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ABSTRACT: Collagen, a principal component of the extracellular matrix, provides mechanical strength and stability to tissues 
and organs through its structural organization. Its biocompatibility has established it as a crucial material in biomedical applications 
such as drug delivery systems, cell culture matrices, and tissue engineering scaffolds. However, the use of animal-derived collagen 
carries risks of pathogen transmission, which has driven research towards developing synthetic collagen alternatives. Advances in 
AI-assisted protein engineering are accelerating the design of synthetic collagens and their applications in biomaterials. This review 
examines collagen’s structural characteristics, biosynthesis strategies, biological activities as well as AI-assisting engineering. 
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1. Introduction 

Collagen, a principal component of the extracellular matrix (ECM) [1], constitutes ~30% of the human body’s total 
protein content. It represents 70% of the skin’s dry weight, and ~90% of the protein in tendons and corneal tissue [2]. 
The collagen family comprises 28 types, with molecular isomerism underpinning functional and structural diversity 
(Table 1) [3]. This heterogeneity governs collagen’s physicochemical characteristics. Some types of collagen have a 
triple-helix structural feature (Figure 1). These chains intertwine into a superhelix (Figure 1). The repeating (Gly-X-Y)ₙ 
motif facilitates tight packing of the helices, where X and Y are frequently proline and hydroxyproline. Hydrogen bonds 
form between the carbonyl group of the X-position residue in one chain and the amide nitrogen of glycine in an adjacent 
chain [4], creating a lattice parallel to the polypeptide backbone and perpendicular to the helical axis [5]. 
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Table 1. The diversity of the collagen family. 

Collagen Type Extraction Difficulty Function Category Collagen Subtypes 
Collagen I No Provide tensile strength [6] Fibrillar collagen Banded fibrils 
Collagen II No Provide compressive strength and elasticity [7] Fibrillar collagen Banded fibrils 
Collagen III No Provides support in soft tissues and maintains elasticity [8] Fibrillar collagen Banded fibrils 

Collagen IV Strong ECM interactions Provide scaffolding for epithelial and endothelial layers [9] Non-fibrillar collagen 
Network-forming 
collagens 

Collagen V 
Strong ECM interactions, abundant in the 
embryonic stage 

Co-assemble with type I collagen in tissues like skin and placenta [10] Fibrillar collagen Banded fibrils 

Collagen VI Low abundance, strong ECM interaction 
Mechanical support, cytoprotective function, promotion of tumor 
growth and progression [11] 

Non-fibrillar collagen Beaded microfibrils 

Collagen VII Low abundance, strong ECM interaction Provide stability to the dermal-epidermal adhesion [12] Non-fibrillar collagen Anchoring fibrils 
Collagen VIII Low abundance, strong ECM interaction Active roles in angiogenesis and ECM remodeling [13] Non-fibrillar collagen Short chain collagens 
Collagen IX Low abundance, strong ECM interaction Support cartilage integrity and stability [14] Non-fibrillar collagen FACIT 

Collagen X Low abundance, strong ECM interaction 
Regulate matrix mineralization and compartmentalizing matrix 
components [15] 

Non-fibrillar collagen 
Fibril-associated 
collagens 

Collagen XI Abundant in embryonic stage, strong ECM Regulate collagen fibrillogenesis [16] Fibrillar collagen 
Fibril-forming 
collagens 

Collagen XII Low abundance, strong ECM interaction Stabilize type I collagen fibrils [17] Non-fibrillar collagen FACIT 

Collagen XIII Transmembrane nature Function as an adhesion molecule [18] Non-fibrillar collagen 
Transmembrane 
collagen 

Collagen XIV 
Abundant in the embryonic stage, strong 
ECM interactions 

Regulate early stages of fibrillogenesis [19] Non-fibrillar collagen FACIT 

Collagen XV Low abundance Structural link between producing cells and connective tissues [20] Non-fibrillar collagen Multiplexing 

Collagen XVI 
Abundant in the embryonic stage, strong 
ECM interactions 

Support interaction of connective tissue cells with their ECM [21] Non-fibrillar collagen FACIT 

Collagen XVII Transmembrane nature 
Facilitate epidermal-dermal attachment, a niche for hair follicle stem 
cells [22] 

Non-fibrillar collagen 
Transmembrane 
collagen 

Collagen XVIII Abundant in the embryonic stage Control blood vessel formation [23] Non-fibrillar collagen Multiplexing 

Collagen XIX Low abundance, strong ECM interaction 
Unknown functions. Suggest the regulation of cardiac extracellular 
matrix structure [24] 

Non-fibrillar collagen FACIT 

Collagen XX Low abundance, strong ECM interaction Unknown functions. It may serve as a biomarker of solid tumors [25] Non-fibrillar collagen FACIT 

