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ABSTRACT: Precipitation, particularly at high quantiles, has been reported to increase in various regions across the globe, raising 
pluvial flood risk. One of the main challenges in reliable flood frequency analysis is handling nonstationarity arising from climate 
variability or anthropogenic disturbances such as land use/cover change or river regulation. To separate these nonstationary 
footprints, we analyzed annual maximum peak flow records from 18 reference (minimally disturbed) and 66 non-reference stream 
gages, each with more than 100 years of flood records across the United States. Next, we used a nonparametric Pettitt test to identify 
statistically significant change points. When present, the flood record was split into pre- and post-change segments with a Log-
Pearson III distribution fitted to each. Depending on the region and site type, using a segmented record improved the quantile 
estimate. At the majority of reference sites, post-change data produced the highest flood quantiles, reflecting recent climate-driven 
nonstationarity. Conversely, at several non-reference sites, pre-change data returned larger estimates, indicating that long-standing 
anthropogenic disturbances can attenuate the signal of climatic variations. Our study confirms that fitting a flood frequency model 
to the segment that minimizes nonstationarity, rather than the entire record, returns more reliable estimates for moderate flood 
magnitudes of up to a 25-year return interval. The approach highlights the need to understand the population from which flood 
records are extracted, to separate those populations where appropriate, and then fit a statistical distribution. This practical approach 
offers a simple thought process for updating moderate flood forecasts to guide infrastructure design or rehabilitation in the current 
dynamic environment, an era of constant change that needs flexibility in everything we design. 

Keywords: Flood frequency analysis; Nonstationary; Petit change point detection; Log Pearson Type III (LP3); Reference versus 
non-reference basins; Anthropogenic disturbance; Climate variability; United States 
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1. Introduction 

Climate warming has intensified the hydrologic cycle, increasing the frequency and intensity of heavy-precipitation 
events in many, though not all, regions [1–4]. Recent studies confirm this trend into the 2020s, particularly for sub-
daily extremes [5–7].Where such extremes have grown, flood hazards often rise as well [8], yet observed changes in 
flood magnitude and frequency have not been consistent across the United States [9–13]. The extent of change depends 
on geographic setting, for example, inland versus coastal areas (climate nonstationarity) [14–16] or on basin characteristics, 
such as rural versus urbanized catchments (anthropogenic nonstationarity) [17–19]. As such, flood quantile estimates 
reflecting nonstationarity arising from climate or human influences can help reduce flood hazards [20]. 

Considerable effort has gone into estimating flood quantiles at both regional [17,21–25] and national scale [26–28] 
across the conterminous United States. Collins [22] found that nonstationary behavior in flood series appeared as a step 
change in the long-term mean for undisturbed basins in New England and recommended separate flood frequency 
analyses for periods before and after the change point. Because these basins are minimally affected by human activities, 
their flood frequency changes mainly reflect climate variability. In the eastern [25] and midwestern [29] United States, 
studies of basins with documented anthropogenic disturbances including land use/cover change (e.g., urbanization, 
forest harvest), agriculture and subsurface drainage, river regulation and reservoir construction, groundwater pumping, 
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channelization or levee construction revealed step changes in long-term average peak flow driven by both climate 
variability and human activities. 

Analyzing at least 15 to 25 years of instrumental records is essential for identifying spatiotemporal patterns in 
hydrologic variables [30] When flood series are split into periods before and after a change point, enough observations 
must remain for reliable analysis, particularly for floods with 100 years or longer return periods. This study examined 
reference and non-reference basins [31,32] with more than 100 years of peak flow data nationwide. Change points in 
the long-term mean of annual peak flow series were detected using the nonparametric Pettitt test [33], and observations 
were partitioned into two clusters before and after the change point. We selected the Pettitt test because it remains 
competitive with multiple-change algorithms for single shift detection in hydrologic time series [34]. The Log Pearson 
Type III (LP3) distribution was then fitted to each cluster and the entire period of record to derive flood quantile estimates. 
Parameter estimates followed the Bulletin 17C guidelines [35], incorporating product moment and L-moment variants. 

