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ABSTRACT: The integration of large-scale renewable energy, multi-criteria operational constraints, and complex grid topologies 
has intensified the challenges faced by the security monitoring process within power system dispatch. Dispatch guidelines, typically 
expressed in natural language, are difficult for conventional algorithms to interpret and apply in real time, while general-purpose 
Large Language Models (LLMs) lack domain-specific knowledge, risking inaccurate or unsafe recommendations. This study 
proposes an LLM-based monitoring framework that integrates domain-specific prompt engineering with fuzzy evaluation to address 
these limitations. The framework interprets dispatch guidelines, analyzes real-time power flow data, and converts semantic 
assessments into quantitative safety scores, enabling closed-loop decision-making. Validation on the IEEE 14-bus system 
demonstrates that the optimized LLM outperforms a general LLM in accuracy, logical consistency, and stability under complex 
multi-standard scenarios, while reducing reliance on manual intervention. The results highlight the framework’s potential to 
enhance monitoring efficiency and ensure intelligent, secure power system operation. 
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1. Introduction 

As a sophisticated infrastructure governed by strict physical laws, the power system relies critically on its 
dispatching operation system for safe, stable, and reliable performance. Traditionally, power dispatching has depended 
on human operators who manually interpret dispatch guidelines and plans, applying professional expertise to implement 
operations based on the system’s real-time status. This approach is highly labor-intensive and heavily reliant on the 
experience of dispatchers [1]. Furthermore, the evolution of power systems has led to expanding the structure and scale 
of power grids. An increasing number of distributed energy resources are being integrated into the grid, leading to 
increasingly complex power system composition and significantly heightened operational instability. This shift poses 
substantial challenges to power system dispatching [2]. Moreover, the high penetration of new energy into the 
distribution network has introduced new challenges such as reverse power flow, insufficient regulation capacity, and 
deterioration of power quality [3]. To address these challenges, the government and industry have issued new dispatch 
guidelines, further complicating the rules. These guidelines are typically written in natural language, and traditional 
algorithms struggle to interpret them due to the flexibility of natural language, presenting a challenge for monitoring 
and dispatching systems. 

Given that current dispatch systems are struggling to adapt to and solve problems related to multi-scale, multi-
agent self-organization, and semantic information integration in modern power systems, recent breakthroughs in large 
language models (LLMs) [4] appear to offer a potential solution. They can improve the efficiency of dispatch decision-
making, reduce the burden on dispatchers, and promote the intelligent management of modern power systems. Models 
such as Transformer, Llama [5], and ChatGPT [6] have mastered the deep structure and context of language through 
extensive pre-training, enabling them to understand and follow complex instructions. When finely tuned, LLMs can 
perform specific tasks at or above human-level efficiency, especially with prompt engineering [7], enhancing their 
adaptability to new tasks without requiring extensive retraining. This flexibility greatly benefits complex decision-
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making and human-machine collaboration. LLMs’ powerful natural language processing capabilities are critical for 
efficient collaboration between humans and machines. Their generalization ability minimizes the need for new models 
tailored to different scenarios, demonstrating their versatility and wide applicability [8]. These characteristics make 
LLMs particularly well-suited for tackling the semantic interpretation and decision-making challenges inherent in 
modern power system dispatch. 

While emerging, LLMs applications in power systems have predominantly focused on specific sub-tasks. 
Examples include wind and load forecasting [9,10], fault diagnosis [11], dispatching [12], model generation from 
descriptions [13], algorithm synthesis [14], and regulatory information retrieval [15]. While valuable, these applications 
remain largely offline or auxiliary in nature. In contrast, the application of LLMs to core real-time decision-making for 
secure operation, which requires actions to respect strict physical, operational, and reliability constraints, remains 
largely unexplored. This research is among the first to embed LLMs directly into the real-time dispatch loop. This 
framework translates live system data and operational rules into quantitative safety scores and actionable guidance, 
creating a decision-support feedback loop that informs secure dispatch in real time, thus enhancing the security and 
reliability of system operation. 

However, applying LLMs to this core function presents significant challenges. General-purpose LLMs, such as 
GPT-4 [16], are trained on broad internet corpora and lack detailed knowledge of power system physics, operating 
procedures, and security constraints. Without careful adaptation, they may generate misleading or unsafe 
recommendations through oversimplified reasoning or erroneous interpretations of grid states. Moreover, real-time 
operation imposes strict requirements on latency, reliability, and interpretability that general-purpose LLMs are not 
designed to meet. Addressing these barriers requires structured prompt design, domain adaptation, and mechanisms for 
verifying model outputs against operational criteria. 

