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ABSTRACT: The rising power demand, driven by population growth, technological innovations, and the advent of smart cities, 
necessitates precise forecasting to ensure efficient energy distribution and align supply with demand. This paper presents a novel 
methodology for predicting short-term power consumption through machine learning approaches, specifically employing multiple 
linear regression for feature selection. In this study, two models are implemented and compared: Support Vector Regression (SVR) 
and Long-Short-Term Memory (LSTM). Exploratory data analysis was used to discover the relationships and associations between 
variables. It reveals that temperature, humidity, time of day, and season are major determinants of electricity use. The results indicate 
that the LSTM model surpasses Support Vector Regression (SVR) in terms of accuracy and precision. By incorporating multiple 
linear regression (MLR) for feature selection, the performance of both models improved, with precision gains of 29.1% for SVR 
and 18.19% for LSTM. Removing extraneous elements, such as wind speed and diffuse solar radiation, enhanced the models’ 
efficiency and interpretability, allowing for a focus on the most significant factors. The study’s findings underscore the need to 
optimize feature selection to enhance forecast accuracy and streamline models. This method provides critical insights for enhancing 
energy management strategies and facilitating sustainable power distribution in light of rising global energy demand. 
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1. Introduction 

In recent years, there has been a significant increase in electricity demand attributed to factors such as population 
growth, technological advancements, and the development of smart cities. The growing global dependence on energy 
permeates various aspects of everyday existence. Effective energy distribution is crucial for minimizing system 
inefficiencies and return on investment, especially considering the complexities of storing certain energy forms, notably 
electricity. Matters concerning electrical power are fundamental to societal stability and prosperity. Electricity stands 
out as a key resource for industrial operations according to economic principles, and precise energy usage forecasting 
plays a pivotal role in macro-level planning within the energy and industrial domains [1,2]. Precise forecasts of future 
energy consumption are vital for efficient energy distribution planning to maintain a harmonious equilibrium between 
supply and demand. Erroneous predictions may lead to a disparity between supply and demand, adversely affecting 
operations, network security, and service standards [3]. Underestimating energy usage can lead to power outages, which 
can adversely affect the economy and daily activities. On the other hand, overestimating energy needs can result in 
unnecessary capacity, leading to wasted resources and a longer return on investment period. It is imperative to ensure that 
models can accurately predict future energy consumption patterns, particularly when dealing with intricate datasets [4]. 

In recent times, Machine Learning (ML) techniques have garnered significant interest owing to their high-
performance outcomes across various domains, including healthcare, education, and the energy sector. ML, a subfield 
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of Artificial Intelligence, focuses on developing systems capable of learning and enhancing their performance based on 
historical data [5]. Numerous researchers have utilized ML methodologies to construct energy demand forecasting 
systems. The primary forecasting techniques can be categorized into two main classes. The techniques employed in the 
first class are based on historical data, utilizing past values of a variable to forecast its future values. Examples of 
techniques in this class include autoregressive models and time series analysis [6,7]. In [8], the authors developed a 
system for forecasting electricity demand based on a hybrid approach that combined the Support Vector Regression 
(SVR) and Empirical Mode Decomposition (EMD) techniques. The Auto-Regressive Integrated Moving Average 
(ARIMA) approach for forecasting seasonal time series data has been introduced in [9]. A small-scale agricultural load 
dataset was used for modelling and forecasting. In [10], two-time series regression (TSR) models were used for short-
term forecasting. Hourly electricity data from South Africa was utilized, covering 2000 to 2010. The first TSR model 
represents the temperature effects by degree days of heating and cooling. Regression splines were used in the second 
TSR model to account for the effects of temperature. The first two models were compared in out-of-sample predictions 
which ranged up to four weeks. Based on empirical findings, the model that incorporates temperature using regression 
splines gave more accurate estimates. This study in [11] focused on bridging the knowledge gap in machine learning 
(ML) techniques for load prediction by employing two forecasting methods: Auto Regressive Integrated Moving 
Average (ARIMA) and Artificial Neural Network (ANN), and evaluated the efficacy of both methods using Mean 
Absolute Percentage Error (MAPE). 