This study shows that nonstationarity in long-term mean peak flow behaves differently at reference sites, where 
changes mainly reflect climate variability and at non-reference sites, where local human actions also play a role. At 
non-reference gages, basin alterations such as urbanization, land-cover change, dam construction, and river regulation 
can dampen or even counteract the climate-driven signal observed at minimally disturbed sites. Recognizing this 
contrast helps analysts decide whether flood quantile estimates should be drawn from the entire record or pre- and post-
change segments, thereby reducing bias in design values. 

2. Materials and Methods 

2.1. Change Point Detection 

A time series may exhibit one or more shifts in its long-term mean, so-called change points or regime shifts [36]. 
A change point represents a transition from one mean state to a higher or lower one, confirmed when the difference 
between the two states is statistically significant. Several techniques exist for detecting single [33] or multiple [36] 
change points. Although identifying multiple shifts can help distinguish among different forms of nonstationarity, 
partitioning the data into many segments reduces the sample size and can limit meaningful flood frequency analysis, 
especially for extreme events with longer return periods. 

On the other hand, while changes in variance, skewness, or monotonic trend can also indicate nonstationarity, our 
primary objective is to identify discrete shifts in the mean that most directly affect LP3 quantiles [37]. Variance-shift 
tests and trend-based models demand longer post-split samples than are available for many gages [38].We applied the 
nonparametric Pettitt test [33]. to detect a single shift in each stream gage flood data series. The sequential test requires 
no prior knowledge of the shift’s timing. Because it is nonparametric, the Pettitt test is less sensitive to skewed data 
than parametric alternatives [25,39]. When a shift was statistically significant (p-value ≤ 0.05), the flood record was 
split into two periods before and after the change point for separate flood frequency analyses. All change-point analyses 
were performed with the “trend” package in R programing language software [40]. 

2.2. Flood Quantiles Estimate 

Flood frequency analysis was performed with the LP3 distribution [35,41]. The shape, scale, and location 
parameters of LP3 have been well documented [42–45]. We adopted the product moment formulation of Stedinger et 
al. [46] and applied no bios correction for station skewness. Taking the natural logarithm from the peak flow 
observations “  X n Q  ”, the Probability Density Function (PDF) of the LP3 distribution can be defined as: 
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The peak flow can be estimated at certain quantiles “P” [47] using: 
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The frequency factor  P QK   can be computed by the Wilson-Hilferty formula valid for 0.01 0.99P   and 

2   [46,47]. The PZ , the Pth quantile of the standard normal distribution with zero mean and one standard deviation 

is estimated by [48]: 
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The exceedance probability for descending ordered peak flow observations ( 1i   for the largest observation) is 
calculated using the Blom formula [45]: 
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The Blom formula assigns the return period of 1.6 0.4T n   to the largest observation [46] and thus yields a 
return period of about 160 years for sample size of 100n   years or more. Goodness of fit was evaluated by plotting 
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iP QK   versus standardized observations i

i
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  and verifying alignment with the 1:1 line [44]. 

The distribution-based frequency factor  
iP QK   was computed from Equation (5), whereas the observation-based PZ  

from Equation (6). All calculations were implemented in R [49]. Authors custom code for the LP3 fitting and diagnostics 
follows the algorithms described above. A detailed LP3 performance assessment workflow is provided later in the 
results section. 
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3. Data 

The U.S. Geological Survey (USGS) Hydro-Climatic Data Network (known as HCDN or Gages-II) provides 
information on the degree of anthropogenic disturbance for streamflow gaging stations throughout the United States 
[31]. The GAGES-II database classifies each USGS streamflow gage according to the degree of anthropogenic 
disturbance but does not include discharge records. The most recent Gages-II dataset was screened to distinguish sites 
with no or minimal anthropogenic disturbances (reference sites) from non-reference sites exhibiting various levels of 
land use/cover change, river regulation, and/or reservoir construction [32]. 

