore, strategies targeting AT1 preservation or functional 
restoration via AT2-to-AT1 differentiation may also mitigate emphysematous destruction in COPD. 
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3. Activation and Therapeutic Applications of Mesenchymal Cells in COPD 

3.1. Mesenchymal Cell Activation in COPD 

Beyond the important role of dysfunction in lung epithelia, COPD additionally features progressive remodeling of 
both airway and alveolar structures, primarily driven by fibroblasts, particularly myofibroblasts. Although 
mesenchymal niches are known to play critical roles in fibrotic epithelial repair and regeneration, their response, 
regulation, and signaling mechanisms in COPD are still poorly understood. COPD primarily affects the small 
conducting airways, where thickening of the airway walls and peribronchiolar fibrosis cause narrowing [103,104]. This 
fibrosis is partly driven by senescent fibroblasts that secrete increased levels of collagen types 1A1 (COL1A1) and 3A1  
(COL3A2) and upregulate matrix metalloproteinases (MMP2, MMP9), promoting a profibrotic environment and 
inducing the differentiation of bronchial smooth muscle cells into myofibroblasts [105,106]. 

ASMCs in COPD exhibit metabolic disturbances, including the accumulation of lactate, glutamine, fatty acids, and 
amino acids. TGF-β stimulation restores fatty acid oxidation, enhances ribose-5-phosphate production, and promotes 
nucleotide biosynthesis [107]. This metabolic reprogramming supports ASMC growth and is linked with altered redox 
balance and reduced mitochondrial oxidative stress. Inhibiting glycolysis and glutamine depletion reduces ASMC 
proliferation in COPD [94]. ASMCs also show increased fibronectin production and upregulation of autophagy markers, 
potentially accelerating cellular senescence [108,109]. 

Environmental exposures such as CSE (Cigarette smoking exposure) and particulate matter (PM2.5) further 
exacerbate mesenchymal cell dysfunction. CSE exposure induces pro-proliferative and profibrotic characteristics in 
fibroblasts through NF-κB activation [110]. CSE also increases oxidative and ER stress in human lung fibroblasts, 
promoting their differentiation into myofibroblasts and impairing their ability to support epithelial progenitor function, 
while activation of the WNT/β-catenin signaling pathway partially restores this impaired function [111]. PM2.5 
exposure triggers a senescence-associated secretory phenotype in ASMCs, enhancing collagen-I and α-SMA synthesis 
via the GATA4/TRAF6/NF-κB signaling pathway [112]. 

FGF10 is crucial for maintaining the alveolar AT2 stem cell niche [99]. Studies have demonstrated that FGF10 
expression is reduced in COPD lungs, disrupting alveolar homeostasis. Remarkably, overexpression of Fgf10 has been 
shown to reverse established emphysema in mice, underscoring its therapeutic potential [36]. Given that Fgf10 is 
primarily produced by alveolar fibroblasts, an imbalance between fibroblasts and epithelial cells likely contributes to 
the alveolar remodeling observed in COPD. These intricate biological processes illustrate how mesenchymal cell 
dysfunction drives the structural changes that exacerbate the obstructive nature of the disease. Although research into 
FGF10-targeted therapies is still in its early stages, the advancements in cell-based precision therapies targeting this 
pathway are promising. 

3.2. Mesenchymal Stem Cells as Therapies Against COPD 

Mesenchymal stem cells (MSCs) have shown significant promise as cell-based therapies in regenerative medicine 
due to their multipotent differentiation capacity, self-renewal abilities, immunoregulatory properties, and paracrine 
effects. MSCs have been extensively studied in respiratory diseases such as COPD, asthma, and idiopathic pulmonary 
fibrosis, demonstrating their potential to regenerate lung tissue [113–121]. Transplantation of human umbilical cord-
derived MSCs (hUC-MSCs) or their extracellular vesicles (EVs) have shown efficacy in reducing peribronchial and 
perivascular inflammation, alveolar septal thickening, and goblet cell hyperplasia in COPD rat models. These 
interventions also reduce alveolar septal loss and downregulate NF-κB subunit P65 levels in affected tissues [117]. 
Transplantation of MSCs also alleviates COPD by regulating oxidative stress-related pathways [122]. 