On the contrary, the second class delves into examining the cause-and-effect relationship between distinct input 
variables—such as social, economic, and climatic conditions—and energy demand as the resultant output. Regression 
models and artificial neural networks stand out as the predominant causal methodologies employed to forecast energy 
consumption [12–14]. The author in [15] introduced a novel approach to energy demand forecasting using Long Short-
Term Memory (LSTM) techniques from Deep Neural Networks. The two LSTM models were used: (1) Conventional 
LSTM and (2) Sequence to Sequence (S2S) architecture based on LSTM. According to the experimental results, the 
typical LSTM performed well with one-hour resolution data but failed with one-minute resolution data. A proposal for 
professional energy management has been made in [15], wherein an IoT-based smart meter is paired with deep extreme 
machine learning techniques and a support vector machine. Forecasting techniques in the second category currently 
predict system demand and peak demand values by utilizing weather and historical data on hourly, daily, weekly, 
monthly, and annual basis. In [16], the authors developed a sophisticated deep learning algorithm to enhance the 
accuracy of building energy consumption forecasts. The proposed methodology combined stacked autoencoders (SAEs) 
with the extreme learning machine (ELM) to leverage their unique characteristics. This proposed method utilized the 
SAE to extract facets of building energy consumption, while the ELM functioned as a predictor to deliver accurate 
prediction results. The partial autocorrelation analysis method was utilized to determine the input variables for the 
extreme deep learning model. In [17], the authors developed a deep learning system to forecast electricity consumption, 
taking into account long-term historical dependencies. The cluster analysis was performed on the electricity 
consumption data for all months to provide seasonally segmented data. Thereafter, a load trend analysis was performed 
to enhance comprehension of the metadata associated with each cluster. Furthermore, Long Short-Term Memory 
network multi-input multi-output models were created to forecast electricity consumption utilizing seasonal, daily, and 
interval data. The author incorporated the concept of moving window-based active learning to improve predictive results 
in this study. The research in [18] evaluated and contrasted the two primary short-term load forecasting techniques. The 
authors first enumerated the prevalent techniques for short-term load forecasting and clarified the principles of Long 
Short-Term Memory Networks (LSTMs) and Support Vector Machines (SVM). Subsequently, data pre-processing and 
feature selection were performed in accordance with the characteristics of the electrical load dataset. This report presents 
the results of a controlled experiment designed to investigate the significance of feature selection. The LSTM and SVM 
models were employed for one-hour ahead load forecasting and one-day ahead peak and valley load forecasting. 

This study focuses on conducting a thorough data analysis and employing feature selection techniques to pinpoint 
the most influential variables affecting energy demand. The identified features will then be leveraged to develop a 
precise short-term forecasting system utilizing machine learning methodologies. Thus, the main objectives of this study 
can be summarized in: 

 Extract new features from existing information, such as seasonal and periodical data. 
 Conduct an Exploratory Data Analysis (EDA) to identify any hidden features and patterns in the dataset. 
 Use multiple linear regression for feature selection. 
 Apply two different machine learning models and compare their performance. 
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 Evaluate the impact of the feature selection step on the performance. 

This paper is structured as follows: Section 2 will cover the theoretical framework of this study, including the 
exploratory data analysis and multiple linear regression. Following that, Section 3 will present the proposed approach. 
The data set used in this study, and the results are presented in Section 4. Finally, the paper will conclude in Section 5. 

2. Theoretical Framework 

In this section, the theoretical framework of the proposed method will be explained. The following symbols will 
be used in the upcoming sections: 

 n is the number of samples. As the data considered in this study are taken on an hourly basis. Thus, n represents 
the hour. 

 𝑋 ൌ ሼ𝑥௜ , 𝑖 ൌ 0 … .𝑚ሽ is the set of m collected features (independent variables). The symbol 𝑥௜ represents the feature i 
in the set 𝑋. 𝑥௜ can be the temperature, humidity, time, or any other features that may affect electricity demand. 𝑥పഥ  
represents the mean of the values of the independent variable 𝑥௜. 𝑥௜,௧ represent the variable i at time t. 

 𝑦௧ is the values of the dependent variable (electricity demand) at the sample t, and 𝑦ത is the mean of the values of 
the dependent variable. 

 𝑦௧ෝ  is the predicted value of the dependent variable at sample t. 

2.1. Exploratory Data Analysis 

Exploratory Data Analysis (EDA) is a statistical technique that looks for existing hidden patterns and features in a 
dataset. A variety of statistical visual tools can be applied, including histograms, boxplots, correlation analysis, quantile-
quantile (QQ) plots, and many others. EDA is very significant for understanding the relationship between variables 
before building a forecasting model [13,19]. This study will use histogram, scatter, and correlation analysis techniques. 
Correlation analysis measures the strength of the relationship between two variables without implying causality. Values 
range from −1 (perfect negative correlation) to 1 (perfect positive correlation), with zero indicating no correlation. 
Pearson’s correlation coefficient will be used in this study to estimate the relationship between continuous variables. 