In summary, this paper is conducted under the assumptions that the power system operates without abnormal 
disturbances in power flow data and that safety thresholds remain static. Based on these assumptions, this study is 
motivated by the following research questions: 

 A gap exists in leveraging LLMs for power system dispatch, as general-purpose models lack specialized domain 
knowledge to accurately interpret dispatch guidelines and grid operation rules. 

 There is a need to improve the reliability of real-time security assessment under multi-semantic forms of safety 
standards, ensuring consistent and trustworthy decision-making. 

 Existing dispatching approaches remain inefficient and heavily dependent on manual expertise, highlighting the 
necessity of an intelligent framework that enhances efficiency and reduces operator reliance. 

In response, this paper harnesses the potential of LLMs and introduces a novel LLMs-based framework for the 
secure operation of power systems. The contributions are summarized as follows: 

 A monitoring framework is proposed that integrates domain-specific prompt engineering with fuzzy evaluation, 
enabling the transformation of natural-language dispatch guidelines into quantitative security assessments. 

 A real-time decision-making mechanism is developed that supports multi-criteria security evaluation and closed-loop 
monitoring, where the system not only detects security violations but also proposes actionable dispatch responses, 
thereby improving the accuracy, logical consistency, and stability of system operation under complex conditions. 

 The framework enhances dispatching efficiency and reduces operator dependence, providing a practical and 
forward-looking pathway toward an autonomous and intelligent “dispatch brain” for power systems. 

The rest of the paper is organized as follows. Section 2 presents the proposed LLM-based monitoring framework, 
including its overall architecture, prompt design, and fuzzy evaluation strategies. Section 3 reports the simulation results 
on the IEEE 14-bus system and evaluates the framework against general-purpose models. Section 4 discusses the 
findings and concludes the study. 

2. Materials and Methods 

The integration of advanced technologies, such as LLMs, has introduced new possibilities for enhancing the 
efficiency and safety of power system dispatch. By leveraging natural language processing capabilities in conjunction 
with data-driven analysis, these models offer real-time decision support and risk assessment for dispatchers. This not 
only alleviates the operational burden on human operators but also improves the responsiveness and adaptability of the 
dispatch process. The following section will provide a detailed exposition of the proposed methodological framework, 
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emphasizing the key components of the LLM-based approach and how the integration of semantic understanding with 
fuzzy evaluation contributes to the secure operation of the power system. 

2.1. Overall Framework 

This study proposes a large language model-based intelligent early warning method for power systems. This 
method leverages the powerful natural language understanding and generation capabilities of large semantic models, 
combined with fuzzy evaluation, to convert the model’s response into quantifiable data, thereby improving the real-
time accuracy and safety of power system warnings. The overall framework consists of the following key modules: data 
processing module, power flow calculation module, semantic model module, and fuzzy evaluation processing module. 
These modules collaborate through carefully designed interfaces to ensure smooth data flow and efficient processing 
within the system, as shown in Figure 1. 

 

Figure 1. Framework overview. 

2.1.1. The Data Processing Module 

The Data Processing Module interface first receives raw data from multiple sources, including dispatch guidelines 
[17], professional literature [18], and standardized grid structure documents [19,20], which are typically in the form of 
natural language text. Therefore, it is necessary to perform preprocessing and vectorization on these data. With the 
support of the interface, the data processing module transforms this textual data into a structured vector format. 
Specifically, this process includes the following steps:  

Step 1: Data Cleaning: Remove unnecessary characters from the text and standardize the character format to 
cleanse and standardize the data format. 

Step 2: Text Normalization: Simplify and standardize the text data by removing stop words, applying stemming 
and lemmatization techniques, and merging synonyms. 

Step 3: Tokenization: Use tokenization techniques to process the text, splitting continuous text strings into 
independent, recognizable units. 

Step 4: Text Data Augmentation: Enhance the data’s expressiveness through word vector-based similarity techniques. 
Step 5: Data Vectorization: Use word vector libraries to obtain word vectors and calculate the average of these 

vectors to derive the vector representation of the entire text. 
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The above processing steps ensure the standardization and consistency of the output data, laying a solid foundation 
for subsequent semantic model parsing. 