Collagen XXI Low abundance, strong ECM interaction 
Unknown functions. May contribute to the extracellular matrix 
assembly [26] 

Non-fibrillar collagen FACIT 

Collagen XXII Low abundance, strong ECM interaction Act as a cell adhesion ligand for skin epithelial cells and fibroblasts [27] Non-fibrillar collagen FACIT 
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Collagen XXIII Transmembrane nature Unknown functions. An important biomarker for lung cancer [28] Non-fibrillar collagen 
Transmembrane 
collagen 

Collagen XXIV 
Low abundance, limited in developing bone, 
and strong ECM interactions 

Promote fibrillogenesis in bone and cornea [29] Fibrillar collagen Fibril-forming collagen 

Collagen XXV Low abundance, strong ECM interaction Promote fusion of myoblasts into myofibers [30] Non-fibrillar collagen 
Transmembrane 
collagen 

Collagen XXVI Low abundance 
Unknown functions. Suggest to support testis and ovary development 
[31] 

Non-fibrillar collagen FACIT 

Collagen 
XXVII 

Abundant in the embryonic stage 
Support calcification of cartilage and the transition of cartilage to bone 
[32] 

Fibrillar collagen [33] Fibril-forming collagen 

Collagen 
XXVIII 

Low abundance May contribute to neuron protection and support [34] Non-fibrillar collagen Fibril-forming collagen 
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Figure 1. Fibrillar collagen assembly and the collagen triple helix: (a) Structure of triple helix, consisting of the repeating 
(ProHypGly)4-(ProHypAla)-(ProHypGly)5 sequence [35]. (b) ProX-ProY-Gly chain in collagen triple helix [36]. (c) Three strands 
in the collagen triple helix stagger together and form a ladder-like pattern of hydrogen bonds. (d) The biosynthesis of collagen 
begins with procollagen. Collagen molecules assemble into microfibrils in the extracellular matrix [37,38]. 

Collagen plays a pivotal role in mediating interactions between cell and the ECM [39]. A triple-helical domain 
characterizes fibrillar collagen. Other collagen types, such as fibril-associated collagen with interrupted triple helices 
(FACIT), demonstrate the interspersion of triple-helical domains within non-collagenous (NC) domains. These NC 
domains are crucial for structural assembly and confer biological activity to collagen [40]. 

1.1. Fibrillar Collagen 

Fibrillar collagen exhibits a hierarchical structure wherein parallel staggered collagen molecules self-assemble into 
fibrous nanostructures that further aggregate into higher-order assemblies [41]. Synthesis begins with the production of 
procollagen precursors containing carboxy-terminal propeptides and signal sequences that direct trafficking to the rough 
endoplasmic reticulum (ER) [42]. Within the ER, propeptides undergo hydroxylation of lysine and proline residues by 
lysyl and prolyl hydroxylases, respectively [42]. Proline and hydroxyproline play a crucial role in stabilizing the triple 
helix [43,44]. Following lysyl hydroxylation and O-linked glycosylation, α-chains trimerize into procollagen, a process 
initiated by the C-propeptide domain. This domain recognizes α-chains via a specialized mechanism, forming a stable 
core that drives triple helix assembly [45–47].  

The formation of collagen microfibers involves the nucleation, organization, and unidirectional elongation of short 
primary nanofibers (Figure 1) [48,49], which subsequently merge to form microfibrils exhibiting increased longitudinal 
and axial dimensions [50,51]. These supramolecular assemblies undergo stabilization via covalent crosslinking [52], a 
process initiated by extracellular lysine oxidases that catalyze the oxidative deamination of lysine residues in target 
peptides [53]. Within the microfibrils, the N- and C-termini of adjacent collagen monomers interact and are covalently 
cross-linked by lysyl oxidase, further enhancing structural stability [53,54]. Ultimately, the assembly of collagen 
microfibers depends on the complex interplay of chemical and physical interactions among its components [55]. 
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1.2. Non-Fibrillar Collagen 

The collagen family also includes non-fibrillar members, such as network-forming collagen IV, which assemble 
into sheet-like networks rather than fibers [56]. These collagen IV networks have been vital to the evolution of 
multicellular organisms [57]. Collagen IV differs from fibrillar collagen in two key aspects of its higher-order assembly 
[58]. First, the C-terminal non-collagenous (NC1) domain of collagen IV is retained during assembly and plays a central 
role in network formation [9,59]. Second, collagen IV features a sequence with a discontinuity in the (Gly-X-Y)n repeat, 
where glycine is absent or replaced in one of the three residues. This disrupts the formation of continuous triple-helical 
regions and creates local structural instability [60], a feature also seen in other non-fibrillar collagens [4]. 