𝑟௜ ൌ
∑ ሺ𝑥௜,௧ െ 𝑥̅ሻଶ ∑ሺ𝑦௧ െ 𝑦തሻଶ௡
௧ୀ଴

ඥ∑ ሺ𝑥௜,௧ െ 𝑥̅ሻଶ ∑ሺ𝑦௧ െ 𝑦തሻଶ௡
௧ୀ଴

 (1) 

where 𝑟௜ is the correlation coefficient associated with the independent variable 𝑥௜ with the dependent variable y. 

2.2. Linear Regression  

Linear regression is a supervised ML technique that models the relationship between a dependent variable and one or 
more independent features, using multiple linear regression (MLR) in this study. It is represented using Equation (2) [20]: 

𝑦௧ ൌ 𝛽଴ ൅ 𝛽ଵ𝑥ଵ,௧ ൅ 𝛽ଶ𝑥ଶ,௧ ൅ ⋯… …𝛽௠𝑥௠,௧ (2) 

where 𝛽଴ is the intercept (the predicted value of the dependent variable when independent variables equal zero), and 
𝛽௜ are the coefficients associated with the independent variable 𝑥௜. It indicates how much the dependent variable will 
change (increase or decrease) when the independent variable increases by one unit. Using the observed value of the 
dependent variable 𝑦௧, the cost function in MLR can be computed using Equation (3): 

𝐶𝑜𝑠𝑡 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 ൌ
1
𝑛
෍ ሺ𝑦௧ െ 𝑦௧ෝ ሻଶ

௡

௧ୀ଴
 (3) 

The MLR technique uses a procedure of updating 𝛽௜  values iteratively to guarantee that the cost function 
converges to the global minimum values. This procedure entails continuously adjusting the parameters in accordance 
with the calculated value of the cost function. The coefficient of determination, or R-Square (R2), can be used to 
determine how well a model fits data. It is a statistical indicator of how closely the regression line resembles the real 
data, and it is given by Equation (4) [21]: 

𝑅ଶ ൌ 1 െ
∑ ሺ𝑦௧ െ 𝑦௧ෝ ሻଶ
௡
௧ୀ଴

∑ ሺ𝑦௧ െ 𝑦തሻଶ௡
௧ୀ଴

 (4) 

Another important outcome of the MLR model is the p-value. There are three different tests to compute the p-value 
for each independent variable 𝑥௜. In this study, the two-tailed test is adopted. It is given by Equation (5) [22]: 
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𝑝 െ 𝑣𝑎𝑙𝑢𝑒 ൌ  2 ൈ  𝑚𝑖𝑛𝑖𝑚𝑢𝑚ሼ𝑐𝑑𝑓ሺ𝑥௜ሻ, 1 െ  𝑐𝑑𝑓ሺ𝑥௜ሻሽ. (5) 

where cdf is the cumulative distribution function of the test static (T_test), assuming the null hypothesis is true. T-test 
is given by Equation (6): 

𝑇 െ 𝑡𝑒𝑠𝑡ሺ𝑥௜ሻ ൌ 𝛽௜/𝑆𝐸ሺ𝑥௜ሻ (6) 

where SE is the standard error given by Equation (7) [20]: 

𝑆𝐸ሺ𝑥ሻ ൌ ඨ
1

𝑛 െ 2
∗
∑ ሺ𝑦௧ െ 𝑦௧ෝ ሻଶ
௡
௧ୀ଴

∑ ሺ𝑥௜,௧ െ 𝑥పഥሻଶ
௡
௧ୀ଴

 (7) 

The null hypothesis, H0 is written as [19]: 
H0: The independent variable xi has no significant impact on the dependent variable y. 
If the p-value for xi is less than 0.01, then, the null hypothesis is rejected and the alternative hypothesis (H1) is 

adopted. H1 is given by [23]: 
H1: The independent variable xi has a significant impact on the dependent variable y. 

2.3. MLR for Feature Selection 

In this study, MLR is used for feature selection, a process that identifies the most critical features (independent 
variables) in the model. Reducing the number of variables considered decreases the model’s complexity, improving 
accuracy. MLR helps determine the significance of each feature’s impact on the dependent variable. Four key factors 
are considered to identify the most crucial features [24]: (1) The sign of the coefficient indicates whether a feature has 
a positive or negative impact on the dependent variable. (2) The magnitude of the coefficient reflects the strength of the 
feature’s influence. (3) The p-value shows whether the feature significantly impacts the dependent variable. (4) The 
model’s R-squared value demonstrates how well it explains the variation in the dependent variable, with a value of 0.8 
indicating that the features in the model account for 80% of the variation. 