2.1.2. Power Flow Calculation Module 

The Power Flow Calculation Module calculates the power flow results of the power system according to Equation (1) 

[ , , ]t t t

i ij ij
Y V P Q  (1) 

where 𝑉௜
௧ represents the voltage at bus i  at time t , tPij  represents the active power of the branch from bus i  to bus

j  at time t , and t
ijQ  represents the reactive power of the branch from bus i  to bus j  at time t . Since the power 

flow results are presented in a table-like format, with the content mainly consisting of related symbols, letters, and 
numbers, they are saved as a txt file and passed to the semantic model in LaTeX format for learning, which improves 
the model’s accuracy in parsing numbers and letters [21]. 

2.1.3. Monitoring and Safety Assessment Module Based on LLM 

The design of the LLM aims to effectively leverage the natural language processing capabilities of the LLM for 
semantic understanding and knowledge internalization of the processed dispatch guidelines. It analyses system power 
flow data based on the knowledge base and provides early warnings. Through this interface, the LLM receives the 
vectorized dispatch guidelines set 1 2{ , ,..., | }nS s s s n N   and dispatch criteria set 1 2{ , ,..., | }mX x x x m M  , 

generating the corresponding knowledge base G . During the dispatch process, the LLM analyses the system’s power 
flow results in real time and provides early warnings and decision support based on the dispatch criteria selected by the 
dispatcher. The analysis results are output through the interface in JSON format, and a comprehensive system safety 
score is provided based on fuzzy evaluation for the dispatcher’s reference. 

2.2. Prompt Designing 

In this study, the key to designing early warning prompts for power systems lies in building an information 
architecture that guides the LLM to learn dispatch guidelines and the grid structure of power systems, enabling it to 
comprehensively assess system status and generate warnings when receiving real-time power flow data, as shown in 
Figure 2. Unlike traditional data-driven methods, this approach helps the model establish a systematic understanding 
by inputting dispatch guidelines and typical system parameter information, enhancing its accuracy and adaptability in 
real-world early warning applications. 

 

Figure 2. Prompt Designing. 
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First, the prompt design of the model is based on the interpretation of power dispatch guidelines. These guidelines 
are critical standards for the safe operation of power systems, so we designed a prompt framework that guides the model 
to learn and apply them gradually. This framework breaks down complex dispatch procedures into multiple sub-tasks 
and constraints, allowing the model to apply the guidelines in different operational scenarios flexibly. For example, the 
model uses prompt instructions to identify whether the load on a transmission line is approaching its safety threshold 
and generates corresponding adjustment recommendations based on the guidelines. This prompt method ensures that 
the model accurately grasps the operational requirements of the dispatch guidelines and can respond quickly in 
emergencies [22]. 

In addition, to enhance the model’s understanding of the power grid structure, we designed a prompt framework 
based on grid structure learning. The complexity of grid structures is crucial to system stability, and the model must be 
able to identify critical nodes, important lines, and potential bottleneck areas within the system. By providing prompt 
information that describes the system’s topology, the model comprehensively understands the electrical connections 
between nodes and their priorities in system operation. For instance, the model is prompted to analyze whether voltage 
fluctuations at key nodes could trigger system instability when power flows abnormally. The prompt design also 
requires the model to assess potential chain reactions caused by fragile links during peak load periods or in sudden 
situations. This design helps the model effectively identify potential risks in the grid and generate timely early warning 
recommendations. 

In practical applications, real-time power flow data is one of the most dynamic factors in power systems. To address 
this, we designed specific real-time data analysis prompts that assist the model in integrating real-time power flow data 
with the dispatch guidelines and grid structure information it has learned for comprehensive analysis and evaluation. 
After receiving real-time power flow data, the model is prompted to analyze the load and voltage status of key lines and 
nodes and assess whether they exceed safety thresholds based on dispatch guidelines. For example, when the model 
detects that the load on a line is approaching its maximum capacity, it generates corresponding warnings and adjustment 
strategies based on prompts to avoid potential system failures. This prompt design ensures the model has real-time 
responsiveness in complex power system environments, allowing it to generate effective risk warnings based on 
dynamic data. 

The prompt design in this study not only helps the model extract key information from power dispatch guidelines 
and grid structure data but also ensures that the model can quickly analyze system status and generate warnings when 
receiving real-time power flow data. This prompt design approach significantly enhances the model’s adaptability, 
accuracy, and reliability in real-world power system applications, providing strong technical support for power system 
early warning. 

2.3. Multi-Criteria Selection and Early Warning Strategies Based on Fuzzy Evaluation 

In LLM-based power system dispatch, multi-criteria analysis and fuzzy evaluation are key to managing system 
complexity and uncertainty. Multi-criteria analysis helps dispatchers weigh the importance of various indicators, such 
as line overload, voltage violations, frequency stability, and power factors, leading to more informed decisions. These 
criteria, developed by experts, reflect critical aspects of power system stability and safety. 

