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ABSTRACT: According to ASTM E1588-20, gunshot residue (GSR) particles can be unequivocally identified through chemical 
and morphometric analysis using scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy (SEM-EDS), 
the gold standard technique for GSR detection. Recent studies have reported the presence of characteristic GSR particles—
containing lead (Pb), barium (Ba), and antimony (Sb)—on vehicle occupants exposed to airbag deployment, underscoring the need 
for complementary analytical approaches. While elemental composition remains the primary criterion for GSR identification, 
morphometric analysis enhances the ability to differentiate GSR from other environmental particles. Furthermore, detailed 
characterization of GSR particle morphology may assist in determining the type of firearm used in a shooting incident. This study 
systematically analyzed characteristic GSR particles originating from four Brazilian-manufactured ammunition, establishing an 
initial framework for differentiating between two classes of firearms (short and long) based on morphometric features using the 
Classification and Regression Tree (CART) method. CART is well-suited for scenarios where interpretability and ease of 
implementation are priorities. Two short firearms—Taurus G2C pistol (0.40 caliber) and Glock G23 pistol (9 mm caliber) and two 
long firearms—Colt M16A2 rifle (5.56 mm caliber) and IMBEL FAL rifle (7.62 mm caliber) were tested: Ammunition types 
included CBC 0.40 S&W CSCV 160 gr, CBC 9 mm copper bullet (batch BNC10), CBC 5.56 mm AXO46 (batch A0142946), and 
CBC 7.62 × 51 mm Common. Morphometric analysis revealed distinct variations in characteristic GSR particle profiles across 
different ammunition calibers. A new four-category classification system for characteristic GSR particles was developed, with 57% 
identified as regular spheroids. Using CART analysis, a statistical model achieved 76% accuracy in distinguishing between short 
and long firearms based on morphometric parameters, particularly circularity and Feret diameter. Further research with expanded 
datasets and alternative predictive methods is recommended to enhance model performance and generalizability. These findings 
reinforce the potential of morphometric classification as a complementary tool in forensic ballistics. 
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1. Introduction 

The gaseous cloud formed during the discharge of a firearm consists of volatilized products originating from 
gunpowder deflagration and the primer cup’s low-brisance deflagration. These products rapidly condense, forming 
various components, including particles known as gunshot residues (GSR) [1]. 

GSR analysis using scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy (SEM/EDS) 
is a scientifically validated method for confirming the occurrence of a firearm discharge by detecting the presence of 
GSR particles on specific parts of a suspect’s body [2]. SEM/EDS is considered the gold standard for GSR identification, 
as it allows for both the morphological characterization and qualitative chemical analysis of individual particles. 

According to the literature, GSR particles typically exhibit either spherical morphologies with diameters ranging 
from 0.5 to 5 μm or irregular shapes with diameters exceeding 100 μm [3]. The presence of characteristic particles 
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containing lead (Pb), barium (Ba), and antimony (Sb) within a single particle in a given sample constitutes unequivocal 
evidence of characteristic GSR when identified by SEM/EDS [3]. 

However, Laflèche et al. [4] reported the detection of such particles in samples collected from vehicle occupants 
exposed to deployed airbags. These particles also contained additional elements—such as zirconium (Zr), copper (Cu), 
cobalt (Co), and calcium (Ca)—which, despite not typically being associated with characteristic GSR, raise concerns 
about potential false positives. Consequently, although elemental composition remains the primary criterion for GSR 
identification, morphometric analysis can provide valuable complementary information for distinguishing characteristic 
GSR from non-firearm-related particulate sources. 

Particle morphometry is widely employed across various scientific disciplines to analyze the physical 
characteristics of microscopic particles. Commonly used parameters include Feret diameter, aspect ratio, circularity, 
and roundness [5–18]. Several studies have focused on the morphometry of GSR-characteristic particles [16,17,19–21], 
with the aim of not only differentiating them from others as described above, but also identifying the type of ammunition 
used and assessing the influence of primer composition on particle morphology at crime scenes or on a suspect’s body. 
Therefore, a more detailed morphometric analysis of GSR particles—supported by digital image processing and analysis 
(DIPA) techniques—is scientifically justified. 

This study aimed to develop an automated measurement protocol for the morphometric classification of 
characteristic GSR particles, based on Feret diameter (FD), aspect ratio (AR), roundness (R), and circularity (C). Using 
this protocol, the study sought to establish correlations between the distinct morphometric features of characteristic 
GSR particles generated by 0.40, 9 mm, 5.56 mm, and 7.62 mm ammunition and the type of firearm, applying the 
Classification and Regression Tree (CART) method. 

Future investigations by our research group will include additional variables—such as firearm mechanics (e.g., 
closing system, automatic or semi-automatic operation, barrel-to-cylinder gap in revolvers), which significantly 
influence GSR particle morphometry, and the composition of the priming mixture. These variables are expected to 
enhance further the accuracy and robustness of morphometric classification, especially considering the demonstrated 
effectiveness of the CART method in distinguishing between GSR particle profiles associated with different 
firearms/ammunition in the present study. 