From an initial pool of 9067 USGS gaging stations, 18 reference sites and 66 non-reference sites with complete 
peak flow records longer than 100 years were selected. For every gage selected in this study, we retrieved the annual 
maximum discharge series (one peak value per water year) from the USGS National Water Information System (NWIS) 
and used that series in all subsequent analyses. By contrasting reference gages, where long-term changes are attributed 
chiefly to climate variability [31,32], with non-reference gages that are additionally affected by urbanization, dam 
regulation, and other basin alterations [17,18], we can separate the climate-driven component of nonstationarity in flood 
frequency from the combined climate-plus-anthropogenic signal. The spatial distribution of the study sites is presented 
in Figure 1, and other geographical details are provided in the Supporting Information section (Table S1). 

 

Figure 1. Spatial distribution of the 18 reference (green circles) and 66 non-reference (red circles) gaging stations in the 
conterminous United States. The numbers correspond to the Object IDs in supplementary Table S1. Water resources regions (gray 
lines) correspond to Level-02 hydrologic units (HUC02) delineated by the USGS. 

4. Results and Discussion 

4.1. LP3 Performance 

To evaluate how well the LP3 distribution estimates moderate flood quantiles, we computed the ratio (R) of the 
observed quantile (Obs) to its LP3 estimate (Est). A ratio greater than one (R = Obs/Est > 1) indicates that LP3 
underestimates the quantile, whereas a ratio below one (R = Obs/Est < 1) indicates overestimation. The cross-correlation 
values for the goodness-of-fit test [44] ranged from 0.68 to 0.98 across both reference and non-reference sites, 
suggesting that LP3 provides a reasonable statistical fit to peak flow observations nationwide [50]. 

We treated sites as follows to maintain sufficient record for reliable quantile estimation. Where a statistically 
significant change point was detected, R values were calculated for floods with the return periods of 2 to 25 years using 
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the pre-change, post-change, and entire record segments. For sites without a statistically significant change point, the 
analysis used the whole record and covered floods with 2 to 100 years return periods. 

4.2. Statistically Significant Change Point 

37 of the 84 sites exhibited a statistically significant change point (p-value ≤ 0.05). Of these, four were reference 
sites (out of 18) and 33 were non-reference sites (out of 66) (Table 1). 

Table 1. Ratio (R) of observed peak flows to the corresponding LP3 flood quantile estimate (Obs/Est) for reference sites (4 out of 
18) and non-reference sites (33 out of 66) with statistically significant change points. 

Period 
of Analysis 

Study 
Site 

Return Period (T, Years) 
T = 2 T = 5 T = 10 T = 25 

R < 1 (R > 1) a,b R < 1 (R > 1) R < 1 (R > 1) R < 1 (R > 1) 

Pre change point 
Reference 2/4 (50%) 1/4 (75%) 2/4 (50%) 0/4 (100%) 

Non-reference 13/33 (61%) 18/33 (45%) 20/33 (39%) 0/33 (100%) 
Total sites 15/37 (59%) 19/37 (49%) 22/37 (41%) 0/37 (100%) 

Post change point 
Reference 1/4 (75%) 2/4 (50%) 2/4 (50%) 3/4 (25%) 

Non-reference 12/33 (64%) 11/33 (67%) 16/33 (52%) 22/33 (33%) 
Total sites 13/37 (65%) 13/37 (65%) 18/37 (51%) 25/37 (32%) 

Entire record 
Reference 3/4 (75%) 2/4 (50%) 4/4 (0%) 2/4 (50%) 

Non-reference 13/33 (61%) 20/33 (39%) 20/33 (39%) 18/33 (45%) 
Total sites 16/37 (57%) 22/37 (41%) 24/37 (35%) 20/37 (46%) 

a R = Obs/Est < 1: flood quantile was overestimated; R > 1: flood quantile was underestimated; b First numbers are the fraction of 
sites with overestimated floods, and the number in parentheses indicates the percentage of underestimated floods. 