When conducting multi-criteria analysis, dispatchers first need to select relevant criteria based on the current state 
and operating conditions of the system. For example, when the system is under high load conditions, line overload may 
be the most critical concern, while under low load conditions, voltage violations might be more crucial. By dynamically 
selecting criteria, dispatchers can focus more specifically on the key risks of the system. Once the relevant criteria are 
determined, the LLM will sequentially analyze the power flow results based on the selected criteria and assess whether 
the system is safe under each criterion. 

When analyzing power flow results, the LLM evaluates the system’s safety by assessing key parameters like line 
load and voltage levels, using its built-in rule base. For example, if it detects “overload” or “voltage anomaly”, it 
generates a safety assessment. The LLM also provides dispatch suggestions based on the current system state and 
established rules, such as recommending load shedding or redistributing generator outputs. These recommendations are 
presented in natural language, offering guidance to dispatchers for initial decision-making. 

Following the model’s safety evaluations, a fuzzy evaluation is conducted to quantify the overall system safety. 
These numerical results provide dispatchers with more precise references, helping them make more effective decisions. 
Since the LLM’s responses are given in natural language, fuzzy evaluation translates these complex semantic results 
into numerical forms, enabling reliable system safety assessments. Certain states may be described ambiguously in 
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power systems, such as “slightly overloaded” or “severely overloaded”. These descriptions are converted into numerical 
values through fuzzy logic, offering a more objective reflection of the system’s actual state. Considering the variability 
in the language format of the model’s responses, semantic parsing is necessary to categorize similar semantic judgments 
into the same class. A method based on sentence embeddings and semantic similarity calculations is primarily employed here. 
First, the Sentence-BERT model is used to generate vector representations of both the sentences produced by the LLM and 
predefined evaluation template sentences according to Equation (2). These vector representations then calculate the cosine 
similarity between sentences, matching the LLM’s natural language outputs with predefined scoring templates. 

( ) ( )i iv S SBERT S  (2) 

where iS  represents the output judgment statement of the LLM based on the dispatch criteria’s evaluation of the power 

flow results, and ( )iv S  represents the vector representation of the sentence iS  generated by the Sentence-BERT model. 

To accurately reflect the severity of incidents, this study predefines a set of template sentences and their 
corresponding safety scores for each dispatch criterion as shown in Equation (3) [23]. The design of these templates is 
informed by regulations on power safety emergency response and investigation [24], as well as by operational guidelines. 
These templates describe the various safety states of the power system. 

0.2 "        .

0.4 "       ."

( ) 0.6 "        ."

0.8

T A particularly serious accident occurred under this guidelinek
T A major accident occurred under this guidelinek

r T T A relatively major accident occurred under this guidelinek k





 

"

"       ."

1.0 "      ."

T A general accident occurred under this guidelinek
T No accidents occurred under this guidelinek















 (3) 

Based on the output of the semantic model, we can calculate the semantic similarity between the sentence generated 
by the semantic model and each template sentence, which is the cosine similarity between the two sentence vectors. 

( ) ( )
( , ) , {1,..., }

( ) ( )

v S v Ti ksim S T k Ki k v S v Tk


    (4) 

where ( )v Si  and ( )v Tk  are the Euclidean norms of vectors ( )iv S  and ( )kv T , respectively, used to normalize the 

dot product result to ensure the similarity value falls between −1 and 1. 

* arg max( ( , ))
Tk

k i kT sim S T  (5) 

max sin( , )
max

Tk

sim S Ti ki   (6) 

where *k
T  represents the predefined sentence kT  that maximizes the value of ( , )i ksim S T ; max

isim  represents the 

maximum semantic similarity between iS  and all predefined sentences kT . 

It should be noted that the reliance on sentence-level similarity scoring based on Sentence-BERT embeddings with 
cosine similarity may face challenges in low-resource or semantically ambiguous cases where subtle linguistic 
variations are not fully captured by embeddings [25,26]. However, in our framework, this potential limitation does not 
compromise the correctness of the overall monitoring process, since the fuzzy evaluation mechanism aggregates 
similarity scores into a multi-level membership function, which reduces the impact of occasional misalignment. 