2.4. Research Questions 

The following research questions have been formulated to address the challenges of accurate short-term electricity 
demand forecasting in this study: 

1. How can EDA and MLR be used to detect the most influential features impacting short-term electricity demand 
prediction? 

2. What is the impact of MLR-based feature selection on the accuracy and performance of ML and DL models for 
short-term electricity demand prediction? 

3. How do different ML and DL models, such as SVR and LSTM, perform in predicting short-term electricity demand 
when they are trained using features selected through the MLR-based feature selection technique? 

These questions examine the goals and objectives of this paper by considering how effectively EDA and MLR 
discover significant characteristics, how feature selection affects model performance, and how different machine 
learning models compare in terms of accuracy. 

3. Method 

This paper aims to create an accurate short-term predicting system to generate an accurate estimation of energy 
consumption value based on weather and historical information. The main goals of this method are to extract new 
important features, such as chronological and seasonal data from existing information, conduct an EDA to find out any 
hidden features and patterns in the dataset, employ MLR for feature selection, apply and compare two different ML 
models, and evaluate the impact of the feature selection step on the performance. The proposed approach is divided into 
five steps: Gathering and generating data, Data pre-processing and EDA, Features Selection using MLR, ML models, 
and Performance. 

3.1. Gathering and Generating Data 

Electricity demand data is typically categorized into three main classes: (1) weather data, including temperature, 
wind speed, humidity, sky state, and solar radiation; (2) historical electricity consumption data, which includes previous 
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demand values; and (3) household data, such as the area, number of rooms, and the number of people in the household. 
In this study, household data is not available, particularly when forecasting electricity demand for a region, as opposed 
to an individual household. Therefore, only the weather and historical consumption data are used. These data can be 
further enhanced by extracting information such as the season, day of the week, or time of day, which will be 
incorporated into the dataset to improve electricity demand prediction. More details about the collected dataset are 
provided in Section 4.1. 

3.2. Data Pre-Processing and EDA 

The collected data often contains issues like missing values, outliers, and anomalies, requiring pre-processing 
before applying a machine learning model [25]. In this study, data preparation includes removing missing values and 
outliers, followed by applying a standard scaler to the independent variables using the formula [26]: 

𝑥௜,௧,௦௖௔௟௘ௗ ൌ ሺ𝑥௜,௧ െ 𝑥పഥሻ/𝜎௫೔ (8) 

where 𝑥௜,௧,௦௖௔௟௘ௗ  is the new value of the independent variable 𝑥௜,௧ after applying a standard scaler, and 𝜎௫೔ is the standard 

deviation of the independent variable 𝑥௜. After pre-processing, exploratory data analysis (EDA) is performed to identify 
relationships between variables, utilizing techniques such as Histogram, Boxplot, and Pearson correlation analysis. 

3.3. Features Selection Using MLR 

In this step, the MLR is used to select the most significant features that greatly impact the electricity demand. This 
can be done as follows [27]: 

1. Divide the dataset into two subsets: 𝑋 which includes all collected data except the historical information about 
electricity demand, and 𝑦 which includes only the historical values of electricity demand. 

2. Apply an MLR model by considering 𝑋 as independent and y as dependent variables. 
3. Display the coefficients 𝛽௜, 𝑅 െ square, and 𝑝_values using Equations (2), (4), and (5). R-square shows how 

effectively it accounts for variations in the dependent variable. However, 𝛽௜ shows the importance of each feature 
𝑥௜ 𝜖 𝑋, and 𝑝_values that illustrate if the variable 𝑥௜ is significant to the electricity demand or not? 
Remove all 𝑥௜ 𝜖 𝑋 with 𝑝 െ value ൏ 0.01 or with a negligible value of 𝛽௜. 

3.4. ML Models 

In this paper, two ML models will be applied and compared. 

 Support vector regression (SVR) [28]: It is an ML regression technique that has proven to perform well in many 
industrial applications. It is used to calculate a prediction value of the numerical dependent variable 𝑦 using 
numerical independent variables 𝑋 at each sample t. For a training set 𝑇 ൌ ሼሺ𝑋௧ ,𝑦௧ሻ, 𝑡 ൌ  1 … .𝑛ሽ where 𝑥𝑖 ∈
 𝑅௠, 𝑦𝑖 ∈  𝑅, m is the number of independent variables, the predicted value of y at sample t can be given by: 

𝑦௧ෝ ൌ 𝑤𝑇𝛷ሺ𝑋௧ሻ ൅ 𝑏 (9) 

where w represents the vector of coefficients for all features in 𝑋, 𝛷ሺ𝑋௧ሻ is a kernel function to map features in X to 
a vector in feature space, and b is an intercept. By projecting the original data into a high-dimensional linearly separable 
space using a kernel function, SVR offers a significant advantage for handling nonlinear processes. Consequently, while 
creating regression models for nonstationary data, SVR can offer an optimal solution. 