2. Materials and Methods 

2.1. Type of Study, Data Collection and GSR Particle Selection 

This research is classified as a cross-sectional study, as it involves data collection at a single point in time, without 
longitudinal follow-up. Collecting and selecting characteristic GSR particles were carried out using SEM/EDS, focusing 
on four types of Brazilian-manufactured ammunition (0.40, 9 mm, 5.56 mm, and 7.62 mm). 

Samples were collected by experts from the General Department of Homicide and Protection of Persons (DGHPP) 
of the State of Rio de Janeiro, in accordance with ASTM E1588-20 standards [3]. In summary, the stubs containing 
double-sided carbon tape were pressed 50 times onto the palms and 50 times onto the backs of both hands of the shooters. 
Additionally, for long firearms (5.56 and 7.62 mm), 50 presses were performed on the chest area and across the entire 
face (cheek, forehead, and chin) of the shooters, as gas dispersion in these regions is common when rifles are fired. All 
samples were collected immediately after firearm discharge, within a maximum interval of two minutes. The entire data 
collection process occurred in the same indoor shooting range under controlled environmental conditions, with 
temperatures ranging from 20 to 25 °C and relative humidity maintained between 70% and 80%. 

Samples were obtained from five different shooters, each of whom fired one and ten shots with the tested firearms. 
Negative control samples were also collected from each shooter before the first discharge. For each shooting sequence 
(one or ten shots), four different firearms were used in combination with four types of ammunition, all manufactured 
by Companhia Brasileira de Cartuchos (CBC), as detailed in Table 1. 

Table 1. Specification of firearms and ammunition used in the study. 

Firearm Ammunition 
Taurus G2C pistol, 0.40 caliber CBC 0.40 S&W CSCV 160 gr 
Glock G23 pistol, 9 mm caliber CBC 9 mm copper bullet, batch BNC10 

Colt M16A2 rifle, 5.56 mm caliber CBC 5.56 mm AXO46, batch A0142946 
IMBEL Fal rifle, 7.62 mm caliber CBC 7.62 × 51 mm Common 



Perspectives in Legal and Forensic Sciences 2025, 2, 10011 3 of 17 

After each shooting series, the shooters washed their hands thoroughly with running water and soap, allowing them 
to air dry. Samples were labeled using a color-coded system: red for the left hand (LH), green for the right hand (RH), 
and blue for the face (F) and chest (C). The caliber of the ammunition used was marked on the lid of each collection 
container. To prevent any form of contamination, all firearms were cleaned after each shot, and the same individual 
performed sample collection throughout the study. All firearms were used by every shooter, except for the 0.40 pistol, 
which was assigned for individual use only. This exception was justified by the fact that each police marksman already 
possesses this firearm as standard service equipment. As such, its use did not introduce contamination risks or increase 
particle generation, since they were very well cleaned between each shot. 

Samples were analyzed using a field emission scanning electron microscope (FEG-SEM), model QUANTA 450 
from FEI (Hillsboro, OR, USA), in accordance with ASTM E1588-20 standards. The microscope was equipped with 
an EDAX Genesis EDS accessory and the Magnum V1.0 automated GSR analysis system. Automated analyses were 
conducted with the following parameters: acceleration voltage of 25 kV, working distance of 10 mm, scan speed of 
10.0 µs, and a backscattered electron (BSE) detector. For each shot or shooting sequence, samples were collected and 
images were acquired of particles displaying either spheroidal or irregular morphology. Only particles classified as 
characteristic under ASTM E1588-20 [3]—containing Pb, Ba, and Sb were imaged. Each particle image was captured 
using a BSE detector, scan speed of 10 µs, resolution of 1024 × 1024 pixels, 1000× to 55,000× magnification and 300 dpi. 

180 samples were analyzed: 30 from 9 mm caliber ammunition, 30 from 0.40 caliber, 60 from 7.62 mm caliber, 
and 60 from 5.56 mm caliber. Across all collected samples, 86,518 particles were detected, of which only 2522 were 
classified as characteristic GSR particles; therefore, this constituted our sample size (n). 

2.2. Development of an Automated Measurement Protocol 

Using digital image processing software, an automated protocol was developed to measure characteristic GSR 
particles. This protocol was designed to minimize operator-related errors during particle morphometric characterization 
and to reduce the need for rework. The measurement system, developed and implemented by the authors, leverages 
digital image processing techniques, wherein the accuracy of the measurements depends primarily on the quality of the 
original images and the efficacy of the object pre-processing stage [22]. A custom macro was written in Java and 
integrated into the Fiji distribution of ImageJ (version 2.3.0/1.53q). The complete workflow of the measurement 
protocol is illustrated in Figure 1. 

 

Figure 1. Overview of the digital image processing and analysis flowchart, divided into six distinct steps. Each step represents a key 
stage in the automated protocol for measurement and characterization of GSR particles using digital image processing techniques. 