The assembly of collagen IV scaffolds is a complex process. Intracellular enzymes collaborate to construct the 
heterotrimer, but the assembly into a three-dimensional (3D) scaffold occurs extracellularly. After secretion, protomers 
align via their NC1 and 7S domains, forming critical junctions at the protofibril ends. The triple helix then undergoes 
superhelical formation through lateral interactions [61]. During this process, functional molecules are incorporated into 
the collagen triple helix by embedding binding sites along the protofibril length. These network-forming collagens act 
as “smart” scaffolds, especially as components of the basement membrane, supporting the development and function of 
multicellular tissues [9]. 

1.3. Biological Function of Collagen 

Collagen is vital in modulating a range of signaling pathways essential for development, regeneration, and tissue 
repair, thus maintaining tissue homeostasis. Its interaction with cells is primarily mediated by specific receptors 
facilitating bidirectional transmission of mechanical and biochemical signals through cytoskeleton-mediated processes 
(Table 2). Key receptors include integrins and discoidin domain receptors (DDR1 and DDR2) [62,63].  

Integrins are heterodimeric receptors present on nearly all cell types and serve as major mediators for extracellular 
matrix components, including collagen. They play pivotal roles in regulating cell signaling, migration, survival, and 
differentiation [63,64]. Four collagen-binding integrins, α1β1, α2β1, α10β1, and α11β1, have been identified within the 
integrin α1 domain subgroup [65–67]. Although they share the function of collagen receptors, they are expressed in 
different cell types and mediate distinct biochemical signals. For example, α1β1 integrin interacting with collagen 
triggers biological responses such as Grb2 recruitment, MAPK activation for cell proliferation, FAK phosphorylation 
facilitating fibroblast-to-myofibroblast differentiation, and activation of the Shc-mediated pathway in skin regeneration. 

Receptor tyrosine kinases, especially DDR1 and DDR2, are also activated upon collagen binding [68,69]. DDR1 
is mainly expressed in epithelial cells, while DDR2 is found in fibroblasts and mesenchymal cells. Unlike integrins, 
DDRs mediate ECM signaling unidirectionally. DDR2’s interaction with collagen II is indirectly regulated by 
integrin/cytokine pathways and AGE-mediated signaling [70,71]. DDR2-bound collagen in the ECM activates the 
JNK/MAPK and PI3K/Akt pathways, influencing cell proliferation, survival, and gene expression. DDR1 binding to 
collagen activates JNK, NF-κB, p38, ERK1/2 MAPKs, and PI3K/Akt signaling pathways. DDR1 inactivation leads to 
interactions with E-cadherin, promoting cell-cell contact. Both collagen-mediated cell-matrix communication and 
collagen-independent cell-cell interactions influence the triggering of diverse signaling pathways through DDRs [72]. 
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Table 2. Receptors related to Collagen. 

Receptor Type Distribution Biological Regulation Ligand Binding Specificity 

Integrins 

α1β1 
Fibroblasts, 
Mesenchymal tissues 

Wound healing; Regulates the proliferation of living cells, MMP 
expression, and collagen synthesis; Fibroblast to myofibroblast 
differentiation; Invasion and growth of hepatocellular carcinoma 

Collagens I, III, IV, IX, XIII, XVI, 
and the collagen IV chain–derived 
peptide arresten [73–75] 

α2β1 
Platelets, epithelium, Fibroblasts, and 
Mesenchymal tissues 

Platelet adhesion to collagen; Hepatocellular carcinoma invasion and 
growth; Wound healing 

Collagens I, III, IV, V, XI, XVI, and 
XXIII [76–78] 

α10β1 Cartilage and Chondrocytes Chondrogenic differentiation; Cartilage repair, Skeletal growth Collagen II and IX [78] 

α11β1 Periodontal ligaments 
Wound healing; Cell migration; Mediates the contraction of collagen 
lattices; Myofibroblast differentiation 

Collagen I and XIII [79,80] 

Receptor Tyrosine 
Kinases (DDR) 

DDR1 
Epithelial cells, Smooth muscle cells, 
Fibroblasts, Oligodendrocytes and 
Macrophages 

Development and growth of organs; Cell proliferation, survival, homing, 
and colonization; Inhibits tumor growth 

Collagen I–V [81] 

DDR2 Chondrocytes 
Development and growth of organs; Development of bone and 
cartilages; Pathological process of arthritis, wound healing, dwarfism, 
and tumor 

Collagen I–III, and V[81] 

Immunoglobulin 
Receptor 

GPVI Megakaryocytes and Platelets Wound healing Collagen I–III [82] 

OSCAR A wide range of myeloid cells 
Osteoclast growth induction for bone resorption; Osteoclast 
differentiation 

Collagen I and II [83] 

Leukocyte Receptor 
Complex (LRC) 

LRC Immune cells 
Autoimmunity; Antiviral immunity; Graft tolerance; Regulates 
osteoclast differentiation. 