To quantify the overall safety state of the system, we combine the membership degree of the template sentences 
with the semantic similarity between sentences. We then calculate the comprehensive safety score under the selected 
guidelines M  from the set of scheduling guidelines and normalize it: 

*

max

max ( )
1( )

1

k

i

a
sim r Tiip S a

sim
i







 (7) 
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where, ( )p S  represents the comprehensive safety score, reflecting the overall safety of the system in its current state. 

a  represents the number of selected scheduling guidelines. Here, a fuzzy set is defined as follows: 

 Normal state: The system operates well, and all safety indicators are within normal ranges.  
 Warning state: There are minor issues in the system, but they do not pose an immediate significant impact on safety. 
 Emergency state: The system has encountered serious problems that require quick action, though the system is not 

in immediate danger of collapse.  
 Critical state: The system is in a highly risky state, which could lead to system collapse and requires immediate 

intervention. 

The membership function is defined as follows: 

1 ( ) 0.85

( ) 0.7
( ( )) 0.7 ( ) 0.85

0.15
0 ( ) 0.7

normal

if p S

p S
p S if p S

if p S






  









 (8) 
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

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1 ( ) 0.2

0.4 ( )
( ( )) 0.2 ( ) 0.4

0.2
0 ( ) 0.4

critical

if p S

p S
p S if p S

if p S






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







 (11) 

Here, the membership functions for the fuzzy evaluation are designed as piecewise linear functions, as given in 
Equations (8)–(11) and Table 1. This design choice differs from parametric fuzzy models such as the Takagi–Sugeno 
type [27], since the objective of the framework is not nonlinear approximation but the provision of transparent and 
operationally interpretable safety scores. Piecewise linear functions establish explicit threshold boundaries and gradual 
transitions between safety states, consistent with practical engineering standards, including voltage limits, line overload 
thresholds, and incident severity levels specified in dispatching guidelines. 

Moreover, this formulation enables efficient translation of linguistic judgments into quantitative scores. For 
example, states described as “slightly overloaded” or “severely overloaded” can be directly mapped to numerical values 
through linear membership scaling, which avoids the complexity of parametric fuzzy models and ensures computational 
tractability in real-time applications. Such properties are particularly important in security monitoring, where 
interpretability and responsiveness are more critical than the ability to approximate nonlinearities [28,29]. 

Table 1. Power System State Safety Score Levels. 

 Normal Warning Emergency Critical 
( ( ))p S  [0.8,1.0]  [0.6,0.8)  [0.4,0.6)  [0,0.4)  

Using these membership functions, we can determine the system’s degree of membership in each fuzzy set and 
conduct a comprehensive safety evaluation based on the principle of maximum membership. The thresholds for each 
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safety level are derived from historical data and expert knowledge, but can be adjusted in practical applications to meet 
specific safety and operational requirements. 

3. Results 

In this study, GPT-4 was selected as the baseline large language model for experimental validation. Two 
configurations were considered: a general GPT-4 model without domain-specific adaptation and an optimized GPT-4 
model enhanced through prompt engineering and the incorporation of power system documents. This design ensures 
that any observed improvements can be attributed to integrating domain knowledge and structured prompts rather than 
differences in model architecture. 

To accurately quantify the effectiveness of the proposed approach, we employed a unified set of evaluation metrics 
to compare the performance of the general model and its optimized variant, focusing on authenticity, logical consistency, 
stability, and expressive capability. 

3.1. Evaluation Metrics System 

To validate the feasibility of this method and consider the specificity of the results generated by the semantic model, 
we adopted four metrics for analysis: authenticity, logical consistency, stability, and expressiveness [14,30]. 
Authenticity refers to the accuracy and reliability of the content generated by the model. In power system early warning, 
the model’s output must be based on real data; otherwise, it may affect the decision-making process and operational 
efficiency, potentially leading to severe system failures [31]. To quantify authenticity, we compare the model’s output 
with known standard answers, using the percentage of correct responses out of the total responses to measure accuracy, 
as shown in Equation (12). 

_ 100%
NCR

F a
TNR

   (12) 

where, NCR  represents the number of correct responses, and TNR  denotes the total number of responses. 
Logical consistency measures the coherence of the output in terms of semantics and reasoning, ensuring that the 

content generated by the model is logically accurate and based on correct, real-time, and non-misleading information 
[32,33]. This metric is difficult to quantify using a mathematical formula, so we chose GPT-4 to score the logical 
consistency of the output text. The scoring focuses on three aspects: the structure and order of information, sentence 
relevance, and keyword coherence, with a maximum score of 1 point. 