As an example, at USGS gage 03082500 (Youghiogheny River at Connellsville, Pennsylvania) the Pettitt test 
identifies a break in 1942, the year Youghiogheny River Lake dam was completed 29 miles upstream, supplementing 
flow regulation already imposed by Deep Creek Reservoir since 1925. This case confirms that some breakpoints 
correspond to clear physical drivers such as dam construction or river regulation. We emphasize, however, that not 
every shift can be tied to a single documented cause. Several factors, such as gradual climatic trends, minor 
impoundments, or evolving water use, often also interact. A full attribution would require site-specific hydrologic 
modeling, which is beyond this study’s scope, but the provided example demonstrates the practical aspect of the 
segmentation approach. 

4.3. Two-Year Flood 

Because segmentation shortens each record, we restrict our frequency curves to return periods equal to or less than 
25 years. Estimates for rarer events could be developed with (i) peak-over-threshold or partial duration series, (ii) 
regional pooling, or (iii) nonstationary models with time-varying distribution parameters. A full evaluation of these 
approaches is deferred to future work. 

For a return period of two years, LP3 performed well (R < 1) at 41% (15 out of 37) of the study sites before the 
regime shift in peak flow records (Figure 2a; Table 1). At the remaining sites, LP3 underestimated the flood quantiles. 
No clear spatial pattern emerged in the locations where LP3 under- or over-estimated the flood quantile. After the change 
point (Figure 2b), LP3 overestimated the 2-year flood at 35% (13 out of 37) of the sites. LP3 tended to underestimate floods 
across much of the eastern United States but performed reasonably in the central and western regions. 

Flood quantile estimates for the entire period of record were consistent with the post change point results (Figure 
2c). This outcome suggests that larger floods occurring after the change point influenced the distribution fitted to the 
full record. 
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(a) (d)  

  
(b)  (e)  

  
 (c) (f)  

  
(g)  (j)  

T = 2 years (Before change) T = 5 years (Before change) 

T = 2 years (After change) T = 5 years (After change) 

T = 2 years (Entire record) T = 5 years (Entire record) 

T = 10 years (Before change) T = 25 years (Before change) 
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(h)  (k)  

  
 (i) (l)  

 

Figure 2. Ratio (R) of observed to LP3-estimated flood quantiles with return periods of 2 (a–c), 5 (d–f), 10 (g–i), and 25 (j–l) years 
for the periods before the change point, after the change point, and the entire record. All change points are statistically significant 
(p-value ≤ 0.05). 

4.4. Five-Year Flood 

Figure 2d–f presents the results for floods with a 5-year return period before the change point, after the change 
point, and for the entire record, respectively. Overall, LP3 overestimated the flood quantiles at a slight majority of sites 
(51%; Table 1). LP3 performance was generally unreliable along much of the East Coast. After the change point (Figure 
2e), LP3 produced reliable estimates at 35% of the study sites, with no distinct spatial pattern in where it performed 
well or poorly. When the entire record was analyzed (Figure 2f), the estimated quantiles exceeded the observed peak 
flows at 22 of the 37 sites (59%). Notably, LP3 yielded reliable estimates in the Pacific Northwest. 

4.5. Ten-Year Flood 

Before the change point, LP3 overestimated the 10-year flood at 59% of the study sites, most of which are on the 
East Coast (Figure 2g; Table 1). After the change point, the distribution overestimated flood quantiles for almost half 
of the sites; its predictions were reliable in the Pacific Northwest but unreliable in California (Figure 2h). When the 
entire record was used, LP3 produced better estimates for 65% of the sites, mostly located along the East Coast and in 
the Great Basin (Figure 2i). 