Collagen I and III [84] 

Other Receptors 

Fibronectin 
Extracellular matrix, Plasma, and Cell 
surface 

Tissue growth; Wound repair; Fibroblast migration; Nerve regeneration 
stabilization; Extracellular matrix and embryogenesis; cell-to-cell 
adhesion 

Collagen I and III [85] 

Vitronectin 
Extracellular matrix, Blood serum, 
Platelets, and Bone. 

Cell proliferation; Adhesion; Immune defense; Hemostasis; Fibrinolysis Collagen I [86] 

uPARAP 
Mesenchymal cell surface, Osteocytes, 
and Osteoblasts 

Fibroblast migration; Primary adhesion of collagen to fibroblasts Collagen I, II, IV, and V [87]  

GPVI: Glycoprotein VI; OSCAR: Human osteoclast-associated receptor.
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2. From Native Collagen to Protein Engineering 

The isolation of collagen from natural tissues laid the foundation for its application in biomedicine, yet the inherent 
limitations of native collagen extraction have catalyzed the evolution toward engineered alternatives. Pioneering work 
by Lister and Macewen utilizing sheep intestinal collagen sutures [4,88] established collagen’s biocompatibility, while 
its subsequent use as cell culture matrices [89] revealed structural dependency on tissue-specific supramolecular 
assemblies [90,91]. 

Traditional extraction protocols predominantly utilize mammalian sources like bovine, pig skin, and rat tail tendon, 
and marine byproducts like fish through acidic/alkaline hydrolysis or enzymatic digestion [92–94]. Collagen from 
bovine Achilles tendon [95,96] and porcine skin [97] dominated early biomaterial development [98–100].  

Acid and alkaline extraction methodologies inevitably perturb these critical structural determinants through three 
primary mechanisms (Figure 2). First, thermal denaturation at temperatures exceeding 40℃ induces unwinding of the 
triple helix into disordered random coils, leading to an 85% reduction in tensile strength compared to native fibrillar 
collagen [90]. Second, enzymatic hydrolysis using proteases such as pepsin preferentially cleaves non-helical 
telopeptide regions, generating fragmented polypeptides (3–6 kDa) with compromised cell-binding RGD motifs 
essential for integrin-mediated signaling [101–103]. Third, the hydrolysis of lysyl oxidase-catalyzed pyridinoline 
crosslinks, as evidenced by the decrease in Young’s modulus [99].  

 

Figure 2. Structural Degradation During Natural Collagen Extraction: There are three principal mechanisms that compromise 
collagen’s structural integrity during the extraction process: thermal denaturation, enzymatic hydrolysis, and cross-link disruption. 

To overcome these limitations, collagen mimetic peptides (CMPs) have emerged as engineered alternatives that 
recapitulate core triple-helical motifs while enabling programmable functionality. Recent advances demonstrate that 
CMPs can be rationally designed to resist thermal denaturation through strategic incorporation of unnatural amino acids 
or covalent cross-linking [104]. Notably, π-system end-capping strategies stabilize short CMPs with only 3–6 repeats, 
achieving melting temperatures up to 76 °C [105]. Furthermore, functional domains (e.g., GFOGER for integrin binding) 
can be embedded without disrupting fibril morphology, restoring cell-adhesion activity lost in enzymatically hydrolyzed 
collagen fragments [106,107]. These approaches collectively enable the synthesis of chemically complex, well-
controlled collagen mimetic biomaterials. 

3. Biological Synthesis of Recombinant Collagen 

The drawbacks of native collagen extraction, such as the risk of pathogen transmission, immunogenicity, structural 
heterogeneity, and limited scalability, have prompted a shift toward recombinant collagen production [108] (Table 3). 
Recombinant strategies enable control over amino acid sequence, post-translational modifications (PTMs), and 
molecular architecture, allowing the fabrication of collagen with tunable properties (Figure 3). Escherichia coli is 
widely favored among expression systems for its rapid proliferation, low production cost, and high-density fermentation 
capability [109]. However, the lack of endogenous prolyl-4-hydroxylase (P4H) in E. coli impairs hydroxyproline 
synthesis, thereby limiting triple-helix thermal stability [110]. To overcome this, researchers have implemented 
heterologous coexpression of P4HA and P4HB from Caenorhabditis elegans, increasing hydroxyproline content to 15% 
and raising the collagen melting temperature (Tm) by approximately 7 °C [111–113]. Further enhancements involve 
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rational sequence engineering, extending Gly-X-Y repeats from 20 to 40 units to improve interchain packing, and the 
fusion of elastin-like polypeptides (ELPs) to the N-terminus [114], enabling temperature-responsive trimerization with 
over 80% efficiency at physiological temperature [115]. 