Step 1: Image Acquisition, Conversion, and Scale Calibration 

An RGB micrograph was duplicated and converted to 8-bit greyscale. Spatial calibration for each magnification 
level was performed in ImageJ with the NIST Scanning Electron Microscope Scale Calibration Artifact (Reference 
Material 8820, NIST, Gaithersburg, ML, USA). The on-screen ImageJ ruler was standardized by manually measuring 
the NIST scale in triplicate and cross-checking those readings against ImageJ outputs, thereby minimizing measurement 
uncertainty and improving accuracy [23]. 

Step 2: Region-of-Interest (ROI) Definition 

To exclude superfluous annotations and background features, a rectangular ROI was delineated around the area 
under analysis (step 2, Figure 1). 

Step 3: Image Pre-processing 

Offline filtering was applied to sharpen particle edges and optimize subsequent morphometry. Using the aperture 
morphological operator, Grey level tone filtering targeted a minimum ROI area of 20,000 pixels with 4-pixel 
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connectivity. These parameters derive from spatial-domain enhancement techniques that accentuate structural detail 
while suppressing noise in particle detection [24]. 

Step 4: Image Segmentation 

Threshold-based segmentation was selected for its ability to exploit regional intensity similarity and convert 
greyscale data into binary form, facilitating edge verification within the ROI [24]. A binary mask storing the (x, y) 
coordinates of each candidate particle was generated and associated with the black channel of the segmented image. The 
Fill Holes function removed intraparticle voids, after which Find Edges was executed to delineate boundaries further. 

Step 5: Morphometric Measurement 

Particle metrics were extracted with Analyze Particles in ImageJ, restricted to the defined ROI. Via Set 
Measurements, the following parameters were enabled: FD, AR, R, and C. Group 1 of the dialog box controls the 
measurement types—here, FD and shape descriptors—while Group 2 sets additional options.  

Step 6: Channel Overlay Verification 

To verify that the segmentation threshold precisely circumscribed each particle, the binary particle layer generated 
in Step 5 was merged with the original greyscale image from Step 1 using Merge Channels. Proper overlap is indicated 
by a red outline coincident with the particle perimeter; mis-registration reveals under- or over-thesholding effects on 
measured size. The composite image was archived for traceability. 

2.3. Morphometric Analysis of Characteristic GSR Particles 

FD measurements were performed using ImageJ (version 2.3.0/1.53q) software to determine the particle length. 
Morphology analysis used the shape descriptors C, AR, and R. The FD data are summarized in Table 2, which includes 
the measurement intervals of particle FD, the caliber of the ammunition, and the body region where the particles were 
collected. This information is crucial for identifying the predominant morphometric types of particles produced by short 
or long firearms using ammunition calibers of 0.40, 9 mm, 5.56 mm, and 7.62 mm. The characteristic GSR particles 
were categorized into classes, as shown in Table 2. 

To define these classes, measurement intervals were created based on the shape descriptor data collected from 
2522 characteristic GSR particle images (one image per particle). The classes of particles were defined from the 
evaluation and combination of the results of the shape descriptors C, R, and AR described in studies related to particle 
morphology by Blott and Pye [13], summarized in Table 2. The morphometric differences among the particles were 
further illustrated using box plot graphs, providing a clear representation of the variation in particle shapes across 
different ammunition calibers. 

Table 2. Nomenclature, concept, and acceptance criteria for characteristic GSR particle classes from 0.40, 9 mm, 5.56 mm, and 
7.62 mm ammunition. 

Classes Concept and Acceptance Criteria Guiding Morphologies 

Regular 
spheroidal 

Continuously curved morphology, very rounded with a circular shape and R 
values between 0.7 and 1, C between 0.7 and 1, and AR between 1.01 and 1.43. 

Regular non-
spheroidal 

Rounded morphology, with a circular shape with R values between 0.5 and 0.69, 
C between 0.6 and 0.699, and AR between 1.44 and 2. 

Irregular 
rounded 

Irregular rounded morphology, with a partially circular shape with R values 
between 0.25 and 0.49, C between 0.477 and 0.599, and AR between 2.02 and 
3.75. 
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Irregular 
angular 

Morphology with a sharp angle, with a very elongated shape with R values 
between 0 and 0.249, C between 0 and 0.446, and AR between 4.11 and 6.57. 

Source: adapted from Blott SJ, Pye K [13]. Images created by the author in the ImageJ software. 

2.4. Statistical Correlation Analysis 

A double-entry database was compiled in Microsoft Excel to minimize transcription errors. All subsequent analyses 
were executed in Minitab® v 20.0 (Minitab LLC, State College, PA, USA). 

The frequency distribution of FD measurements was inspected via histograms. Because the data violated normality 
assumptions, Mood’s median test was applied (H₀: identical population medians; H₁: at least one differing median). 
This test was preferred over parametric ANOVA and rank-based alternatives (e.g., Kruskal–Wallis, Mann–Whitney) 
owing to its robustness to skewed distributions, heterogeneous variances, small unequal samples, and extreme values 
when the principal focus directly compares medians. 