Stability refers to the model’s ability to generate consistent results when faced with similar or identical inputs 
[34,35]. In this method, the model must ensure consistency in the output results across multiple instances of the same 
or similar inputs, which can be measured by the cosine similarity between the output results. Additionally, divergence 
is introduced to assess variations in the output distribution of the model. If the model produces significantly different 
results for similar inputs, it indicates poor stability; conversely, if the changes are minimal, it suggests strong robustness.  

1
1

1
1

1
_ ( )

1

k
i i

KL
i

i i

o o
S t D

k o o




 


 


 (13) 

where k  represents the number of outputs generated under similar inputs; io  represents the semantic vectors of the i -th. 

KLD  is used to measure the difference between two output distributions. The greater the difference between the output 

distributions, the larger the divergence value KL , indicating poorer output stability. 
Expressiveness refers to the model’s ability to convey information clearly and accurately. In this method, the model 

not only needs to provide correct reasoning but also must deliver the information to the operator in a concise and 
understandable manner. This can be quantified through readability score, information redundancy, and key information 
density, as shown in Equations (14)–(17) [36]. 

_

30
1.0430 3.1291SMOG oriS P

S
     (14) 

_ _

_ _

( min( ))

max( ) min( )
SMOG ori SMOG ori

SMOG
SMOG ori SMOG ori

S S
S

S S





 (15) 



Smart Energy System Research 2025, 1, 10005 9 of 16 

_
_ 1

u f
R e

S
   (16) 

= 100%key
key

total

D
I

I
  (17) 

where _SMOG oriS  represents the readability score, where a higher score indicates that the text is more complex and less 

readable. SMOGS  denotes the normalized readability score, constrained between 0 and 1. P  refers to the number of 

polysyllabic words in the generated text. S  represents the number of sentences in the generated text. _R e  represents 

information redundancy. _u f  denotes the number of different sentences in the text. keyD  represents key information 

density. keyI  represents the number of key information words. 

3.2. Scenario Analysis 

In this section, we selected the IEEE 14-bus system for analysis to verify the feasibility of this method. Bus voltage 
limits adhered to those in the benchmark dataset, while the rated capacities of all transmission lines were uniformly set 
to 100 MVA to eliminate ambiguity in thermal ratings. To enable a controlled, stepwise evaluation aligned with 
operational practice, three scenarios were adopted that reflect an escalating monitoring scope and increasing 
interdependence among constraints.  

Case 1: Only focusing on line capacity safety. 
Case 2: Focusing on both line capacity safety and voltage safety. 
Case 3: Focusing on line capacity safety, voltage safety, and backup storage capacity safety. 
The comparison between a general GPT-4 and a prompt- and document-conditioned GPT-4 was conducted to 

quantify the incremental benefit of injecting domain rules, threshold specifications, and structured output formats. Using 
the same base model controls for confounders related to architecture or capacity, thereby isolating improvements 
attributable solely to prompting and grounding. Results for Case 1 are shown in Figure 3. 

In the experiment considering only line capacity safety, the conditioned variant outperformed the general model. 
As shown in the left panel, the general GPT-4—lacking explicit domain knowledge and task-specific prompts—tended 
to produce generic, hedged statements with weak binding to the thermal-limit criterion, leading to greater uncertainty 
and over-generalization and thus lower task effectiveness. By contrast, the right panel shows that the prompt- and 
document-conditioned model, informed by explicit rules and references, generated precise, severity-anchored outputs 
that were more specific and actionable. These findings indicate that equipping GPT-4 with domain-specific prompts 
and document grounding can substantially improve performance in specialized power-system monitoring tasks and 
enhance the practical value of its outputs. 

Under the comprehensive fuzzy evaluation scheme, lower scores denote higher risk, with 0 indicating critical and 
1 indicating safe. The general-purpose GPT-4 yielded a system safety score of 0.6, corresponding to a warning state, 
whereas the prompt- and document-conditioned variant produced 0.2, indicating a critical state. Given the pronounced 
overload on Line 12 relative to its 100 MVA rating, the correct classification is critical and immediate remedial action 
is warranted. The general model’s underestimation arises from weak coupling between the numerical overload and the 
hard threshold, and from hedged, generic phrasing that biases template matching toward intermediate severity, which 
inflates the composite score. The conditioned model, explicitly anchored to domain rules, thresholds, and a structured 
output format, generates severity-anchored statements that align with the observed limit violation and drive the score 
into the critical region, thereby improving threshold fidelity and operational actionability while reducing the risk of 
delayed intervention. In addition, the model further provided simple dispatch recommendations, demonstrating its 
potential to go beyond passive detection and offer corrective guidance.  