 

Figure 3. Protein Engineering Strategies for Collagen Stabilization: (a) C-propeptide-mediated heterotrimeric assembly of type I 
collagen. (b) Hydroxyproline-mediated stabilization of triple-helix thermodynamics. (c) Enzymatic crosslinking enhances fibrillar 
shear resistance. 

Yeast expression systems, particularly Pichia pastoris, offer a more conducive environment for collagen 
biosynthesis with appropriate PTMs. Coexpression of human P4HA1/P4HB achieves hydroxyproline levels up to 88% 
of native collagen [116,117] while optimized dual-promoter constructs allow stoichiometric expression of pro-α1 (I) 
and pro-α2 (I) chains for heterotrimer formation [118]. Nonetheless, purification of heterotrimers at >65% remains a 
technical challenge. Industrial-scale fed-batch fermentation faces challenges in dissolved oxygen management, where 
maintaining >30% saturation without oxidative stress requires fine-tuned bioreactor control. Additionally, the 
production process in yeast systems often requires strict control of methanol induction, pH stability, and osmolarity to 
avoid protein aggregation and ensure correct folding. These parameters are dynamically regulated through feedback-
controlled fermentation systems integrating real-time methanol sensing, DO and pH monitoring, and osmotic pressure 
balancing. Strategies such as pulse-wise methanol feeding (1.0–2.0 g/L), pH stabilization at 5.0 ± 0.1, and osmolyte 
supplementation (e.g., sorbitol, betaine) have enhanced solubility and reduced aggregation [117]. Additionally, 
additives like sodium pyruvate can boost TCA cycle flux, increasing collagen yield by over 20% and shortening 
induction time. Industrial-scale systems often employ high-density fed-batch protocols (>150 g DCW/L) with optimized 
agitation-oxygen transfer to maintain protein quality [119]. Use of engineered strains with enhanced secretory pathways, 
or those co-expressing molecular chaperones, has shown promise in improving the yield and solubility of full-length 
collagen proteins. Recent progress also includes the coexpression of lysyl oxidase homologs (e.g., LOXL2) [120] to 
introduce enzymatic crosslinking and targeted N-glycosylation at Asn-X-Ser motifs to improve proteolytic resistance 
and in vivo stability [121]. Moreover, in vitro hydroxylation using purified P4H enzymes has emerged as a 
complementary strategy for microbial-expressed collagen, allowing post-expression modification of Hyp content 
without the need for endogenous enzymatic activity. (Figure 4) Mammalian expression systems such as CHO and 
HEK293 cells represent the advancements for producing recombinant collagen with near-native fidelity, particularly in 
PTMs and structural assembly [122–124]. The production cost remains higher than that of microbial systems, limiting 
application in high-volume products such as scaffold matrices. Emerging alternatives include stem cell-derived 
extracellular matrix secretion without genetic modification, wherein extracellular niche modulation induces the 
synthesis of human ECM collagen (hCol) with native-like molecular weights (α1 ~132 kDa; α2 ~122 kDa), 
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glycosylation profiles, and fibrillar periodicity [124]. This strategy bypasses transgene-associated regulatory hurdles 
and offers immunologically safer products. Regarding function and safety, the residues of terminal peptides and non-
human glycosylation may trigger an immune response. Studies have been conducted to remove N/C-terminal propeptide 
and telopeptide from recombinant type I collagen, and the endotoxin is controlled within 0.05 EU/mg to ensure the 
function and safety [125,126]. 

 

Figure 4. Engineering Strategies for Collagen Biosynthesis. Design and engineering: (a) Cell factory for P4H expression; (b) 
Sequence Modification; (c) ELP phase separation. Assembly and Modification: (d) Chain Stoichiometry Control; (e) LOXL2-
Mediated Crosslinking; (f) Directed N-Glycosylation. 

Complementing these bioproduction systems, synthetic biology and AI-guided protein design rapidly advance 
collagen engineering. Platforms such as ColDiff and ColGen-GA apply diffusion-based modeling and genetic 
algorithms to design stable, self-assembling collagen variants with tailored biofunctions [127]. AI-assisted strategies in 
collagen sequence design, structure prediction, and assembly optimization are illustrated in Section 4. These tools 
enable the rational construction of collagen domains for diverse biomedical applications [128]. Beyond domain-level 
sequence design, AI-driven simulation platforms now integrate structural dynamics and protein interaction predictions 
to assess fibrillogenesis potential or improve integrin-binding affinity. 