Correlations between morphometric predictors—FD, C, AR, R and firearm class (short vs long) were modelled by 
the CART algorithm that begins with the full dataset and recursively partitions it into binary subsets based on decision 
rules defined at internal nodes. The resulting structure includes a root node (representing the entire dataset), internal 
nodes (which split the data based on specific features), and leaf nodes (terminal nodes that assign a class label or a 
predicted value). This method was selected due to its robustness in handling non-linear relationships, insensitivity to 
outliers, and capacity to operate without assuming normality or homogeneity of variances in the data. 

During the cross-validation process, nodes in a decision tree were constructed and evaluated repeatedly to ensure 
that the resulting model is robust and generalizable to unseen data. This iterative process involves the creation of 
multiple data partitions and enables comprehensive comparisons across subsets, thereby enhancing the model’s 
reliability and minimizing bias [25]. The interaction between cross-validation and node development occurs through 
several key steps: (i) Data Splitting: The dataset was divided into multiple folds or subsamples. In each iteration, one 
fold was used as a validation set while the remaining folds were used for model training, providing a more reliable 
estimate of model performance. (ii) Tree Construction: For each training subset, the decision tree was generated starting 
from the root node and progressively split into internal and leaf nodes, with each node representing a decision based on 
a specific input feature. (iii) Model Evaluation: The model trained on each fold was evaluated against its respective 
validation set, typically by assessing prediction accuracy or other performance metrics at the leaf node level. (iv) 
Overfitting Mitigation: Cross-validation helped to detect overfitting, particularly in overly complex trees with excessive 
node splits that capture noise rather than meaningful patterns. This process aids in selecting a model structure that 
generalizes well. (v) Hyperparameter Optimization: Cross-validation was also employed to fine-tune tree-specific 
hyperparameters, such as maximum tree depth and minimum sample size per node, ensuring that the final model 
balances complexity and predictive accuracy. 

This study assumed that the probability of reaching each response level was equal across all levels, meaning that 
the likelihood of each event occurring was uniform for all predictor variables (FD, C, AR, and R). The Gini index was 
selected for node splitting due to its proven effectiveness and ability to result in binary divisions. Specifically, this index 
identifies the optimal split by minimizing the weighted average of the Gini indices of the successor nodes. This index 
enables CART to create the purest nodes possible, thereby reducing data uncertainty. 

The K-fold method was applied for cross-validation, with rows randomly assigned to each fold. This approach is 
particularly appropriate for datasets with fewer than 5000 observations. It was also determined that a minimum of ten 
cases was required for an internal node to be eligible for further splitting, while terminal nodes required at least three 
cases, preventing further division. A comparative graph was generated to evaluate the tree with the fewest terminal 
nodes and assess the cost of misclassification, plotting “misclassification cost” against the “number of terminal nodes”. 

The classification performance of the decision tree was assessed using a confusion matrix, which evaluates the 
accuracy of class predictions based on the following metrics: True Positive Rate (TPR), also referred to as sensitivity 
or statistical power, defined as the probability of correctly predicting the occurrence of an event; False Positive Rate 
(FPR), or Type I error, representing the probability of incorrectly predicting an event when it did not occur; False 
Negative Rate (FNR), or Type II error, indicating the probability of failing to predict an event that did occur; and True 
Negative Rate (TNR), defined as the probability of correctly predicting the absence of an event. A Receiver Operating 
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Characteristic (ROC) curve was constructed to validate model performance by plotting the TPR on the Y-axis against 
the FPR on X-axis. The Area Under the Curve (AUC) was calculated as 0.75 for the training set (20% of the sample) 
and 0.73 for the test set (80% of the sample). These values are considered acceptable, as an AUC of 1.0 represents a 
model with perfect discriminative ability, whereas an AUC of 0.5 reflects no better classification performance than 
random chance [25]. 

3. Results and Discussion 

A total of 86,518 particles were detected in the collected samples. Of these, 2522 particles (approximately 3% of 
the total) were classified as characteristic GSR particles, in accordance with ASTM E1588-20 [3]. Characteristic GSR 
particles were present in all analyzed samples, with the highest count originating from 9 mm caliber ammunition. The number 
of particles detected—categorized by ammunition type, shooter, and region of the shooter’s body—is detailed in Table 3: 

Table 3. Number of characteristic particles identified by ammunition type, shooter, and region of the shooter’s body. 

Ammunition 9 mm 0.40 5.56 mm 7.62 mm Total 
 LH RH LH RH LH RH F C LH RH F C  

Shooter 1 18 53 56 60 177 129 2 2 11 16 0 1 484 
Shooter 2 85 239 53 44 36 17 1 3 12 17 1 9 440 
Shooter 3 38 38 56 63 47 33 3 2 19 43 10 5 334 
Shooter 4 29 10 39 35 13 27 1 1 30 45 0 3 188 
Shooter 5 592 80 70 40 10 24 1 4 25 32 0 12 844 

Total 762 420 274 242 283 230 8 12 97 153 11 30 2522 

Legend: LH—Left Hand; RH—Right Hand; F—Face; C—Chest. 

