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We read with great interest the study by Jiang et al. [1], which developed a novel rat model of chronic kidney
disease (CKD)-associated pulmonary hypertension (PH) by a combination of 5/6 nephrectomy and a high-salt diet. This
model successfully reproduced key features of CKD-PH, including altered hemodynamics and right ventricular (RV)
hypertrophy. Importantly, Jiang et al. highlighted the overactivation of the renin-angiotensin-aldosterone system
(RAAS) and reduction of angiotensin-converting enzyme 2 (ACE2) in pulmonary vascular endothelium as potential
drivers of CKD-PH progression. However, the absence of distal pulmonary arteries remodeling and the exclusive use
of male rats raises concerns about the model’s accuracy or sex-difference in reflecting the full spectrum of CKD-PH
pathophysiology. In this commentary, we discuss these limitations and propose considerations for refining the model
to better reflect the condition of human CKD-PH.

PH is a serious cardiopulmonary condition, defined by the mean pulmonary artery pressure > 20 mmHg at rest
[2,3]. Clinically, PH is categorized into five different types based on underlying etiologies [3]. The fifth group
encompasses cases with unclear or multifactorial origins, including CKD-PH. This condition requires: (i) confirmation
via right heart catheterization; (ii) two separate values of estimated glomerular filtration rate (eGFR) below 60
mL/min/1.73 m? obtained at least 3 months apart [4]. Patients with coexisting CKD and PH are of significant clinical
concern, given the consistent association between PH and worse outcomes in CKD patients [5]. Although clinical
studies demonstrate a strong relationship between CKD and PH, the underlying biological mechanisms connecting the
two conditions remain poorly defined [6—8]. Therefore, this gap highlights the need for appropriate animal models to
investigate the intricate and multifactorial pathways contributing to CKD-PH.

In a recent study, Jiang et al. developed an innovative rat model of CKD-PH by combining 5/6 nephrectomy with
14 weeks of high salt dietary intervention [1]. This approach induced marked elevations in right ventricular systolic
pressure (RVSP) and pronounced RV hypertrophy—two important indicators of PH pathophysiology. The model’s
novelty stems from its capacity to simultaneously capture the complex crosstalk between CKD and pulmonary vascular
remodeling within a unified experimental system. Different from conventional CKD animal models, the 5/6
nephrectomy model [9] induces disease through blood volume overload and RAAS activation, whereas the adenine-
induced model [10] relies mainly on the accumulation of uremic toxin and mineral metabolism disorders. In contrast,
this model presented in Jiang et al.’s study integrates nephron loss with high-salt diet intake, to enhance angiotensin II
signaling and RAAS overactivity, resulting in a more pronounced and clinically relevant manifestation of hemodynamic
stress and right heart remodeling.

A notable aspect of this study is the observed dysregulation of RAAS and the reduced expression of ACE2 within
the pulmonary arterial endothelium of CKD-PH rats. These alterations are consistent with established evidence
regarding RAAS imbalance to vascular pathology, particularly in the context of cardiovascular disease and hypertension
[11]. Notably, the excessive RAAS activity coupled with diminished ACE2 levels has been correlated with adverse
outcomes in the pulmonary arterial hypertension (PAH) population [12]. Mechanistically, ACE2 can provide protective
effects in pulmonary disease by mitigating the deleterious actions of angiotensin II [13]. Its regulatory role has made it
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a focus of therapeutic direction, with studies highlighting the consequences of ACE2 inhibition in preclinical research
of PH studies [14,15]. Emerging evidence suggests that ACE2 expression could also be modulated post-translationally
by murine double minute 2 (MDM2)-mediated modification of ubiquitination, potentially involving AMPK-MDM?2
signaling crosstalk in PH pathogenesis [16]. Furthermore, overexpression of ACE2 has been shown to attenuate
pulmonary artery remodeling [17], underscoring its promise as a potential therapeutic target in CKD-PH.

In addition to hemodynamic alternations, substantial metabolic irregularities were observed in this CKD-PH rat
model, underscoring the systemic complexity of the disease. Serum metabolic profiling revealed significant deviations
from control rats, including elevated levels of diacylglycerol (DAG), sphinganine, and other metabolites [1]. Notably,
prior studies have implicated DAGs with angiotensin II (Ang II, hydrolyzed by ACE2)—dependent aldosterone release,
offering a plausible explanation as a potential cause of raised DAG observed in this model [1,15,18]. These findings
reinforce the view that CKD-PH, especially in more advanced stages, presents a multisystem disorder with complex
metabolic involvement. The observed metabolic change points toward novel therapeutic opportunities, suggesting that
interventions targeting lipid signaling and other metabolic pathways may be beneficial.

However, in contrast to the traditional PAH models such as the monocrotaline (MCT) and sugen5416/hypoxia rats
model [19,20], this new CKD-PH rat model induced elevations in RVSP and RV hypertrophy without evident
remodeling of distal pulmonary arteries. This discrepancy raises concerns regarding this model's ability to recapitulate
the vascular pathology observed in human CKD-PH [21]. Distal pulmonary arteries remodeling increased pulmonary
vascular resistance, contributing to increased pulmonary arterial pressure and subsequent RV failure [22,23]. This
limitation highlights the need to refine this model further to reproduce better the vascular alterations seen in clinical
cases. While the model effectively induces features of CKD and PH, the absence of pulmonary vascular remodeling
represents a key shortcoming. Several potential explanations may account for this observation. First, CKD is known to
induce systemic hypertension and heart failure, which can influence pulmonary hemodynamics and RV remodeling
[24]. Second, the pathological process of CKD-PH likely involves multiple interacting mechanisms, including immune
response or inflammation [25], oxidative stress [26], chronic hypoxia [27], and disturbances in calcium-phosphorus
metabolism [28], which may contribute to pulmonary vascular calcification and further RV remodeling. Third, the 14-
week observation period may have been insufficient to capture the complete temporal evolution of pulmonary artery
remodeling. Prolonging the experimental duration or introducing additional pathological factors, such as hypoxia or
sugen5416, may effectively develop the distal pulmonary arteries remodeling.

An additional limitation of this model involves its exclusion of sex differences by utilizing only male rats in this
study. This omission holds particular significance given compelling evidence that sex-specific factors actively shape
PH pathophysiology [29], particularly through modulation of aldosterone biosynthesis and hormonal signaling pathway
[30]. For this novel preclinical CKD-PH model, evaluating whether female subjects develop distinct phenotypic
manifestations is vital to strengthen its translational validity. Consequently, subsequent research should explicitly
examine sex-based variations in both disease progression and underlying mechanisms.

In summary, this study meaningfully advances CKD-PH understanding by establishing a reliable rat model. While
the absence of distal pulmonary vascular remodeling—a defining characteristic of human PH——constrains full
translational applicability, this system nonetheless offers a useful experimental platform for mechanistic discovery and
therapeutic evaluation. Enhancing clinical relevance will require refinement that better replicates human vascular
pathology. Exploring contributors like chronic inflammation, oxidative stress, and sex-based specific differences could
provide insights into the complex, multifactorial mechanisms in the context of CKD-PH. This work also highlights the
role of RAAS imbalance and suppressed ACE2 expression as mechanistic features, which may serve as potential targets
for further therapies to improve clinical outcomes in CKD-PH.
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