The test results for Scenario 2 are shown in Figure 4. In this test, the models considered both line capacity safety 
and voltage safety. Regarding line capacity issues, the general GPT-4 model provided relatively vague results, failing 
to identify specific safety issues in the system accurately. In contrast, the GPT-4, enhanced with prompt engineering 
and document learning, demonstrated stronger specificity, clearly identifying two specific issues: “Line 1-2 exceeding 
capacity limits”. This improvement can be attributed to GPT-4’s learning of relevant foundational knowledge, leading 
to a clearer definition of line capacity safety. In addition, the optimized model produced explicit adjustment suggestions, 
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such as reducing generation at abnormal voltage nodes and load shedding at overloaded lines, which illustrates its 
capability to combine risk detection with actionable dispatch guidance. 

 

Figure 3. The test results only consider line capacity safety. The left image shows the test results using the general large model 
GPT-4, while the right image shows the test results using the GPT-4 model that was provided with specific prompts and relevant 
documents for learning. 

The two models provided slightly different responses for voltage safety, particularly in their definition of voltage 
safety. The general GPT-4 defined the safe voltage range as 0.95 p.u. to 1.05 p.u., while the optimized GPT-4 used a 
range of 0.94 p.u. to 1.06 p.u., with the latter appearing more precise. However, upon further validation, it was found 
that the optimized GPT-4’s answer was actually more accurate, as it correctly identified all voltage abnormal nodes, 
whereas the GPT-4 only highlighted the node with the most significant voltage issue. A possible reason for this 
discrepancy is that the GPT-4 optimized with prompts and relevant documents is based on the general GPT-4.  

Using comprehensive fuzzy evaluation criteria for precise system state judgment, the general GPT-4 model yielded 
a comprehensive system safety score of 0.33, placing the system in a critical state. The prompt-optimized and document-
learned GPT-4 produced a safety score of 0.2, indicating a critical state. In normal circumstances, the severe overload 
on Line 12 and the voltage limit violations at certain nodes would significantly impact the system’s normal operation, 
warranting a critical state that requires immediate action. Both models agreed on the system’s critical state, though their 
safety scores differed. The main reason for this discrepancy is that the general model lacks specialized knowledge in 
power system scheduling, leading to its suboptimal performance in system early warning. 
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Figure 4. The test results when focusing on both line capacity safety and voltage safety. The left image shows the test results using 
the general large model GPT-4, while the right image shows the test results using the GPT-4 model that was provided with specific 
prompts and relevant documents for learning. 

Figure 5 reports the Case 3 results: both models reach consistent judgments on line capacity safety, as in earlier 
cases, indicating that thermal limit compliance is robust across configurations. The divergence arises in voltage safety. 
The general GPT-4 highlights only the violation at bus 8, prioritizing the most salient breach while overlooking the 
wider pattern of depressed voltages that typically accompanies congestion and depleted reactive margins. The optimized 
GPT-4 screens the full bus set against explicit thresholds, identifies all buses breaching or approaching limits, and 
relates these deviations to available reactive support and flow rerouting, thereby reproducing the diagnostic coverage 
established in Case 2. This broader assessment is operationally preferable because voltage restoration generally requires 
coordinated actions across multiple locations, including reactive dispatch, transformer tap adjustments, and redispatch, 
rather than a single-bus intervention. Consequently, the optimized configuration provides a completer and more 
consistent basis for remediation under multi-criteria monitoring, whereas the general GPT-4 shows a tendency to narrow 
attention as additional criteria are introduced. 

Both models focused on meeting load demand for the backup capacity issue but provided slightly different 
responses. The general GPT-4 prioritized this issue due to the system’s reliance on generators at nodes 1 and 2, while 
the optimized GPT-4 concluded the system had sufficient capacity. Upon validation, the optimized GPT-4 offered a 
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more accurate response. Additionally, the optimized model demonstrated consistency and stability across cases, 
whereas the general GPT-4 tended to overlook certain issues when more safety criteria were introduced, leading to 
variations in its responses. 