Regarding the recovery of these particles after sample collection, the number of characteristic GSR particles after 
discharging 5.56 and 7.62 mm cartridges was markedly lower than that detected for 9 mm and 0.40 caliber ammunition, 
even when supplementary swabs from the shooters’ chest and facial regions were analyzed. Although it has been 
reported that residues from long weapons tend to accumulate preferentially on the face and torso [26], GSR dispersion 
is a multifactorial phenomenon. Key determinants include the firing hand (adjacent to the ejection port), the support 
hand (near gas exhaust apertures), ammunition design, barrel length, shooter’s grip and stance, pre-shot cleaning, and 
other weapon-specific parameters [27,28]. Ditrich et al. [29] and Chohra et al. [30] demonstrated significant inter-
weapon variation in particle dispersal patterns. For instance, revolvers (short firearm) release residues in close proximity 
to the shooter, whereas shotguns and repeating rifles generate comparatively sparse particle clouds. 

In line with these findings, the present study recorded the highest particle concentrations on shooters’ hands for 
both long and short firearms. Similarly, Brozek-Mucha [31] reported greater particle counts on hand swabs compared 
to facial swabs after discharging short weapons [17,26,31]. These observations highlight the importance of considering 
weapon architecture and handling dynamics when interpreting GSR distribution in forensic reconstructions. Although 
the number of characteristic GSR particles recovered is generally lower than that of other particle types classified under 
ASTM E1588-20 [3] (i.e., consistent and commonly associated particles), the observed variation in dispersion patterns 
also contributes to the relatively low number of characteristic GSR particles recovered (2522). 

Regarding secondary transfer of particles and/or previous contamination, it is important to emphasize that such 
occurrences can significantly impact the interpretation of GSR findings. Particles may be transferred through indirect 
contact with contaminated surfaces, objects, or individuals, particularly in confined or shared environments. Moreover, 
the presence of characteristic GSR particles on control samples before shooting highlights the need for stringent 
contamination control measures and thorough background screening in forensic protocols. The data presented in Table 
3 exclude characteristic GSR particles detected in the control samples. The analyzed control samples identified 168 
particles with both regular (spheroidal) and irregular morphologies. Among these, the highest contamination levels were 
observed in the samples from 0.40 ammunition, with shooters 2 and 5 identified as the primary sources of contamination. 
A salient finding was that background contamination was present in every pre-fire control swab, irrespective of the 
ammunition caliber. Shooter 4 yielded the fewest control particles, presumably owing to a more stringent 
decontamination protocol. Residues nevertheless persisted after each shot—despite interim cleaning of both firearm 
and hands—implicating secondary transfer, most plausibly from the holster or ancillary gear. 
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Systematic scrutiny of control data is essential for quantifying false-positive risk in forensic casework. In 
operational settings such as law-enforcement duty, secondary GSR transfer can undermine evidential reliability [31,32]. 
We implemented a hand-cleaning regimen to mitigate this hazard and collected 30 paired samples to evaluate its efficacy. 
Before cleaning, 176 characteristic particles were recovered from weapons and hands; post-cleaning, the count dropped 
to just 14. These results underscore the necessity of decontaminating both hands and firearms before firing, and 
interpreting residual particles in light of potential cross-transfer mechanisms. Despite the post-cleaning decline in 
particle abundance, SEM retained sufficient analytical sensitivity to detect and classify every residual GSR particle, 
underscoring the method’s robustness under low-contamination conditions. 

Once characteristic GSR particles were verified, high-resolution micrographs were archived in a database that 
served as the training set (504 samples were used) for an automated morphometric workflow. This algorithm extracted 
FD and the shape descriptors C, R, and AR. 

Automated analysis yielded a comprehensive morphometric profile for 2522 particles. For regular spheroidal 
particles, a single FD measurement adequately represents size. In contrast, irregular or non-spheroidal morphotypes may 
require multiple dimensional metrics to be fully characterized [33]. Because FD is defined as the maximum chord length of 
an object irrespective of orientation [34], it was adopted as the principal metric for length assessment across all particle classes. 

Of the 2552 characteristic GSR particles analyzed, 76% had diameters ranging from 1 to 10 µm. Within this range, 
56.2% of the particles originated from 9 mm caliber ammunition, 22.3% from 0.40 ammunition, 11.2% from 5.56 mm 
caliber ammunition, and 10.3% from 7.62 mm caliber ammunition. When each ammunition type is considered 
individually, 92% of the particles generated by 9 mm ammunition, 82% of those from 0.40 ammunition, and 65% of 
those from 7.62 mm ammunition had diameters between 1 and 10 µm. In contrast, the majority of particles produced 
by 5.56 mm ammunition fell within the 11–40 µm range. The study conducted by Kara [16] analyzed the FD of 1200 
characteristic GSR particles collected from five European 9 mm caliber ammunition types produced by the 
manufacturers MKE, GECO, S&B, WIN, and LIBRA. The results indicated that 91% of the analyzed particles had an 
FD between 1 µm and 10 µm [16]. Comparing Kara’s [16] findings with those of this study, for samples collected from 
the same caliber and within the same measurement range, there was a difference of only 1%, with this study identifying 
92% of particles within this range. These results highlight a strong trend indicating that characteristic GSR particles 
from 9 mm caliber ammunition predominantly exhibit an FD between 1 and 10 µm. 