 Long Short-Term Memory (LSTM) [29]: It is a type of Neural Network (NN) that overcomes the inconvenience 
of NN methods by having Long term memory. The LSTM model can be seen as illustrated in Figure 1. 
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Figure 1. LSTM inputs and output at each time step t. 

It is composed of the following gates [30]: 
1. Forget Gate that can hold or remove information using sigmoid activation function (σ). The output of this function 

can range from 0 (forget information) to 1 (keep the information). 

𝑓௧ ൌ 𝜎ሺ𝑊௙ ൉ ሾℎ௧ିଵ,𝑋௧ሿ ൅ 𝑏௙ሻ (10) 

2. Input Gate that expresses the importance of new information carried by the input by performing two activation 
functions (sigmoid 𝜎 and 𝑡𝑎𝑛ℎ). The role of 𝑇𝑎𝑛ℎ is to add or subtract information from the cell state, while 
sigmoid functionality determines whether to keep or reject the information. 

𝑖௧ ൌ 𝜎ሺ𝑊௧ ൉ ሾℎ௧ିଵ,𝑋௧ሿ ൅ 𝑏௜ሻ (11) 

𝑐௧ ൌ 𝑡𝑎𝑛ℎ ሺ𝑊௖ ൉ ሾℎ௧ିଵ,𝑋௧ሿ ൅ 𝑏௖ሻ (12) 

3. Output gate that delivers the value of the output at each time step using: 

𝑦௧ ൌ 𝜎ሺ𝑊௢ሾℎ௧ିଵ,𝑋௧ሿ ൅ 𝑏௢ሻ (13) 

ℎ௧ ൌ 𝑦௧ ∗ 𝑡𝑎𝑛ℎሺ𝐶௧ሻ (14) 

where ሺ𝑊௙ ,𝑊௜ ,𝑊௢ ,𝑊௖ሻ are the weight matrices and (𝑏௙ , 𝑏௜ ,𝑏௢, 𝑏௖) are the bias. Note that the weight matrix and the 

biases are time-independent. In addition, 𝑓௧ and 𝑖௧ are internal functions in the LSTM and are employed for computing 
𝑐௧ , 𝑦௧  and ℎ௧ at each sample t. 

3.5. Performance 

In this paper, five performance metrics will be used to test the proposed approach: R-square which is explained in 
Section 2 (Equation (4)), and mean absolute error (MAE) as given by Equation (15). It represents the measurement of 
the typical error magnitude across a set of predictions or forecasts, without considering the direction of the errors [3]: 

MAE ൌ
1
𝑛
෍ |𝑦௧ െ 𝑦௧ෝ |

௡

௧ୀଵ
 (15) 

The Mean absolute percentage error (MAPE) is given by [31]: 

MAPE ൌ
1
𝑛
෍ |

𝑦௧ െ 𝑦௧ෝ
𝑦௧

௡

௧ୀଵ

| (16) 

Based on the MAPE, the accuracy can be computed using: 

𝑎𝑐𝑐 ൌ 100 െ 100 ∗ MAPE (17) 

Therefore, the improvement of the accuracy of the forecasting model due to the MLR in feature selection can be 
deduced using: 

∆௔௖௖ൌ  
𝑎𝑐𝑐௪ிௌ െ 𝑎𝑐𝑐

𝑎𝑐𝑐
 (18) 

where ∆௔௖௖ represents the enhancement of forecast accuracy due to making use of MLR in the feature selection step, 
𝑎𝑐𝑐 is the accuracy of the forecasting model with original features, and 𝑎𝑐𝑐௪ிௌ is the accuracy of the forecasting model 
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after using the feature selection based on MLR. In addition, the root mean square error (RMSE) will be considered. It 
calculates the mean difference between the values that a model predicts and the actual values. It offers an estimate of 
the accuracy—or how effectively the model can anticipate the desired result: 

RMSE ൌ ඨ
∑ ሺ𝑦௧ െ 𝑦௧ෝ
௡
௧ୀଵ ሻଶ

𝑛
 (19) 

In this study, the normalized RMSE (NRMSE) is employed. It is given by: 

NRMSE ൌ
RMSE

𝑦௠௔௫ െ 𝑦௠௜௡
 (20) 

4. Results and Discussion 

This section illustrates and discusses the results of applying this approach to a real dataset. The data set is first 
described, and exploratory data analysis (EDA) is presented to illustrate variable relationships. The performance of the 
machine learning model is then displayed and compared. Additionally, the advantages of using MLR for feature 
selection are discussed in terms of forecasting performance. 