Collectively, recent breakthroughs such as the development of self-assembling recombinant collagen hydrogels 
without chemical crosslinkers [129,130], high-temperature-resistant triple helix structures stabilized by cold-adapted 
chaperones, and coexpression of folding enhancers have substantially addressed many technical barriers [131,132]. 
However, challenges remain in ensuring batch consistency, achieving uniform post-translational modifications, and 
meeting regulatory standards for clinical application. 
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Table 3. The fabrication and biosynthesis of collagen. 

Type of Collagen Host Yield Comments Concerned Contaminants 

Natural Collagen _ _ 

Obtained by enzymatic action; 
Immunogenicity, pathogen transmission 
issues; Human collagen extraction is limited 
and expensive 

Residual host proteins; chemical residues; 
pathogenic microorganisms [92] 

Recombinant Human 
Collagen 

E. coli 90 mg/L 
Coexpression with mimivirus prolyl and lysyl 
hydroxylases 

Endotoxins (from E. coli LPS); media residues 
[113] 

P. pastoris 0.6 g/L 
Coexpression with human prolyl hydroxylases 
in a bioreactor with constant oxygen supply 

Cell wall components (β-glucans, Mannans); 
media residues [117] 

Mammalian cells (293-EBNA) 0.5–80 mg/L 

Coexpression with P4H subunits is not 
required except for collagens X and VIII 
expression. Low yields of collagen V 
heterotrimers 

Mycoplasma contamination; Viral 
contaminants [121,127] 

Plants (tobacco) 30 mg/kg 
Coexpression with P4H subunits to obtain 
hydroxylated collagen 

Mycotoxins and contaminants from fungal 
infections; heavy metals; pesticides/herbicides 
[114,116] Transgenic maize seeds 4 mg/kg; 12 mg/kg 

Co-expressed with/without both the α- and β- 
subunits of a recombinant human P4H (rP4H). 

Drosophila melanogaster S2 
cells 

10–50 mg/L Production of collagen I and IX heterotrimers 
Mycoplasma contamination; distinct 
glycosylated products [133,134] 
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4. AI-Assisted Design and Modeling of Collagen 

4.1. Advances in AI-Driven Protein Engineering 

Recent advances in deep learning have enabled the de novo design of synthetic collagen with programmable 
properties. ProtSeed, a sequence-structure co-design framework, has shown a 3.2-fold increase in heterotrimer assembly 
efficiency over random sequences by optimizing charge complementarity and steric compatibility at glycine-X-Y 
junction [135]. Progress in deep learning has transformed collagen structural prediction and design. The AlphaFold 
Multimer model has shown excellent performance in predicting protein complex structures, with prediction accuracies 
of 67% and 69% at the interface between hetero and homo oligomers, respectively, when tested on 4433 protein 
complexes [136]. The progress in geometric deep learning and the application of models have enhanced our ability to 
predict and design collagen structures, leading to the development of new collagen-based materials and therapies with 
tailored properties.[137–139] 

4.2. AI-Assisting Design of Collagen Variants 

Generative artificial intelligence (AI) technologies have opened new window for the de novo design of collagen. 
Tools based on autoregressive models and Transformer architectures [131–133], such as ProteinMPNN [140] and ESM-
IF [141], have enhanced sequence design precision by integrating geometric features, such as torsion angles and 
backbone vectors, and geometric vector perceptrons (GVPs), particularly excelling in tasks requiring sub-nanoscale 
control, such as collagen fibril assembly [142]. For instance, the diffusion model ColDiff, combined with a supervised 
learning strategy, extracts sequence features from human collagen multi-omics data to generate collagen-mimetic 
peptides (CMPs) with GXY repeat structures, achieving a Pearson correlation of up to 0.95 (natural collagen) and 0.8 
(synthetic CMPs) between predicted and experimental melting temperatures (Tm) [143]. Additionally, the synergistic 
application of genetic algorithms (GA) and deep learning, like ColGen-GA, enables rapid generation of homotrimeric 
type I collagen sequences (1000 sequences in 8 h), with Tm prediction errors less than 5%, outperforming traditional 
molecular dynamics simulations [144]. 

Sequence design based on generative models requires modular strategies combined with experimental validation 
to optimize biological functionality. The adhesion module guides self-assembly into periodic banded fibers through 
hydrophobic or electrostatic interactions, while the functional module, based on Streptococcus Scl2 collagen-like 
protein fragments, introduces osteoblast-binding domains without disrupting fiber morphology [145]. Coarse-grained 
simulations and atomic modeling elucidate the hierarchical assembly of collagen triple helices into fibrils via gap-
overlap stacking, consistent with experimental observations [146,147]. Experimental validation shows that such 
synthetic collagen achieves tensile strength approaching 50 MPa comparable to natural type I collagen and promotes 
osteogenic precursor cell differentiation, increasing alkaline phosphatase activity by over 2-fold [148]. Computational 
design strategies (e.g., reinforcement learning) enable the generation of collagen-mimetic peptides (CMPs) with high 
self-assembly propensity, though experimental validation remains critical [149]. Short CMPs can form hydrogels at low 
concentrations, while long-chain variants require proline hydroxylation (up to 90% in yeast systems) for conformational 
stability [143], highlighting the necessity of post-translational modifications in biomimetic design. 

