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ABSTRACT: Fibrotic diseases are driven by the excessive accumulation of extracellular matrix (ECM), particularly collagens, 
leading to progressive tissue stiffness and organ dysfunction. While many factors contribute to fibrosis—including cytokine 
signaling, integrin-mediated mechanotransduction, and altered ECM degradation—the synthesis and secretion of collagen remain 
central bottlenecks. Collagen biosynthesis is a complex process involving extensive post-translational modification and intracellular 
trafficking. The export of procollagen from the endoplasmic reticulum (ER) requires Transport and Golgi Organisation 1 
(TANGO1), a transmembrane organizer of ER exit sites that coordinates cargo selection, membrane remodeling, and connectivity 
between the ER and the ER-Golgi-Intermediate-Comaprtment (ERGIC). By assembling into ring-like structures at ER exit sites, 
TANGO1 builds a secretory route for bulky cargoes that bypasses conventional vesicle constraints. Loss of TANGO1 disrupts 
collagen secretion and causes developmental defects across various species. In fibrotic tissues, TANGO1 expression is upregulated, 
linking secretory machinery to pathological matrix deposition. Recent work has identified specific interfaces within the complex of 
TANGO1 with its vertebrate paralogue Cutaneous T-cell lymphoma-associated antigen 5 (cTAGE5) as targets for cell-permeant 
peptide inhibitors. Inhibitors that selectively and specifically block TANGO1 complex formation reduce collagen secretion in 
fibroblasts and scar formation in vivo, offering a new strategy to modulate fibrotic processes. 
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1. Introduction 

Fibrotic diseases are common and can affect almost all organs, accounting for approximately 40% of deaths in 
Western countries. Although the initial triggers vary—ranging from toxins and infections to radiation and other factors 
—tissue injury ultimately leads to a chronic inflammatory process. Depending on the type of injury and an individual’s 
genetic or epigenetic background, the activation of mesenchymal cells results in excessive deposition of extracellular 
matrix (ECM) in the affected tissues [1–4]. 
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Despite distinct etiological and clinical features, most chronic fibrotic disorders share common characteristics, 
including the recruitment of inflammatory cells and sustained production of growth factors, angiogenic factors, and 
fibrogenic cytokines. These factors activate effector cells, leading to the excessive deposition of ECM by myofibroblasts, 
pericytes, and other fibroblast subsets [3,5]. While early fibrotic responses may be reversible through enzymatic 
degradation of ECM components, pathological tissue remodeling—such as in liver cirrhosis, cardiovascular fibrosis, 
localized and systemic scleroderma, chronic kidney disease, and idiopathic pulmonary fibrosis—is considered 
irreversible after a certain stage, potentially progressing to organ failure and death [6]. 

Therapeutic intervention in fibrotic processes has proven challenging. Numerous attempts have been made to 
modulate the immune system, interfere with specific cytokine activity, inhibit ECM crosslinking, or eliminate activated 
mesenchymal cells. However, targeting the synthesis and secretion of ECM molecules remains difficult due to the risk 
of severe side effects associated with pharmacological interventions. In recent years, significant progress has been made 
in understanding the complex secretion of large molecules via the endoplasmic reticulum (ER). Here, we discuss various 
approaches to directly interfere with collagen secretion, the primary structural component of the ECM, as a potential 
antifibrotic strategy. 

2. The Extracellular Matrix 

The ECM is composed of a wide variety of components, including collagens and numerous glycoproteins such as 
fibronectin, fibrillins, elastin, fibulins, tenascins, thrombospondins, and various proteoglycans [7,8]. Collectively, these 
components form the ECM, which, with associated proteins, is also referred to as the “matrisome” [9–11]. The 
composition and interactions of these molecules determine the structure of extracellular networks [7,12], which, in 
combination with cellular constituents, regulate the biomechanical properties, rigidity, and stiffness of connective 
tissues [11,13,14]. Alongside collagens, these ECM molecules are embedded in amorphous structures containing 
glycoproteins (e.g., fibronectin), proteoglycans, and hyaluronan, all of which contribute to the biomechanical properties 
of the ECM [7,15]. The ECM provides structural and biomechanical support to cells, guiding migration by serving as a 
scaffold and presenting signalling cues, while also influencing proliferation, differentiation, and transdifferentiation 
through mechanochemical signaling and growth factor regulation. By modulating cell-ECM interactions, the ECM can 
induce phenotypic changes, promote tissue-specific differentiation, or even facilitate transdifferentiation by altering 
transcriptional programs in response to dynamic microenvironmental cues [11]. 