4.1. Dataset 

The dataset used in this study, sourced from [32], focuses on the city of Tetouan in northern Morocco and its three 
separate electricity distribution networks. Tetouan spans approximately 10,375 km2 and had a population of around 
550,374 in 2014, with an annual growth rate of 1.96%. Located by the Mediterranean Sea, the city experiences hot, dry 
summers and mild, rainy winters. The historical data, provided by the Supervisory Control and Data Acquisition System 
(SCADA), covers the period from 1 January 2017, to 31 December 2017, with readings taken every 10 min [30]. The 
dataset includes 52,416 energy consumption samples, each with nine feature columns: Date-Time 
(day/month/year/hour/minutes), Temperature (in Celsius), Humidity (in g/kg), Wind Speed (in m/s), General Diffuse 
Flows (in m3/s), Diffuse Flows (in m3/s), and Power Consumption for three zones (Zone 1, Zone 2, and Zone 3) recorded 
in kilowatt-hours (KWh). 

4.2. EDA 

Figure 2 presents histograms of the dataset features, offering insights into their distributional characteristics, such 
as peak locations, symmetry, skewness, and the presence of outliers. Based on Figure 2, several observations can be 
made: Temperature and power consumption in Zone 2 follow a unimodal and normal distribution, while power 
consumption in Zone 3 is right-skewed, and humidity is left-skewed. Power consumption in Zone 3 also shows a 
bimodal distribution, and wind speed is limited to two values. No outliers are present, and a correlation exists between 
temperature and power consumption across all zones. Figure 3 also includes scatter plots of temperature, wind speed, 
humidity, and power consumption in Zones 1, 2, and 3. Each variable’s values correlate to points on the x- and y-axes, 
respectively. The (x, y) coordinates are marked with a dot or another symbol for every pair of variables. There may be hints 
about the relationship between the two variables in the dot pattern. Based on Figure 3, the following points can be concluded: 

1. There is no correlation between wind spend and others features 
2. There is a strong relationship between power consumption in zones 1, 2 and 3. 
3. There is a correlation between temperature and humidity features. 

These facts have been confirmed by Figures 4 and 5, which display boxplots of different features. Figure 4 depicts 
the electricity demand for three zones over a 24-h period. As indicated in the figure, electricity consumption is at its 
lowest in the morning and peaks at night. 

Figure 5 is a 2D density plot that illustrates the distribution of temperature and humidity over the course of one 
day. The plot shows a clear negative relationship between the two variables: humidity tends to decrease as temperature 
increases, as shown in the sloping density regions that go from left to right. This figure indicates that higher temperatures 
mean lower humidity levels. The concentrated high-density areas suggest that this negative correlation remains constant 
throughout the day. This type of relationship is normal in atmospheric dynamics because warmer air can hold more 
moisture, with lower relative humidity. Let X be the set of independent variables, and y be the dependent variable. In 
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this study, X ={DateTime, Temperature, Humidity, Wind Speed, General Diffuse Flows, Diffuse Flows in m3/s}, and y 
is the electricity consumption. 

 

Figure 2. Histogram of dataset features. 

From the date and time, other features can be extracted: 

─ Day of the week: this feature can have values between 1 (Monday) and 7 (Sunday) 
─ Hour: it is an integer that has a value between 0 and 23 
─ A month that takes the value 1 for January, and 12 for December. 
─ Seasons: in this study, four seasons are considered: Summer (months 6–9), Autumn (months 9–12), Fall (months 

1–3), and Spring (months 3–6). 
─ Humidity: It can be classified as dry or wet. We define moist humidity as the relative air humidity that is 60 percent 

or higher based on meteorological data. Alternatively, low humidity is assigned. 

That X will be equal to 𝑋 ൌ  ሼ′𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒′, ′𝐻𝑢𝑚𝑖𝑑𝑖𝑡𝑦′, ′𝑊𝑖𝑛𝑑𝑆𝑝𝑒𝑒𝑑′,  ′𝐺𝑒𝑛𝑒𝑟𝑎𝑙𝐷𝑖𝑓𝑓𝑢𝑠𝑒𝐹𝑙𝑜𝑤𝑠ᇱ, 
′𝐷𝑖𝑓𝑓𝑢𝑠𝑒𝐹𝑙𝑜𝑤𝑠ᇱ,ᇱ ℎ𝑜𝑢𝑟ᇱ, ′𝐷𝑎𝑦𝑜𝑓𝑤𝑒𝑒𝑘ᇱ, ‘𝑚𝑜𝑛𝑡ℎᇱ,  ′𝑆𝑒𝑎𝑠𝑜𝑛′ሽ  and 𝑌 ൌ  ሼ′𝑃𝑜𝑤𝑒𝑟𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛_𝑍𝑜𝑛𝑒1′, 
′𝑃𝑜𝑤𝑒𝑟𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛_𝑍𝑜𝑛𝑒2′, ′𝑃𝑜𝑤𝑒𝑟𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛_𝑍𝑜𝑛𝑒3′ሽ. 