In the case of 5.56 and 7.62 mm caliber ammunition, the average FD values obtained in this study—29.21 and 
21.23 µm, respectively—were slightly higher than those reported by Kara and Tahillioglu [17], who observed mean 
values of 26.77 µm for 5.56 mm and 18.16 µm for 7.62 mm particles [17]. These variations may reflect differences in 
experimental conditions, ammunition batches, or firearm models used during testing. For 0.40 caliber ammunition, an 
average FD of 16.08 µm was recorded; however, no comparable data were found in the literature, limiting direct analysis. 
The absence of reference values for certain calibers emphasizes the need for further studies to expand GSR 
morphometric databases to improve comparative assessments in forensic investigations. 

After presenting the FD results, a new classification for morphological classes of characteristic GSR particles from 
the four national ammunitions analyzed in this study was created (see Table 2). According to Blott and Pye [13], the 
term “regular” is used to describe shapes with straight edges or those that have a continuously curved outline, in two or 
three dimensions. When a particle exhibits significant indentations (concavities) and projections (convexities) on its 
surface, it can be described as irregular. Of the regular particles, 57% are regular spheroidal, a value slightly lower than 
that found in the literature, which considers 70% of characteristic GSR particles to be spheroidal [35], 36% are regular 
non-spheroidal, 6.7% are irregular rounded, and 0.3% are irregular angular. The new classification supports the 
qualitative evaluation of particle occurrence frequency for each type of ammunition. 

This revised classification system facilitates the qualitative assessment of particle occurrence frequency for each 
ammunition type. To highlight the morphological variations observed in the analyzed samples, all characteristic GSR 
particle classes are illustrated in Figure 2. 
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Figure 2. Representative Electron Micrographs of Characteristic GSR Particles from Brazilian Ammunition (7.62 mm, 5.56 mm, 9 
mm, and 0.40 Calibers); (1–4) Regular Spheroidal, (5–8) Regular Non-Spheroidal, (9–11) Irregular Rounded, (12) Irregular Angular. 

By evaluating the combination of two variables—FD and particle morphology—it is possible to observe clear 
differences in the morphometric profiles of characteristics GSR particles from long firearms (5.56 and 7.62 mm) 
compared to those from short firearms (9 mm and 0.40). These differences are illustrated in the box plots (Figures 3–
7). Specifically, when analyzing the characteristics of GSR particles according to ammunition type, it becomes evident 
that the median FD values for particles originating from long firearms are higher than those observed for particles from 
short firearms (Figure 3). 

 

Figure 3. Consolidated box plot of morphometric analysis of all collected particles by ammunition caliber. 

Regular spheroidal particles exhibit the lowest median FD values among all morphological classes, with a median 
of 3.35 µm. Although FD measurements in this class range from 0.09 to 9.77 µm, the highest concentration of particles 
falls within the 2.58 to 4.75 µm range. Among the short firearms, particles from 0.40 ammunition have a median FD of 
3.37 µm, with most particles also concentrated between 2.56 µm and 4.77 µm. When comparing the median FD of 0.40 
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ammunition with that of 9 and 7.62 mm ammunition, the values are quite similar—3.18 and 3.36 µm, respectively. 
However, differences emerge in the distribution ranges: while 9 mm particles are most frequently found between 1.73 
and 3.18 µm, 7.62 mm particles, like those from 0.40 ammunition, are concentrated in the 2.49 to 4.75 µm range. 

Among regular spheroidal particles, 5.56 mm ammunition (a long firearm) exhibits the highest median FD value, 
at 4.34 µm. The majority of these particles fall within the 3.02 to 6.84 µm range, indicating that regular spheroidal 
particles from 5.56 mm ammunition tend to be larger than those from other calibers (Figure 4). 

  

Figure 4. Box plot of the morphometric profile of regular spheroidal particles by ammunition caliber. 

Non-spheroidal regular particles have a median FD value of 4.02 µm, with the highest concentration of particles 
ranging from 3.18 to 5.51 µm, although the full range extends from 1.60 to 9.93 µm. Within this morphological class, 
the results suggest that ammunition from long firearms tends to produce particles with larger FD values compared to 
short firearms. Specifically, 5.56 mm ammunition exhibits the highest median FD in this class, at 4.89 µm (Figure 5), 
reinforcing the trend of larger particle sizes associated with long firearms. 

 

Figure 5. Box plot of the morphometric profile of non-spheroidal regular particles by ammunition caliber. 

The irregular rounded particle class has a median FD of 4.02 µm, similar to that observed in class 2. However, 
most particles in this category are distributed within the FD range of 2.84 to 5.48 µm. Within this class, particles 
originating from short firearm ammunition exhibit lower median FD values compared to those from long firearms. 
Notably, particles from 7.62 mm ammunition present the highest median FD value in this class, measuring 5.79 µm 
(Figure 6). 
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Figure 6. Box plot of the morphometric profile of irregular rounded particles by ammunition caliber. 