Lung resident MSCs (LR-MSCs) are found in comparable numbers in smokers and never-smokers, indicating that 
the MSC reservoir in COPD patients remains intact [123]. However, MSCs from current smokers demonstrated 
diminished capacity to inhibit CD8Pos T-cell proliferation. This impairment was accentuated by in vitro exposure to 
CSE, which reduced the T-cell immunomodulatory capabilities of LR-MSCs [123]. These results suggest that tobacco 
smoke-induced oxidative stress can compromise the immunomodulatory and homeostatic functions of LR-MSCs. 
Furthermore, COPD MSCs show decreased production of Fgf10, essential for effective alveolar repair, and this process 
can be rescued by activating FGF10/FGFR2b signaling [36,124]. 

During the COVID-19 pandemic, systemic administration of allogeneic MSCs was investigated as a treatment for 
virus-associated pneumonia. MSCs' anti-inflammatory properties and ability to remodel the extracellular matrix offer a 
potential strategy to prevent pulmonary fibrosis. Despite promising results in clinical trials, outcomes have been mixed, 
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potentially due to persistent bronchial inflammation, which may attenuate MSC efficacy [125,126]. Despite challenges, 
MSCs offer a promising approach for addressing chronic inflammation and remodeling in COPD (Figure 2). 

 

Figure 2. Perspectives and therapeutic implications of airway and alveolar regeneration in COPD. Based on current insight, several 
perspectives and therapeutic implications for COPD treatment have been summarized. (Top Left): Inhibition of EMT and airway 
remodeling is critical for preventing pathological transition of epithelial cells into mesenchymal phenotypes, thereby maintaining 
airway integrity. (Top Right): Inhibition of bronchiolization and promotion of de-bronchiolization within the alveolar niche support 
alveolar regeneration through reversal of pathological changes. (Bottom Left): Exosome/Exosome-delivered drugs can be 
administered via inhalation, enabling targeted delivery to lung tissues for regenerative therapy. (Bottom Right): Cell-based 
therapies involve isolation (biopsy), in vitro expansion, and transplantation of lung epithelial cells to restore respiratory function. 
This integrative approach aims to advance therapeutic strategies for lung diseases by targeting multiple pathways involved in COPD. 

In conclusion, mesenchymal cells, including fibroblasts and MSCs, are critical in the pathogenesis and potential 
treatment of COPD, despite the fact that fibroblasts drive structural remodeling. Further research is needed to fully 
understand mesenchymal mobilization and optimize MSC-based strategies for COPD. 

4. Cellular Interactions and Key Signaling Pathways in COPD 

4.1. Epithelial-to-Mesenchymal Transformation in COPD 

The pulmonary epithelial cell lining is a vital barrier against environmental toxins and infections. In COPD, 
epithelial cells undergo transformation into mobile mesenchymal cells through epithelial-mesenchymal transition 
(EMT), a process triggered by diseases, infections, or injuries, and mediated by pathways like TGF-β signaling (Figure 
1B) [127,128]. EMT is observed not only in lung development but also in respiratory diseases such as COPD, lung 
cancer, and asthma, where it contributes to excessive collagen and ECM protein deposition [127,129,130]. 

In COPD, transcription factors like Snail1 are notably upregulated, particularly in cases with α1-antitrypsin 
deficiency, signifying increased EMT activity [131]. Additionally, transcription factors like Twist demonstrate 
increased nuclear translocation in smokers, correlating with greater airflow obstruction [132]. E-cadherin, an adhesion 
molecule essential for interepithelial junctions, is significantly decreased in smokers and COPD patients, with its 
reduction linked to more severe airflow limitations [133,134]. 

Moreover, mesenchymal markers, including N-cadherin, vimentin, α-SMA, type I collagen, and fibronectin, are 
elevated in COPD patients, promoting increased cell migration, tissue fibrosis, and airflow restriction [135,136]. New 
biomarkers such as β2-microglobulin (β2M) and sphingosine-1-phosphate (S1P) are under investigation for their roles 
in EMT regulation and their correlation with declining lung function in smoking-induced COPD [137,138]. Further 
research highlights the role of Cullin 4A (CUL4A); silencing this gene inhibits EMT in smoke-exposed lung cells, 
demonstrating its potential in altering disease progression [139,140]. This emerging understanding of EMT biomarkers 
could contribute to more effective management of smoking-related COPD. 
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4.2. Key Signaling Pathways Involved in Epithelial-Mesenchymal Interactions 