4.3. AI-Assisting Optimization of Collagen Protein 

AI technologies enable quantitative optimization of collagen material properties through high-throughput 
screening and molecular engineering strategies. The ColGen-GA framework identifies key GXY triplets contributing 
to thermal stability by analyzing millions of generated sequences: sequences containing (GPO)14 exhibit the lowest ΔTm 
values (Tm reduction of 3 ℃) [144]. Experimental validation further demonstrates that AI-designed recombinant CMPs 
achieve secretion efficiencies of 0.1–0.2 mg/mL in Pichia pastoris, with characteristic CD spectral peaks at 220–222 
nm and a 40% improvement in cell adhesion efficiency compared to traditional collagen. Moreover, AI-driven 
optimization of collagen extraction processes, such as enzyme concentration, temperature, and pH value, reduces energy 
consumption by 40% and waste by 45%, while enabling collagen recovery from waste materials such as fish scales and 
bovine hides, showcasing end-to-end efficiency from molecular design to industrial production [150,151]. Future efforts 
should focus on integrating multimodal data, sequence-structure-function, to enhance model generalizability and leveraging 
automated experimental platforms, such as iBioFoundry, to complete the “design-synthesis-testing” loop [152]. 
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5. Engineering on Collagen Biomaterials 

Contemporary molecular engineering strategies enable the precise customization of collagen biomaterials through 
domain-specific modifications and advanced crosslinking architectures. These approaches have unlocked 
transformative potential for synthetic collagens across a range of biomedical applications (Table 4). For example, 
incorporating cell-binding RGD motifs or MMP-sensitive cleavage sites into collagen scaffolds improves cell-material 
interactions, a fibrinogen-collagen hybrid hydrogel demonstrated a minimum wound closure rate of 83.3% compared 
to natural collagen with 69.4% [153]. Similarly, VEGF peptide-functionalized scaffolds enhance vascular regeneration 
by increasing surface wettability, inducing VEGF receptor phosphorylation, and promoting HUVEC survival and 
proliferation [154]. These scaffolds, fabricated via simple polymer mixing methods, hold promise for sustaining 
endothelial cell viability during vascular network formation, potentially improving transplanted tissue survival rates. 
Beyond regenerative medicine, engineered collagens are facilitating oncology research. Collagen-based 3D tumor 
models with tunable stiffness recapitulate tumor microenvironment mechanics, enhancing immune checkpoint marker 
expression and aligning drug response profiles with clinical observations [155,156]. The aberrant crosslinking in 
pathological matrices revealed by AGE mediated collagen fiber binding in liver cirrhosis, can impair remodeling ability. 
The fibers crosslinked by AGE form coarse bundles, with a 3-fold increase in diameter and a 60% decrease in 
macrophage remodeling efficiency, promoting fibrosis progression through cytoskeletal disorder and type II immune 
polarization [157]. This emphasizes the necessity of precise crosslinking control in engineering supports. 

Beyond its conventional biomedical applications, recombinant collagen emerges as a transformative material in 
intelligent drug delivery systems and tissue engineering. Recent technological advancements have capitalized on 
collagen’s programmable biodegradability to develop stimuli-responsive nanocarriers. pH-sensitive collagen 
nanocapsules have demonstrated remarkable tumor-specific drug release efficiency, achieving 90% drug release 
through lysosomal acidity-triggered dissolution at pH 5.5 [158]. Light-responsive elastin-like peptide nanoparticles 
have enabled spatiotemporal control of targeted cellular delivery through near-infrared-induced phase transitions, 
enhancing targeting efficacy by two-fold [159]. 

In the realm of tissue engineering, recombinant collagen has exhibited good biocompatibility and cell activity 
promotion in skin wound repair applications. The incorporation of recombinant collagen into GelMA (gelatin 
methacryloyl) has enhanced cellular activity and migration capacity, thereby accelerating wound healing processes 
[160]. In vivo experiments demonstrated that wounds treated with recombinant collagen-modified GelMA achieved an 
80% healing rate within 14 days, representing a 1.2-fold improvement compared to untreated diabetic mice. The 
mechanical and self-healing properties of collagen-based hydrogels can be optimized through the strategic network and 
chain topology design [161–163]. The mechanical optimization carried out through network topology design now 
combines with a hyperelastic framework, with a self-recovery rate of>95% after 500 cycles, and a compression tension 
elastic ratio adjusted to 1.5, approaching natural tissue characteristics [164]. 
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Table 4. Biomedical Applications of Collagen-based Biomaterials. 