Interstitial fibrillar collagens are the primary structural components of connective tissues. All collagen molecules 
consist of three α-chains, characterized by a repeating Gly–X–Y sequence, where glycine occurs at every third position, 
and proline (X) and hydroxyproline (Y) contribute to the formation of the triple-helical structure unique to collagens. 
The collagen family comprises 28 proteins that form diverse structures and can be divided into classes (Table 1). 

Table 1. The collagen family. 

In skin and other loose connective tissues, classic fibrils visualized by electron microscopy contain mixtures of 
collagens I, III, V, XII, and XIV [12]. Collagen VI, by contrast, exhibits a unique macromolecular organization within 
the microfibrillar network, characterized by a typical beaded filament appearance. Type IV collagen is a major structural 
component of basement membranes, while types VII and XVII anchor basement membranes to the underlying 
mesenchymal tissue [10,17]. Many of these collagens are synthesized by fibroblasts within connective tissues. 

In fibrotic tissues, the ECM becomes excessively dense due to the abnormal deposition and arrangement of its 
components, along with aberrant crosslinking. This leads to increased tissue stiffness, contractures, and functional 
impairment [2,3,5,14,18]. The biomechanical characteristics of the ECM are largely determined by interactions between 
elastin and the microfibrillar network. Elastin, which contains numerous crosslinks [19], can adapt structurally to 

Collagen Classes and Their Macromolecular Organization Collagen Types [16] 
Fiber forming collagens Collagens I, II, III, V, XI, XXIV 

Network forming collagens Collagens IV, VIII, X 
Beaded filaments forming collagens Collagen VI 
Anchoring fibrils forming collagens Collagen VII 

Fibril associated collagens with interrupted helices (FACIT) Collagens IX, XII, XIV, XIX, XX, XXI, XXII 
Transmembrane collagens Collagens XIII, XVII, XXIII, XXV 

Multiplexins Collagens XV, XVIII 
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biomechanical demands. Elastin interacts with various microfibrillar components, including fibrillins, fibulins, matrilins, 
tenascins, and EMILINs, as well as latent TGF-β binding proteins (LTBPs) [20–25]. ECM components interact with 
cells at multiple levels. Fibroblasts, for instance, bind to ECM components via specific integrin receptors—
heterodimeric transmembrane proteins that recognize distinct motifs within ECM molecules. These receptors not only 
mediate cell adhesion but also transmit mechanical forces and activate intracellular signaling pathways. 

Four integrins have been identified that specifically bind collagen, each associated with distinct cellular functions 
[26–28]. In addition to integrins, fibroblasts express collagen-binding receptors from the discoidin domain receptor 
(DDR) family, as well as other mechanosensitive receptors capable of detecting extracellular mechanical stress [29,30]. 
The role of biomechanical forces in cellular differentiation and function is a rapidly expanding field with significant 
implications for fibrosis pathophysiology [15,31]. 

Furthermore, proteolytic fragments derived from ECM cleavage, known as matrikines [32,33] or matricryptins 
[34], exert various biological effects on inflammatory cells and fibroblasts. These fragments, generated from collagen, 
elastin, laminins, and proteoglycans, influence cell behavior and contribute to fibrotic processes [35,36]. Of note, 
proteolytically cleaved fragments can exert activities that differ considerably from those of the uncleaved parental ECM 
component [34]. Finally, the ECM serves as a reservoir for cytokines and growth factors, regulating their bioavailability 
through controlled binding and release. This role has been particularly well documented for transforming growth factor-
beta (TGF-β), which is synthesized as an inactive precursor bound to latent TGF-β binding proteins (LTBPs) [37]. 
LTBPs, in turn, interact with fibrillins (fibrillin-1 and -2) that are key structural components of the microfibrillar system 
[38–41]. Mutations in fibrillin-1 or its associated binding partners lead to excessive fibrotic responses, as observed in 
congenital disorders characterized by stiff fibrotic skin, such as stiff skin syndrome (SSkS, OMIM: #184900) [42,43]. 
Fibrillin-dependent mechanisms of fibrosis have been modeled in the tight skin mouse (Tsk), which has been 
instrumental in advancing therapeutic strategies for fibrosis [43]. The regulated release of TGF-β and other signaling 
molecules from the ECM underscores its dynamic role in the initiation and progression of fibrosis [31,44–47]. 