Cellular signaling pathways regulating epithelial-mesenchymal interactions play crucial roles in lung development, 
homeostasis, and disease. Among these pathways, paracrine-acting FGFs are particularly important in cellular processes 
such as proliferation, survival, migration, differentiation, and metabolism [141]. Mesenchyme-derived Fgf10, which 
binds predominantly to Fgfr2b expressed by epithelial cells, plays a key role in maintaining lung stem/progenitor cell 
homeostasis, promoting wound healing, and protecting against oxidant-induced DNA damage [29,142–145]. FGF10 
haploinsufficiency correlates with impaired lung function and is linked to COPD through single nucleotide 
polymorphisms (SNPs) near the Fgf10 locus [146–148]. In advanced COPD, decreased Fgf10 expression in the alveolar 
walls’ been noted. While overexpression of Fgf10 stimulates AT2 cell proliferation and enhances epithelial progenitor 
markers via the β-catenin pathway, underscoring its potential in alveolar regeneration (Figure 1B) [20,36]. 

Further studies indicate that precise regulation of the Yap-WNT7b-FGF10 pathway is critical for maintaining 
airway epithelial quiescence and preventing excessive remodeling. Dysregulation of Hippo signaling, seen in COPD, 
leads to defective repair mechanisms. Elevated nuclear YAP, FGFR2b, and WNT7b levels in the squamous metaplastic 
regions of the airway epithelium in COPD patients support this conclusion [144]. Meanwhile, WNT5a and WNT5b, 
secreted by lung fibroblasts, negatively impact epithelial progenitor proliferation. Specifically, WNT5b inhibits the 
growth and differentiation of alveolar epithelial progenitors in a WNT/β-catenin-dependent manner, suggesting 
therapeutic potential in modulating WNT signaling to enhance alveolar repair, particularly in aging lungs affected by 
COPD [149]. The role of Fam13a, another key player, has been explored in chronic CSE mouse models. Fam13a 
deficiency ameliorates the negative effects of CSE on lung epithelial stem cell regeneration via activation of the WNT 
signaling pathway. Additionally, in human cells and animal models of COPD, CSE has been shown to increase the expression 
of COPD-related markers, including type I collagen and ERK1/2 activation. This pathway also plays a crucial role in 
regulating mitochondria fission and fusion, which in turn controls ASMC proliferation (Figure 1B) [150,151]. 

The NOTCH signaling pathway is also compromised in COPD, with significant downregulation of NOTCH3, 
DLL1, and downstream targets such as HES5 and HEY1/2 in COPD patients compared to non-smokers. Despite this 
global inhibition, NICD1/HEY2 expression is upregulated in regions of mucosal hyperplasia in COPD patients, 
indicating persistent NOTCH activation, likely triggered by cigarette smoking, which skews differentiation towards the 
goblet cell lineage (Figure 1B) [152,153]. Additionally, the involvement of SHH signaling in COPD, pulmonary fibrosis, 
and fibroblast expansion suggests its role in ECM deposition [154,155]. Genome-wide association studies (GWAS) 
have identified a locus near HHIP on chromosome 4q31, associated with reduced lung function and altered HHIP gene 
expression, further implicating this pathway in COPD pathogenesis [156,157]. 

These subpopulation-specific injury-response mechanisms may play a significant role in COPD. Despite the 
growing prevalence of single-cell RNA sequencing analysis, contemporary research seldom focuses on the responses 
among these heterogeneous populations. A deeper understanding of epithelial-mesenchymal interactions and key 
signaling pathways in COPD could provide critical insights for developing targeted therapies to slow disease 
progression and enhance tissue repair. 