4.6. Twenty Five-Year Flood 

The most compelling pattern emerged for the 25-year flood estimates when only the period before the change point 
was considered (Figure 2j; Table 1). At all 37 sites with a statistically significant change point, the observed-to-
estimated ratio exceeded one, indicating that LP3 consistently underestimated the 25-year flood. When only the post-
change record was utilized, LP3 overestimated floods at 68% of the sites (Figure 2k), although estimates were reliable 
in the South Atlantic Gulf, Great Basin, and Rio Grande regions. Using the entire record, LP3 returned satisfactory 
estimates at 20 of 37 sites (54%) (Figure 2l), tending to overestimate floods in New England and underestimate them 
in the Mid-Atlantic and along much of the West Coast. 

T = 10 years (After change) T = 25 years (After change) 

T = 10 years (Entire record) T = 25 years (Entire record) 
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As the return period increased, analyses based on the post-change record generally yielded better quantile estimates, 
especially for 10-year floods and beyond. Our result aligns with earlier work showing nationwide increases in the 
frequency, magnitude, and duration of high-percentile floods, driven mainly by climatic variability [20,26–28,51–53]. 

Climate variations and anthropogenic disturbances, such as land use change or river regulation, can also shift the 
timing of floods. In the northeastern United States, annual maximum floods historically peaked in spring [54]. Warmer 
winters now trigger earlier snowmelt and, when combined with rainfall [55], lead to earlier flood occurrence or shift in 
timing [10,56]. Summer precipitation has increased in the Northeast too [57–59], creating the potential for peak flows 
comparable to spring events [10]. 

In the central United States, the timing of high quantile precipitation has shifted from summer to spring [60]. When 
accompanied by lower evapotranspiration and moist soil, it promotes overland flow, producing larger spring floods. 
These shifts from rain-on-snow floods to rainfall-driven events generate a new population of flood events that differs 
from historical records. Consequently, post-change flood data may better represent current flood behavior in a region of 
interest. However, when the highest historical peaks fall in the pre-change record or when paleoflood information is added, 
deciding whether the pre-, post-, or full record provides the most reliable quantile estimates becomes more complex. 

4.7. Statistically Insignificant Change Point 

For the 47 study sites where the change point was not statistically significant (p-value > 0.05), we compared 
observed and estimated flood quantiles with return periods of 2–100 years over the entire record. LP3 did not reliably 
estimate the 2-year flood at 68% of these sites, most of which are in New England and the Mid-Atlantic (Table 2; Figure 
3a). LP3 underestimated the 5-year flood at 51% of the study sites, largely in California and the Mid-Atlantic (Figure 
3b). LP3 overestimated the 5-year flood at 49% of the study sites, largely in New England (Figure 3b). For the 10-year 
flood, LP3 performed well at 53% of the sites, mainly in New England, the Upper Mississippi, and the Great Basin 
(Figure 3c). 

At the 25-year return period, LP3 overestimated flood quantiles for 62% of the sites, mainly in New England and 
the Mid-Atlantic (Figure 3d). When the return period increased to 50 years, LP3 performed reliably at 55% of sites, 
mostly in the Upper Colorado, Upper Mississippi, and Lower Mississippi regions (Figure 3e). For the 100-year flood, 
LP3 provided reliable estimates at 34 out of 47 sites (72%), located in the Pacific Northwest, California, the Great Basin, 
Upper Colorado, Upper Mississippi, and the Mid-Atlantic (Figure 3f). 

Table 2. Same as Table 1, but for sites with statistically insignificant change points. 

Study 
Site 

Return Period (T, Years) 
T = 2 T = 5 T = 10 T = 25 T = 50 T = 100 

R < 1 (R > 1) a,b R < 1 (R > 1) R < 1 (R > 1) R < 1 (R > 1) R < 1 (R > 1) R < 1 (R > 1) 
Reference 3/14 (79%) 7/14 (50%) 6/14 (57%) 9/14 (36%) 9/14 (36%) 13/14 (7%) 

Non-reference 12/33 (64%) 16/33 (52%) 19/33 (42%) 20/33 (39%) 17/33 (48%) 21/33 (36%) 
Total sites 15/47 (68%) 23/47 (51%) 25/47 (47%) 29/47 (38%) 26/47 (45%) 34/47 (28%) 

a R = Obs/Est < 1: flood quantile was overestimated; R > 1: flood quantile was underestimated; b First numbers are the fraction of 
sites with overestimated floods, and the number in parentheses indicates the percentage of underestimated floods. 