Collagen biosynthesis is a highly complex process. Triple-helical collagens are synthesized as precursor 
molecules known as procollagens, which undergo extensive post-translational modifications, including 
hydroxylation of proline and lysine residues. After assembly into triple-helical structures, these collagens are 
exported from the ER. However, the precise mechanisms regulating their transport along the secretory pathway have 
only recently begun to be elucidated [48–54]. 

In the extracellular space, procollagen propeptides at both termini are cleaved to allow the aggregation of collagen 
molecules into fibrils. These fibrils are subsequently crosslinked to form insoluble structures that provide tensile 
strength and stability to tissues [55]. Given the complexity of collagen biosynthesis, multiple points exist for potential 
therapeutic intervention. Strategies have been explored to: 

- Modulate cytokine-receptor signaling that induces collagen gene expression. 
- Influence the formation of the triple-helical structure, which depends on the hydroxyproline content, or 
- Inhibit lysyl oxidase, the enzyme responsible for stabilizing collagen crosslinks. 

Until recently, less attention has been given to directly controlling the secretion of collagen or other large ECM 
molecules, which could represent a novel approach to antifibrotic therapy. In addition, several therapeutic approaches 
have been initiated more recently to modulate the cellular activation responsible for the synthesis of ECM proteins 
(Table 2); however, the success of most interventions has remained disappointing. 

Table 2. Therapeutic Strategies to Inhibit Collagen Deposition in Fibrosis. 

1 
Inhibition of cytokine/growth factor signaling by monoclonal antibodies, small ligand inhibitors or blockade of 

intracellular signaling pathways 
[56] 

2 Inhibition of integrin signaling (αvβ6, α11β1) [29,57] 
3 Modulation of fibroblast and tissue stiffness [58,59] 
4 Inhibition of collagen prolyl hydroxylase [60,61] 
5 Inhibition of lysyl oxidase (LOX) and LOX-like enzymes (LOXL) 1–4 [62,63] 
6 Modulation of collagenolytic enzymes, targeting matrix metalloproteinases [64] 
7 Regulating the metabolic control of collagen synthesis [65] 
8 Modulation and ablation of activated fibroblast subsets [66,67] 
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3. TANGO1 Builds a Secretory Route for Collagens 

The ER is the gateway to the secretory pathway, where proteins are synthesized, folded, and assembled. Nearly a 
third of the proteome passes through the ER, underscoring its central role in cellular homeostasis. Secretory cargo, 
including large molecules like collagen, must be properly folded by molecular ensembles of ER chaperones [68] before 
export to the ER-Golgi Intermediate Compartment (ERGIC) or Golgi apparatus. 

ER export is mediated by Coat Protein Complex II (COPII) coat machinery, which assembles at specialized 
subdomains called ER exit sites (ERES). At these sites, COPII-dependent carriers package secretory cargoes for their 
transport to the next secretory compartment. COPII-dependent vesicles form when the ER-localized GEF Sec12 
activates Sar1, a cytosolic GTPase, which then inserts into the ER bilayer and initiates coat assembly. Sar1 recruits an 
inner COPII layer of Sec23/24, which selects cargo, while an outer layer formed by a heterotetramer of Sec13/31 forms 
a polyhedral structure to mould the membrane and drive the budding of a vesicle with a diameter of 60–80 nm [69]. 
However, these conventional COPII vesicles are too small to accommodate bulky cargo like collagen, necessitating 
adaptations at ERES in metazoan cells for ECM protein transport—the basis of metazoan multicellularity and 70% of 
our dry body weight. 