The irregular angular class presented only seven particles, with a median FD value higher than the other classes, 
being 6.60 µm (Figure 7). This class occurred mainly in short firearms, with four particles in 9 mm ammunition, two 
particles in 0.40 ammunition, and one particle in 5.56 mm ammunition. 

 

Figure 7. Box plot of the morphometric profile of irregular angular particles by ammunition caliber. 

The analysis of characteristic GSR particles was approached from the perspective of particle morphometry. The 
results indicate that regular particles can exhibit diameters larger than those previously reported in the literature and 
display highly specific morphologies depending on the type of ammunition. This finding offers a new perspective on 
the relevance of morphometric analysis, a method already employed in other scientific fields to better understand diverse 
processes. Among the parameters commonly used to characterize particle morphometry—such as Length, FD, AR, C 
and R—none have yet been systematically applied to characteristic GSR particles [5–16,18]. In this study, the focus 
was placed on analyzing FD, AR, R, and C. The data were initially examined using frequency histograms. The 
histograms (Figure 8) reveal that the samples do not follow symmetrical distributions for the evaluated parameters. 
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Figure 8. Frequency histogram and location analysis. (A) Frequency analysis of the circumference parameter; (B) Frequency analysis of 
the roundness parameter; (C) Frequency analysis of the Feret diameter parameter; (D) Frequency analysis of the aspect ratio parameter. 

Since the distribution is not normal, using the mean as an estimator is not advisable, as it lacks robustness of 
validity. Confidence intervals based on the mean are generally imprecise when the underlying distribution deviates from 
normality. Robustness of validity refers to the ability of confidence intervals for population location to have a 95% 
probability of covering the true population location, regardless of the underlying distribution. The median, on the other 
hand, is an example of an estimator that tends to exhibit robustness of validity [36]. 

Non-parametric Mood tests for the median were conducted, with the null hypothesis (H₀) stating that the population 
medians are all equal, and the alternative hypothesis (H₁) stating that the population medians are not all equal. All tests 
were performed at a 95% confidence level. The four parameters selected for the study were analyzed in two phases: 
Comparing the medians based on the type of weapon (long or short) and comparing the medians across different 
ammunition calibers. The results revealed that the parameters FD and C exhibited significant differences in their median 
values for both the weapon type comparison and the ammunition type evaluation. Conversely, the parameters R and 
AR showed no differences in median values. 

The results from the CART method analysis corroborated the findings of the Mood tests, confirming the same level 
of importance for the parameters FD and C (Figure 9). The graph generated by the CART methodology ranks the 
variables based on their importance in node divisions, with values ranging from 0 to 100%. The most important variable 
is assigned a value of 100%, while the relevance of the other variables is expressed as a proportion relative to this 
maximum importance. 
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Figure 9. Graph of relative importance among variables. 

This analysis indicates that the most significant predictor variable in the model is FD, followed by the shape 
descriptor C. In contrast, the shape descriptors AR and R exhibit limited relevance. The variables FD and C contribute 
the most to the improvement of the model when performing predictor splits, suggesting that the algorithm identifies 
them as the most discriminative among the evaluated features [36]. To determine the most appropriate decision tree for 
the study, the graph of misclassification cost versus the number of terminal nodes was analyzed (Figure 10). Terminal 
nodes represent a trade-off between model complexity and classification accuracy, with the optimal number being 
selected based on the minimization of misclassification cost. This analysis prioritizes trees with fewer nodes and the 
lowest achievable misclassification cost. 

 

Figure 10. Graph of misclassification cost x number of terminal nodes. 

The graph reveals a milestone identified by Minitab at the tree with four terminal nodes, which is considered the 
optimal model for this dataset. This tree is labeled “Optimal” because it represents the smallest tree whose 
misclassification cost falls within one standard error of the minimum observed misclassification cost. The four-terminal-
node tree exhibits a misclassification cost of approximately 0.5817. Although the tree with five terminal nodes has a 
slightly lower misclassification cost (approximately 0.57), and the six-node tree achieves the minimum cost 
(approximately 0.584), the difference is marginal (Figure 10). Therefore, the tree with four terminal nodes was selected 
for further analysis. This choice is justified by the fact that increasing the number of nodes leads to minimal gains in 
predictive performance, with misclassification costs remaining close to the optimal value. As such, the increased model 
complexity is not warranted. 

In this study, the first node of the tree (short firearm class) (node 1) was established by a cut in the proportion of 
short and long firearm ammunition. Of the total count of 2522 characteristic GSR particles, node 1 indicated that 67.3% 
were identified as originating from 9 mm and 0.40 ammunition. The second node, called node 2, made the cut 
considering the FD value ≤ 9.173 μm. Among the 1884 particles selected with this criterion, 79.3% were considered 
from short firearms. This initial binary division already presented the first terminal node 4 to the right of the tree, 
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considering FD values greater than 9.173 μm. Node 3 was generated from the cut considering the variable C with the 
value ≤ 0.529. With this parameterized value, the algorithm classified 73.9% of the characteristic GSR particles as 
originating from 9 mm and 0.40 ammunition. 