  
(a)  (d)  

T = 2 years (Entire record) T = 25 years (Entire record) 
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(b)  (e)  

  
(c)  (f)  

 

Figure 3. Ratio (R) of observed to LP3-estimated flood quantiles based on the entire flood record at sites where the change point 
was not statistically significant (p-value > 0.05) for floods with return periods of (a) 2 years; (b) 5 years; (c) 10 years; (d) 25 years; 
(e) 50 years; and (f) 100 years. 

4.8. Flood Frequency before and after the Change Point versus the Entire Record 

Numerous studies have focused on improving flood quantile estimates to help reduce property damage, crop loss, 
and fatalities [35]. Nonstationarity in the data structure could degrade these estimates [24,61–63]. Detecting a change 
point in peak flow times series offers a simple way to mitigate nonstationarity: analyzing the flood records separately 
before and after the change point may yield more reliable quantiles than treating the entire record as one homogeneous 
data sample. 

We therefore generated flood frequency curves for 18 reference and 66 non-reference sites, dividing each site's 
peak flow record into pre-change and post-change periods. We intended to determine whether parsing the flood 
information into two independent periods can improve quantile estimates. Depending on whether the historical peak 
occurs in the pre- or post-change segment, the three curves of before (B), after (A), and entire record (E) can likely 
follow one of the schematic patterns shown in Figure 4a–f. 

In the Pacific Northwest, California, the Souris-Red-Rainy basin, northern Mid-Atlantic, and northern New 
England, the post-change curve produced the highest quantile estimates, exceeding both the entire-record and pre-
change curves (scenario AEB, Figure 5). Conversely, in areas west of the Colorado, north of the Rio Grande, west of 
Arkansas, the Texas Gulf, Tennessee, the South Atlantic–Gulf, Ohio, the coastal Mid-Atlantic, and central New England, 
the pre-change curve returned the largest estimates, surpassing both the entire record and the post-change segment 
(scenario BEA, Figure 5). 

In general, most reference sites followed the AEB pattern, suggesting that recent climate-driven nonstationarity 
has detectable influence on their flood quantiles (Figures 4a and 5). On the other hand, many non-reference sites 
displayed the BEA pattern, which may be due to dominant anthropogenic disturbances such as dam construction or 
river regulation. As such, the pre-change flood record at non-reference sites still produces the highest quantiles despite 
recent climatic variability (Figures 4b and 5). 

For gage 01031500, the Pettitt test identified a significant change point in 1967. Applying the LP3 distribution to 
the 1903–2015 record yields a 100-year flood estimate of approximately 620 m3/s. Segmenting the record results in Q100 

T = 5 years (Entire record) T = 50 years (Entire record) 

T = 10 years (Entire record) T = 100 years (Entire record) 
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estimates of about 550 m3/s before the change and 780 m3/s after. These pre- and post-change estimates form a practical 
uncertainty band around the entire record value, illustrating how a simple segmentation approach can highlight the 
potential for under- or over-design when nonstationarity exists. 