To meet the challenge of exporting bulky secretory cargoes, animals have evolved TANGO1—a transmembrane 
protein localized at ERES in all animal species, essential for the secretion of large proteins [70]. TANGO1 was 
discovered through a genome-wide RNAi screen in Drosophila S2 cells that identified genes required for the secretion 
of a generic secretory protein, signal-sequence containing horseradish peroxidase (ss-HRP) [71]. Any ‘hit’ in the screen 
was a gene that affected protein Transport ANd Golgi Organization (TANGO). Several TANGO genes have been 
studied, renamed, a previously uncharacterized gene stood out, which was named TANGO1 [72]. 

TANGO1 belongs to the Melanoma Inhibitory Activity (MIA) gene family. In invertebrates, this family is 
represented solely by MIA3, which encodes TANGO1. In vertebrates, gene duplication produced MIA2 and MIA3; 
MIA2 encodes TANGO1-like (TALI) and Cutaneous T-cell lymphoma-associated antigen 5 (cTAGE5), while MIA3 
encodes long and short isoforms of TANGO1 [70,73]. 

At ERES, TANGO1 assembles into a ring-like structure and functions through distinct domains (Figure 1). Its 
luminal SH3-like domain binds to collagen or Heat Shock Protein 47 (HSP47), ensuring that only properly folded, triple 
helical collagen is exported from the ER. Within the membrane, TANGO1 transmembrane helix and a membrane-
inserted helix form a local diffusion barrier that isolates ERES from the rest of the ER. Finally, in the cytoplasm, 
TANGO1 binds to COPII components (Sec16, Sec23) via a C-terminal proline rich domain (PRD), to cTAGE5 via a 
coiled coil domain (CC2; see Figure 1), and the Neuroblastoma-amplified-sequence—Rad50-interacting protein 1—
Zeste White 10 (NRZ) retrograde multisubunit tethering complex via another coiled-coil domain (CC1; see Figure 1), 
thereby coordinating cargo selection and membrane remodeling [51,74–78]. By recruiting ERGIC membranes, 
TANGO1 can generate and stabilize transient tunnels between the ER and ERGIC, bypassing vesicle formation 
altogether and allowing cargo export without size or shape constraints [50,70]. 

Thanks to these properties, TANGO1 is essential for collagen secretion, and its loss disrupts development across 
species [79–84]. In animal models—including fruit fly, zebrafish, mice, and dogs—loss or truncation of TANGO1 
impairs collagen export and causes skeletal defects. In humans, mutations in the MIA3 gene, which encodes TANGO1, 
are linked to Ehlers–Danlos-like syndromes, dental and skeletal abnormalities, and in severe cases, prenatal lethality 
along with failed bone formation. Some individuals with truncated TANGO1 also show mild intellectual disability, 
suggesting a broader role for TANGO1 in the secretion of ECM and brain-enriched glycoproteins essential for 
development [80,82,85]. The paralogue of TANGO1—TALI, performs a similar role in the ER export of bulky 
lipoproteins such as chylomicrons and vLDLs [86,87]. 
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Figure 1. TANGO1 reorganizes ER exit site machinery to build an ER–ERGIC tunnel. (A) COPII vesicle budding begins when 
the small GTPase Secretion-Associated and Ras-related protein 1 (Sar1) is activated by the guanine nucleotide exchange factor 
Sec12, causing Sar1-GTP to insert into the ER membrane. This recruits the Sec23/24 complex for cargo selection and then the 
Sec13/31 complex, which forms the outer coat and drives vesicle scission from the ER [69]. (B) TANGO1 and cTAGE5 form a 
scaffold at ER exit sites (ERES), coordinating the recruitment of COPII components and facilitating cargo loading, particularly for 
large cargo like collagen. TANGO1 binds Sec23/24 and interacts with collagen, while cTAGE5 stabilizes Sar1-GTP and supports 
COPII assembly nucleation through its interaction with Sec12 [49,88] CC1—Coiled-coil domain 1, CC2—Coiled-coil domain; 
SH3—Src homology 3; PRD—Proline rich domain. (C) TANGO1 family proteins help form a transient tunnel or membrane 
continuity between the ER and the ER-Golgi intermediate compartment (ERGIC), enabling the direct transfer of bulky cargo like 
collagens. This tunnel bypasses conventional vesicle budding [70,75], allowing the export of large extracellular matrix proteins that 
exceed typical COPII vesicle size. 