5. Implications of Epithelial-Mesenchymal Niche for COPD Therapy 

Current management of COPD relies on three principal therapeutic modalities: pharmacological interventions 
targeting airway smooth muscle contraction and inflammatory pathways; extracellular vesicle-based strategies 
delivering regulatory biomolecules to modulate fibrotic and immune responses; and cellular transplantation approaches 
utilizing diverse progenitor sources to enhance tissue repair (Table 1). While these interventions provide symptomatic 
relief and attenuate disease progression, they exhibit limited capacity to restore the fundamental regenerative potential 
of compromised pulmonary epithelia. This critical gap underscores the imperative to elucidate the mechanisms 
governing airway and alveolar stem cell dysfunction in COPD. Emerging insights into epithelial-mesenchymal-immune 
crosstalk now illuminate novel regenerative strategies to reactivate endogenous repair programs, redirect aberrant 
differentiation trajectories, and reestablish functional niche microenvironments. 
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Table 1. Therapeutic applications on COPD. 

Treatments Sources Targets References 

Drug treatments 

Beta-agonists β2 receptor on BSMCs 
PMID:22314182 
PMID:35311415 

LAMA/LABA/ICS 
Glucocorticoid receptor on epithelial cells and  

endothelial cells of bronchial vessels 

PMID:37690008 
PMID:31305147 
PMID:9563367 

PMID:37852657 

Anti-muscarinics, 
Anti-cholinergics 

Muscarinic receptors on ASMCs,  
inflammatory cells, and airway epithelial cells 

PMID:27787709 

Theophylline Adenosine receptor PMID:30085566 

Extracellular 
vesicles 

EVs carrying miR-210 Myofibroblast PMID:33712504 
(hUC-MSC)-derived EVs Goblet cells, inflammatory cells PMID:33436065 

EVs carrying miR-21 Myofibroblast PMID:33712504 

EVs carrying miR-181c 
Fibroblast, osteoblast, Endothelial cells  

and epithelial cells 
PMID:28806967 

Cell 
transplantation 

P63Pos progenitor cells / PMID:38354225 
Bone marrow derived 

mononuclear cells 
/ PMID:24255620 

Adipose tissue-derived  
stromal cells 

/ PMID:17049053 

BM-MSCs / 
PMID:35725505 
PMID:20842104 
PMID:34974799 

iPSC-MSCs / PMID:28911970 
DASCs / PMID:33960563 

5.1. Airway Stem Cells in Regeneration 

Epithelial dysfunction, manifested through cellular damage, senescence, and exhaustion, represents a core 
pathological feature of COPD. However, the regulatory hierarchy and signaling mechanisms governing epithelial 
responses remain poorly defined compared to diseases like asthma or IPF. Recent evidence reveals a unique AT2 
subpopulation (asATII) co-expressing SP-C and SCGB3A2 within emphysematous alveoli of advanced COPD patients. 
These cells, potentially derived from migratory airway club cells in experimental models, exhibit critically impaired 
regenerative capacity in functional assays [74]. 

Epithelial-mesenchymal crosstalk is pivotal for lung regeneration. For example, bronchiolar stem cells (BSCs) rely 
on Fgf10 secreted by mesenchymal cells for their function. Overexpression of Fgf10 during lung development results 
in ectopic BSC formation in the airways [158]. After injury in mice, surviving epithelial cells secrete Wnt7b, which 
induces Fgf10 expression in ASMCs, promoting secretory cell regeneration [158,159]. The HIPPO signaling pathway 
modulates BSC stability through the Fgf10-Fgfr2b axis [160,161]. The BSCs have also been reported to maintain 
functional intraepithelial airway macrophages [162], suggesting their significant potential in regulating airway repair. 
Furthermore, recent studies indicate that RSMCs in non-cartilaginous airways express high levels of Fgf10, which 
promotes club cell proliferation. These findings highlight that epithelial regeneration is closely modulated by 
mesenchymal signaling pathways [145]. 

These findings underscore a paradoxical phenomenon: while airway-derived progenitors are able to translocate to 
replenish alveolar compartments, their functional exhaustion ultimately limits repair. Future studies may focus on 
delineating the crosstalk between proximal and distal epithelial populations, such as BASCs, alongside signaling 
pathways regulating club cell fate. Such insights may inform cell-based transplantation strategies to reactivate 
endogenous repair programs (Figure 2) [163]. It is also important to determine whether RSMCs contribute to basal and 
club cell repair in COPD, particularly in exhausted epithelia. However, excessive activation of these pathways may lead 
to hyperplasia, emphasizing the need for a balanced approach to regenerative therapy (Figure 1B). 
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5.2. Alveolar Stem Cells and Their Niches in COPD 