Considering the condition C > 0.529, terminal node 3 was generated. Terminal node 1 resulted from a subsequent 
split based on the FD value ≤ 6.166 µm, in which 76.8% of the characteristic GSR particles were classified as originating 
from 9 mm and 0.40 caliber ammunition. FD values greater than 6.166 µm led to the formation of terminal node 2, 
where 59.1% of the particles were associated with short-barreled firearms (Figure 11). 

 

Figure 11. Diagram of the Optimal Tree (Probability tree of occurrence of short or long firearm ammunition probability based on 
FD analysis). 

In addition to the decision tree, further results were obtained and are described in the Table 4. The performance of 
the decision tree model was evaluated using a confusion matrix, which provides a detailed assessment of the model’s 
classification accuracy through four key statistical metrics. The true positive rate (sensitivity or power) reflects the 
model’s ability to correctly identify the occurrence of an event, indicating how effectively it classifies particles when 
the predicted class matches the actual one. Conversely, the false positive rate (Type I error) represents the probability 
of incorrectly classifying a non-event as an event, thus capturing the model’s tendency to generate false alarms. The 
false negative rate (Type II error) measures the likelihood of failing to detect an actual event, revealing potential 
weaknesses in the model’ sensitivity. Lastly, the true negative rate (TNR) quantifies the model’s capacity to correctly 
identify non-events, contributing to a balanced evaluation of sensitivity and specificity [36]. Together, these metrics 
provide a comprehensive understanding of the classification model’s strengths and limitations in differentiating between 
particle classes based on their morphometric characteristics, ensuring its reliability in forensic analysis. 
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Table 4. Statistics of true positive rate x true negative rate. 

Statistics Training (%) Test (%) 
True Positive Rate (sensitivity or power) 82.0 83.3 

False Positive Rate (Type I error) 38.8 41.5 
False Negative Rate (Type II error) 18.0 16.7 

True Negative Rate (specificity) 61.2 58.5 

The results in Table 4 show that the true positive rate is above 80% in both training and testing, which is considered 
satisfactory for the analysis. According to Lima [37], training refers to the iterative execution phase of the algorithm 
that occurs before the final implementation, while testing represents the algorithm’s execution after the optimal decision 
tree has been established. A ROC curve was generated to validate these results, plotting the rate of correctly classified 
events on the Y-axis and the rate of incorrectly classified events on the X-axis. The area under the curve was 0.75 during 
the training period and 0.73 during the testing period. According to the literature, this result is acceptable because a perfect 
ROC curve has an area under the curve equal to 1, indicating the tree’s ability to separate the model categories perfectly. 
Trees with an area under the curve equal to 0.5 demonstrate an inability to separate the model categories [36] (Figure 12). 

 

Figure 12. Receiver Operating Characteristic (ROC) curve evaluates the relationship between the true and false positive rates. 

The results obtained using the CART classification method indicate a 76% accuracy in identifying the type of 
firearm based on GSR particle morphometry, considering the analyzed measurement parameters. 

4. Conclusions 

According to the parameters used for particle measurement, 57% of the particles were identified as regular 
spheroids, a value slightly lower than those reported in the literature. Furthermore, a new particle classification system 
was developed based on a combination of parameters described in previous studies. This classification comprises four 
categories: Regular Spheroids, Non-Spheroidal Regulars, Irregular Rounded, and Irregular Angular. 

It was observed that 76% of the characteristic regular and irregular particles had a Feret diameter within the range 
of 1 to 10 µm. Comparing short and long firearms using the CART methodology, a statistical difference was identified 
in the median FD values for each weapon type. Specifically, the parameters of C and FD were critical in differentiating 
particle origins, with particles from long firearms (5.56 and 7.62 mm ammunition) exhibiting higher median FD values 
compared to those from short firearms (0.40- and 9-mm ammunition). 

A decision tree was constructed, enabling the development of a statistical model capable of classifying particles as 
originating from either a short or long firearm with an accuracy of 76%. 

This study demonstrates that the integration of elemental and morphometric analysis provides a more 
comprehensive and reliable methodology for the forensic identification of GSR. By reducing reliance on a single 
analytical criterion, this combined approach enhances the robustness of forensic interpretations and supports more 
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accurate conclusions in shooting investigations. The development of baseline morphometric data for Brazilian-
manufactured ammunition represents an essential step toward the construction of reference databases, which may assist 
in future firearm classification efforts. 

Moreover, the application of decision tree modeling (CART) emphasizes the potential of data-driven approaches 
to integrate material science, forensic science, and data science, thereby fostering innovation in criminal investigation 
techniques. Although the model achieved a promising classification accuracy of 76%, it is essential to note that the 
findings are based on a limited dataset, restricted to ammunition and firearms manufactured exclusively in Brazil, which 
may limit the generalizability of the results. 

To address these limitations and strengthen the reliability of the proposed methodology, further studies are 
warranted. These should include the analysis of a broader range of particle images and the evaluation of alternative 
predictive models capable of handling binary or multinomial outcomes. Such efforts are essential to refine machine 
learning techniques like CART and enhance the accuracy of associations between GSR particle characteristics and 
different types of ammunition and firearms. 
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