Figures 6–8 show the correlation of X with each variable in y (Consumption power in zones 1, 2, and 3) computed 
using Equation (1). These figures show that: 

- There is a high correlation between electricity consumption in zones 1, 2, and 3 and the variables of hour, month, 
day, humidity, and temperature. 

- The electricity consumption of zone 2 correlates with the season. 
- The temperature and time correlate with the humidity. 
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Figure 3. Scatter for dataset features. 
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Figure 4. Electricity consumption for the three zones during one day (Brown: zone 1, Green: zone 2, and Blue: zone 3), with the 
lowest usage in early morning hours (3–7 a.m.) and a peak in the evening (7–9 p.m.). Power usage gradually increases during the 
day, and variability is highest during peak hours. 
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Figure 5. 2D density plot of temperature and humidity on 1 January 2017, illustrating how temperature and humidity are related to 
each other: Darker areas show where there are more observations, indicating that humidity tends to go down as the temperature 
goes up during the day. 

 

Figure 6. Correlation of different features with electricity consumption of zone 1. Higher correlation values are represented in 
brown. However, null and negative values are represented in white and grey respectively. 
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Figure 7. Correlation of different features with the electricity consumption of zone 2. Higher positive correlation values are 
represented in red, while negative or weak correlations are shown in blue. 

 

Figure 8. Correlation of different features with the electricity consumption of zone 3. Higher positive correlation values are 
represented in red, while negative or weak correlations are shown in blue. 
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4.3. MLR for Features Selection 

This study uses the MLR to select the most significant features based on R-square, p-value, and coefficient 
magnitude. The dataset is divided into two subsets: 80% for training and 20% for testing. Figure 9 presents the summary 
of the MLR model for the electricity consumption of zone 1 using Equations (2), (4) and (5). 

In the provided Figure 9, the R-square value is 98%, indicating that the dependent variable explains 98% of the 
variation in electricity consumption. The features “GeneralDiffuseFlows” and “Day of the week” are not statistically 
significant (p-value > 0.01). Additionally, based on the coefficient values 𝛽௜, it is observed that “Wind speed” and 
“DiffuseFlows” have a minimal impact on the electricity consumption of zone 1, suggesting that these features can be 
excluded. Based on Figure 9, the MLR model excludes the variables Wind Speed and Diffuse Flows due to their low 
practical significance. Both variables are statistically significant at the 5% level (p = 0.000 for Wind Speed and p = 
0.018 for Diffuse Flows); however, the associated coefficients and t-values indicate a low influence on power 
consumption compared to other variables such as temperature with a coefficient value of 950.70, or season with a 
coefficient value of 2338.51. The confidence interval for the variable Diffuse Flows is [−3.718, −0.246], which barely 
excludes zero. This interval suggests limited robustness in its effect. Moreover, removing these variables enhances the 
model’s interpretability while preserving its high explanatory power. Consequently, their exclusion is consistent with 
best practices in model simplification and feature selection. Thus, using Equation (2), the power consumption in zone 
1 can be written as: 

 

Figure 9. Summary of MLR for the electricity consumption of zone 1. 

𝐸𝐶 ൌ 152.165 ∗ 𝑥ଵ ൅ 950.6962 ∗ 𝑥ଶ െ 1244.57 ∗ 𝑥ଷ ൅ 757.4797 ∗ 𝑥ସ ൅ 2338.5127 ∗ 𝑥ହ െ 1593.9346 ∗ 𝑥଺  

where 𝐸𝐶 is the electricity consumption predicted value, 𝑥ଵ is the humidity, 𝑥ଶ is the temperature, 𝑥ଷ is the time, 𝑥ସ 
is the hour, 𝑥ହ is the season and 𝑥଺ is the month. The regression coefficients in the above equation show the relative 
contribution of each variable to electricity consumption. Thus, season (x₅) and temperature (x₂) exhibit high positive 
coefficients, indicating that they are among the most influential factors driving electricity demand. However, time (x₃) 
and month (x₆) present negative coefficients, showing an inverse relationship. Therefore, environmental and temporal 
features are essential in computing consumption variability, and their combined effect enhances the predictive accuracy 
of the model. 
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4.4. ML Prediction Results and Performance 

This section will present the results of SVR with a linear kernel and LSTM. The dataset is divided into two subsets: 
a training set (80%) and a Testing set (20%). Table 1 shows the R-square, MAE, MAPE, accuracy, and NRSME ( see 
Equations (4), (15)–(17) and (20)) for the SVR in both linear and LSTM models. 