Applications Tissue Origin Crosslinking Agents Bioharzard of Crosslinking Agents 

Wound dressing 
Epidermal and dermal acellular scaffolds 

Synthetic/ 
Natural 

1,4-butanediol diglycidyl ether (BDDGE)/ 
EDC 

Contact dermatitis, allergic[120,121] 
Hydrogels based on human-like collagen and 
carboxyl pullulan 

Synthetic Butanediol-diglycidyl ether (BDDE) 

Tendon Repair Collagen-glycosaminoglycan scaffold _ Acrylonitrile butadiene styrene (ABS) Not an irritant [165] 

Treatment of Intervertebral Disc 
Degeneration and Cartilage 
Repair 

Fibrillized jellyfish collagen and alginate hydrogel Natural EDC Skin irritant [122] 
Self-assembled fibrocartilage Natural Lysyl oxidase like-2 (LOXL-2) Not an irritant [166] 
Type II collagen-hyaluronic acid hydrogel Synthetic EDC Skin irritant [167] 
Type II collagen scaffold/chondroitin sulfate 
composite gel 

Natural Genipin LD50: 237 mg/kg (oral route) for mice 
[168–170] 

Drug Delivery 
Growth factor-conjugated fibrin microbeads Synthetic Genipin 
Collagen-hydroxyapatite scaffolds/Collagen-
chitosan-graphene oxide mixture 

Synthetic EDC/N-hydroxysuccinimide (NHS) 
An irritant/harmful by ingestion 
[171,172] 

Treatment of Cardiovascular 
Diseases 

Bovine pericardial _ Dye-mediated photooxidation Not an irritant [173] 

Decellularized carotids from a newborn calf 
Synthetic/ 
Natural 

Co-crosslinking with procyanidins and 
glutaraldehyde 

Skin irritant; may induce asthma [142] 

Alginategelatin-polysaccharide scaffold Synthetic Glutaraldehyde Skin irritant; may induce asthma [174] 

Bone Tissue Engineering 

Decellularized osteochondral plug from pigs Natural Epigallocatechin-3 gallate (EGCG) Not an irritant [137] 

Recombinant peptide based on human collagen type I 
Synthetic/ 
Natural 

Hexamethylene diisocyanate/ Genipin 
Skin irritant/LD50: 237 mg/kg (oral 
route) for mice [138] 

Collagen-glycosaminoglycan scaffold with/without 
mineral content 

Synthetic EDC/NHS An irritant/ harmful by ingestion [139] 

Neural Tissue Engineering 

Collagen/Heparin sulfate scaffold _ UV light [175] _ 

Type I collagen from tendons 
Natural/ 
Synthetic 

Genipin/Glutaraldehyde 
LD50: 237 mg/kg (oral route) for mice 
/skin irritant; may induce asthma 
[140,176] 

Tissue Regeneration 

Type I/II collagen composite scaffold Synthetic EDC Skin irritant [141] 

Collagen scaffold Synthetic 
Sulfosuccinimidyl  
4-(N-maleimidomethyl) cyclohexane-1-
carboxylate 

Skin irritant [177] 

type I collagen Natural Riboflavin 5′ monophosphate (FMN) Not an irritant [178] 
Treatment of corneal diseases Enucleated rabbit corneas _ Rose bengal and green light [179] _ 

Dentistry 
Demineralized human dentin Natural Plant-derived polyphenols [180] _ 
Bovine collagen Natural Epicatechin Skin irritant [181] 
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6. Summary and Perspectives 

Collagen, the most abundant structural protein in the human body, has become a cornerstone of biomedical 
engineering. Its hierarchical architecture, biocompatibility, and multifunctional versatility make it highly valuable. This 
review traces collagen’s evolution from its native biological roles to its applications in engineered biomaterials, focusing 
on molecular design principles, synthetic strategies, and computational innovations that overcome the limitations of 
natural collagen extraction. Key advancements include developing recombinant expression systems with enhanced 
thermal stability and AI-driven design platforms exploring new biomaterials. 

The integration of computational design, synthetic biology, and advanced manufacturing is pioneering collagen 
engineering. Next-generation collagen materials programmable in mechanics, biodegradation, and bioactivity will be 
transferred into regenerative medicine, oncology models, and smart drug delivery systems. However, achieving this 
vision requires interdisciplinary progress to align molecular-scale innovation with clinical and industrial requirements. 
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