 

Figure 5. The test results when focusing on line capacity safety, voltage safety, and backup capacity safety simultaneously. The 
left image shows the test results using the general large model GPT-4, while the right image shows the test results using the GPT-
4 model that was provided with specific prompts and relevant documents for learning. 
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Using comprehensive fuzzy evaluation criteria for precise system state judgment, the general GPT-4 gave a system 
safety score of 0.46, indicating that the system was in an emergency state. The optimized GPT-4 provided a system 
safety score of 0.54, indicating an emergency state. In normal dispatch scenarios, since the system had sufficient backup 
capacity, adjusting the output of system generators could resolve both the line congestion and voltage limit safety issues, 
making the emergency state result reasonable. The slightly higher score from the optimized model is consistent with its 
recognition of viable remedial actions through generator reallocation and voltage support, yielding an accurate and 
operationally actionable judgment. 

To avoid randomness in the model evaluation in any given scenario, we calculated the scores of the two models 
across the three scenarios for each metric. By averaging these scores, we obtained the results. The test outcomes are as 
shown in Table 2. The detailed metric values for the three scenarios are provided in Appendix A (Table A1). 

Table 2. Evaluation on Power System Monitoring and Safety Assessment. 

Model 𝑭_a 𝑳𝒐𝒈 𝑺_t 𝑺𝑺𝑴𝑶𝑮 𝑹_e 𝑫𝒌𝒆𝒚 
GPT-4 0.95 0.83 1 0.66 0.15 0.71 

GPT-4 after learning 0.95 0.88 1 0.14 0.21 0.76 

Figure 6 shows that both models perform similarly in terms of authenticity, stability, and information redundancy, 
with acceptable and reliable results. However, the GPT-4 model trained with prompts and document learning 
outperforms in logic, key information density, and SMOG readability, demonstrating better language structure, higher 
readability, and more concise information. 
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Figure 6. The test results for the metrics. The (left) image represents the results from testing on the general large model, GPT-4, 
while the (right) image displays the test results on the GPT-4 model that received a prompt and related document learning. 

4. Discussion and Conclusions 

This paper has proposed an intelligent early warning method for secure operation of power systems based on LLMs, 
which combines domain-specific prompt engineering with fuzzy evaluation to achieve real-time state assessment and 
generate dispatch recommendations. The proposed framework establishes a closed-loop process, where potential 
security violations are not only detected and quantified but also accompanied by targeted remedial actions, thereby 
linking monitoring, assessment, and response. Testing on the IEEE 14-bus system has demonstrated the feasibility and 
effectiveness of the method. The prompt-optimized model exhibited superior performance in terms of logical 
consistency, stability, and key information density compared with a general-purpose LLM. Its early warning results and 
corresponding dispatch suggestions proved more accurate and actionable, thus improving operational efficiency and 
closing the loop between risk detection and corrective decision support. 

However, despite the positive results, some limitations remain. First, the model requires further customization to 
learn more specialized knowledge of power systems, enhancing its sensitivity to power flow results and system 
parameters. Second, the transparency and interpretability of the model’s decisions need improvement to increase 
dispatchers’ trust in the model’s output. Additionally, the model’s adaptability to different grid structures needs 
enhancement, especially when encountering unfamiliar grid topologies or emergencies, where its performance may 
degrade. Future research can be pursued in the following directions: 



Smart Energy System Research 2025, 1, 10005 14 of 16 

 Domain-specific adaptation and interpretability: Further fine-tuning with power system data and incorporating 
expert rules or explainable AI methods will improve both the sensitivity of the framework to grid dynamics and 
the transparency of its decision-making, thereby increasing operator trust [3,8,24]. 

 Hybrid intelligence with advanced optimization: Combining LLMs with complementary AI techniques such as 
reinforcement learning, knowledge graphs, and graph-embedding approaches including PowerGraph-LLM [37], 
can enhance robustness, scalability, and optimization capability in complex grid environments [38,39]. 

 Extension to multi-energy systems under uncertainty: Applying the proposed framework to integrated energy hubs, 
particularly under uncertain operating conditions as studied by Giannelos et al. [40], would broaden its applicability 
and support risk-aware multi-energy management [31]. 

Appendix A 

Table A1. Quantitative evaluation metrics of LLMs under three test scenarios. 

Case Model F_a Log S_t SSMOG R_e Dkey 

Case 1 
GPT-4 0.91 0.39 0.99 12.40 0 0.25 

GPT-4 after learning 0.96 0.46 0.99 12.34 0 0.30 

Case 2 
GPT-4 0.98 0.27 0.99 15.08 0.17 0.22 

GPT-4 after learning 0.94 0.30 1.00 11.21 0.30 0.21 

Case 3 
GPT-4 0.95 0.25 1.00 13.78 0.13 0.27 

GPT-4 after learning 0.96 0.26 1.00 11.62 0.12 0.25 
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