Table 1. Performance Metrics for SVR with linear kernel and LSTM. 

 SVR with Linear Kernel LSTM  
R-square (%) 65.9 99.7 

MAE 3821.13 3272.85 
MAPE 0.105 0.013 

Accuracy (%) 89.47 98.69 
NRSME (%) 11.3 0.84 

The R-square value for LSTM is 99.7%, showing its capability to capture almost all variance in the target variable; 
however, SVR achieves only 65.9%, indicating limited explanatory power. For the absolute error, LSTM achieves a 
lower MAE (3272.85) compared to SVR (3821.13), confirming its superior prediction precision. The MAPE of the 
LSTM model (0.013) is lower than that of SVR (0.105), demonstrating that LSTM provides more reliable predictions 
for demanding electricity, even at different magnitudes. 

For the NRMSE, LSTM achieves a remarkably low error of 0.84%, compared to 11.3% for SVR, thus validating 
its robustness. The prediction accuracy is equal to 98.69% for LSTM. Indeed, LSTM surpasses the SVR model, which 
achieves an accuracy of 89.47%. These values indicate the effectiveness of LSTM in representing temporal 
dependencies inherent in electricity demand data. 

The results demonstrate that LSTM is more effective for time series prediction tasks such as predicting electricity 
demand than traditional regression-based models like SVR. This is due to the fact that LSTM uses memory components 
and gate mechanisms to identify long-term dependencies in sequential data. Table 2 shows a comparison between SVR 
and LSTM with and withput feature selection step. Using Equation (18), the accuracy improvement of the SVR model 
and LSTM are equal to: 

∆௔௖௖ೄೇೃൌ  
଼ଽ.ସ଻ି଺ଽ.ଷ

଺ଽ.ଷ
 = 0.291  

∆௔௖௖ಽೄ೅ಾൌ  
ଽ଼.଺ଽି଼ଷ.ହ

଼ଷ.ହ
 = 0.1819  

Table 2. Comparison of performance with and without the features selection step. 

 With Features Selection Without Features Selection 
 SVR LSTM SVR LSTM 

MAPE 0.105 0.013 0.303 0.165 
Accuracy 89.47 98.69 69.3 83.5 

Thus, the feature selection step produces an improvement of 29.1% for the accuracy of the SVR model and 18.19% 
in the LSTM model for forecasting electricity demand. These results show that the feature selection step improves the 
performance of both models, especially SVR. The bigger accuracy gain in SVR suggests that it is more sensitive to 
irrelevant or redundant features, which can degrade its performance. LSTM is better at handling large input spaces on 
its own, but feature selection still helps significantly by lowering overfitting and improving generalization. 

5. Conclusions 

As the population grows, technology advances, and smart cities emerge, the demand for electricity increases. To 
distribute energy effectively, accurate demand prediction is required. This research proposes a novel approach to 
predicting short-term electricity demand by combining machine learning techniques with exploratory data analysis 
(EDA) and multiple linear regression (MLR) for feature selection. The suggested method was tested on real data from 
Tetouan, a city in northern Morocco. Two machine learning models, Support Vector Regression (SVR) and Long Short-
Term Memory (LSTM), were applied and compared. EDA found that temperature, humidity, time of day, and season 
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were the most significant factors in predicting electricity usage. The results showed that models trained with MLR-
selected features consistently outperform those trained with all the collected data. This approach improves prediction 
accuracy by 29.1% for SVR and 18.19% for LSTM—while reducing model complexity. The study’s findings emphasize 
the importance of feature selection in creating reliable forecasting models. 

This study shows that combining MLR-based feature selection with advanced machine learning (ML) algorithms 
enhances the accuracy of electricity demand prediction. The proposed prediction system performs well and yields 
accurate results under normal conditions. However, the model may deliver less precise outcomes when faced with 
extreme or unexpected events, such as natural disasters, sudden policy changes, or blackouts. In such cases, the pattern 
of energy consumption can shift dramatically in ways that are not captured in the training data. Therefore, it is essential 
to investigate the model’s performance by incorporating real-time data streams and expanding its capabilities to support 
adaptive learning. This would make the proposed approach more scalable for smart grid applications. 
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