Alveolar stem cells and their mesenchymal niches play a pivotal role in lung regeneration. A subset of AT2 cells 
expressing a high level of Cd44 exhibits enhanced proliferation and organoid-forming capabilities. It has been further 
reported that Gli1Pos adventitial fibroblasts are a crucial component in supporting the Cd44High AT2 cells through their 
production of hyaluronan [18,164,165]. WNT signaling is critical in maintaining AT2 progenitor cells, although there 
is variability in their dynamics across different studies [166]. During lung injury repair, intermediate cell populations 
(e.g., KRT8High and CLDN4High alveolar epithelial cells) emerge, influenced by TGFβ and P53 signaling pathways 
[167,168]. In human lungs, a recent study integrated spatial transcriptomics and single-cell RNA sequencing of micro 
dissected distal airways, identified LGR5Pos fibroblasts, terminal and respiratory bronchiolar secretory cells (TRB-SCs), 
and alveolar type-0 (AT0) cells. Organoid and connectome analyses reveal LGR5Pos fibroblasts as a niche signaling 
center in contact with epithelia. The AT0 cells represent a transient bipotent state during AT2 regeneration in primates, 
capable of differentiating into AT1s or TRB-SCs. These findings redefine human lung cell hierarchies and illuminate 
an epithelial transitional state critical in development, regeneration, and disease, which differs from mouse studies [169]. 
Epithelial-immune crosstalk is equally important, the PD-1/PD-L1 inhibitory pathway, known for regulating T-cell 
activation, critically mediates this interaction. IAAPs, characterized by high PD-L1 and low SP-C expression, contribute 
significantly to alveolar regeneration (Figure 1C) [29,170,171]. These cells warrant further investigation in COPD, with 
potential for immune-targeted interventions to enhance regeneration. Elucidating how these stem cells respond and 
adapt within COPD’s chronic inflammatory milieu, and whether their reparative functions are impaired, will be essential 
[172]. Therefore, a major goal is to develop strategies that either enhance the growth and transformation potential of 
these stem cells or modulate niche signals to rebuild functional alveoli, countering structural and functional decline in 
COPD. Understanding the precise responses and therapeutic potential of defined alveolar epithelial progenitor 
subpopulations in COPD represents a critical frontier for regenerative approaches. 

Pulmonary fibrosis, a hallmark of advanced COPD, is driven by mesenchymal populations like myofibroblasts. 
PDGFRα-positive alveolar fibroblasts form a supportive niche for AT2 cells, facilitating their function and repair. 
SFRP1-positive fibroblasts transition into matrix-producing myofibroblasts in response to TGFβ signaling, and 
contribute to tissue repair post-injury [173–175]. Lipofibroblasts, marked by TCF21 and FGF10, support alveolar 
epithelial regeneration through paracrine signaling and ECM remodeling [176–179]. Whether other populations like 
MANCs and LGR5-positive fibroblasts contribute to the mesenchymal niche in COPD requires further validation 
[169,180]. 

Analogous to IPF, key therapeutic targets in COPD may include progenitors driving collagen production. For 
instance, LEPRPos alveolar fibroblasts are a key source of pathological CTHRC1Pos fibroblasts, and targeting Runx2 
shows therapeutic potential [181]. Strategies to deplete these cells from fibrotic tissues, by targeting specific receptors, 
may prove beneficial. Additional approaches include targeting FGF10, PDGFRα, or TCF21; inhibiting TGFβ-driven 
SFRP1Pos fibroblast-to-myofibroblast transition; or conversely activating lipogenic pathways via BMP2/PPARγ 
agonists—all potentially slowing COPD progression (Figure 1C). 

6. Conclusions 

Both airway and alveolar stem cell niches are vital for lung regeneration, offering significant therapeutic potential 
for treating COPD. However, balancing regeneration with pathological remodeling presents a challenge. Understanding 
epithelial-mesenchymal interactions is critical to developing targeted therapies that promote healthy lung regeneration 
while preventing aberrant repair processes. Further investigation may focus on the origin and development of stem cell 
lineages that contribute to regeneration in COPD. Translating bench research to bedside applications, such as stem cell 
implantation, extracellular vesicle based drug treatments or delivery, and cell-based targeted therapies, will be essential 
for advancing COPD treatment (Figure 2). 
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