  
(a) (d) 

  
(b) (e) 

  
(c) (f) 

Figure 4. Flood frequency curves analysis for selected sites where parsing the record into pre- and post-change periods retuned 
different results from those obtained with the entire record. The x-axis is the base-10 logarithm of return period in years (2.0 means 
100 or 102); the y-axis is peak flow in cubic meters per second (m3/s or cms). Six distinct patterns are observed: (a) After–Entire–
Before (AEB), where the estimated quantiles decline from the post-change period, to the entire record, to the pre-change period; (b) 
Before–Entire–After (BEA), where the estimated quantiles decline from the pre-change period, to the entire record, to the post-
change period; (c) After–Before–Entire (ABE), where the estimated quantiles decline from the post-change period, to the pre-
change period, to the entire record; (d) Before–After–Entire (BAE), where estimated quantiles decline from the pre-change period, 
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to the post-change period, to the entire record; (e) Entire–After–Before (EAB), where the estimated quantiles decline from the entire 
record, to the post-change period, to the pre-change period; and (f) Entire–Before–After (EBA), where the estimated quantiles 
decline from the entire record, to the pre-change period, to the post-change period. 

 

Figure 5. Spatial distribution of the flood frequency analysis results when the record is parsed into periods before and after the 
change point and compared with the entire record. The left half-circle at each site is green for reference gages and red for non-
reference gages. The right half-circle indicates a scenario according to Figure 4a–f: (a) After–Entire–Before (AEB); (b) Before–
Entire–After (BEA); (c) After–Before–Entire (ABE); (d) Before–After–Entire (BAE); (e) Entire–After–Before (EAB); and (f) 
Entire–Before–After (EBA). 

5. Conclusions and Summary 

We examined annual maximum flood series from 18 reference and 66 non-reference USGS sites, each with more 
than 100 years of records. Comparing the flood quantiles for reference and non-reference sites helped us to explore the 
effects of climate-driven nonstationarity on frequency analysis separately from the combined effects of climate 
variability and anthropogenic disturbances. We utilized the nonparametric Pettitt test to detect a single shift in each 
gage flood record. Where the shift was statistically significant (p-value ≤ 0.05), the flood record was divided into “before” 
and “after” segments for independent flood frequency analysis. 

Flood frequency curves were fitted with the LP3 distribution, using the product moment formulation of [46]. The 
peak flow record length varied substantially among study sites before and after the change point. Because the lengths 
of the pre- and post-change records varied widely among sites, the study focused on return periods up to 25 years. 
Longer flood time series created by peaks-over-threshold or partial series approach could extend the analysis to rarer 
events and clarify whether high-quantile floods (>25 years) have intensified in recent decades. Should such increases 
be confirmed, the conventional LP3 model fitted to post-change data is likely to remain adequate; however, although 
the Pettitt split mitigates the most prominent shift, we do not claim that each segment is perfectly stationary. Instead, 
the segmented LP3 curve should be viewed as one line of evidence, to be considered alongside nonstationary models 
when critical design decisions hinge on upper-tail quantiles. 

At most reference sites, analyzing only the post-change segment produced the largest quantile estimates, 
underscoring the influence of recent climate-driven nonstationarity. Many non-reference sites, however, showed higher 
quantile estimates in the pre-change segment, highlighting long-standing regulation, land-use change, or other human 
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alterations. Apparent regional patterns, such as closer LP3 fits in the South Atlantic-Gulf region and systematic 
overestimation in New England, should be considered preliminary. With a limited number of century-length gages per 
water resources region (HUC02), our sample is too limited for a rigorous regional or hierarchical analysis. Expanding 
the dataset to include additional, but shorter records, would enable a formal clustering or Bayesian hierarchical 
framework that may reveal spatially coherent deviations from the segmented LP3 model. 

These contrasting patterns underscore that a statistical distribution may not always need to be fitted to the entire 
period of record; instead, it may be applied to a segment that minimizes nonstationarity (regardless of its source) while 
yielding reasonable quantile estimates. Updated quantile estimates can help watershed managers prepare for shifts in 
flood magnitude and frequency under nonstationary conditions. 

Supplementary Materials 

The following supporting information can be found at: https://www.sciepublish.com/article/pii/623, Table S1: The 
description of 18 reference and 66 nonreference study sites with more than 100 years of peak flow data across the contiguous 
United States. 
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