4. TANGO1-Regulated Collagen Export by Other Cell Types 

TANGO1 is thought to be broadly expressed across nearly all cell types in animals based on studies in Drosophila 
and mammals. In Drosophila, its expression correlates loosely with secretory activity, showing particularly high levels 
in salivary gland cells—which secrete mucin-like glue proteins—and in the fat body, which produces the organism’s 
only collagen, Viking [84,89–91]. In mammalian fibroblasts, TANGO1 is essential for the export of numerous 
extracellular matrix (ECM) proteins, including procollagens I, III, V, VI, and XII, as well as fibrillin, fibronectin, and 
versican, supporting matrix assembly during development and tissue repair [54]. This dependence on TANGO1 for 
ECM secretion is observed in multiple cell types and physiological contexts. In chondrocytes, TANGO1 deficiency 
disrupts collagen secretion and results in skeletal dysplasia, emphasizing its role in cartilage formation [81,82,84]. In 
cultured RPE1 cells, loss of TANGO1 and its partner cTAGE5 significantly reduces secretion of many ECM 
components [92]. In hepatic stellate cells and myofibroblasts, TANGO1 is upregulated in response to fibrotic signals 
and promotes collagen deposition [93], directly linking it to pathological matrix accumulation. Similarly, in osteoblasts, 
TANGO1 supports the export of type I collagen, which is critical for bone matrix production. Although ubiquitously 
expressed, TANGO1’s functional necessity is heightened in cells with high or inducible secretory demands, suggesting 
a context-dependent role shaped by cargo load and secretory architecture. Further studies are needed to systematically 
define the cell- and tissue-specific expression and regulation of this protein. 
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5. Signal Transduction Pathways Regulating TANGO1 Expression 

TANGO1 expression is transcriptionally upregulated by ER stress via the inositol-requiring enzyme 1 (IRE1)–X-
box binding protein 1 (XBP1) arm of the unfolded protein response (UPR) [94], likely to enhance secretory capacity 
under load [95]. Inflammatory stimuli also induce MIA3 expression through caspase-1 activation and downstream IL-1 
and TGF-β signalling [93]. TGF-β alone can drive MIA3 transcription via Smad2/3 binding to regulatory elements, 
particularly in fibrotic settings [96]. TANGO1’s upregulation in certain fibrotic cells, including hepatic stellate cells 
and systemic sclerosis (SSc) fibroblasts, likely reflects increased ER demand from ECM hypersecreting myofibroblasts 
[93]. Inflammatory signaling regulates TANGO1 expression. Caspase-1, the TGF-β receptor, and the IL-1 receptor all 
influence its levels. Blocking IL-1 reduced TANGO1 without affecting collagen expression, suggesting post-
transcriptional control. In contrast, inhibiting TGF-β lowered both collagen and TANGO1, implying either a shared 
transcriptional program or feedback from secretory load. Notably, these changes selectively impaired the secretion of 
large proteins, while smaller cargoes were largely unaffected. The coordinated regulation of TANGO1 and collagen 
hints at functional coupling between cargo and export machinery, which may offer new entry points for therapeutic 
intervention in fibrosis [97]. Insulin and IGF-1 signalling may influence expression through PI3K/AKT and MAPK 
pathways, though mechanistic links remain incomplete. Post-transcriptionally, TANGO1 is repressed by multiple 
microRNAs, including miR-125b, miR-30a, and miR-222, which reduce MIA3 expression and promote proliferation 
and invasion in cancer models [98–100]. Circadian regulation of TANGO1 mRNA suggests a coupling between 
secretion and diurnal cycles, though the underlying mechanism is not fully resolved [101]. 

At the post-translational level, TANGO1 function is modulated by glycosylation [83]. Its activity at ER exit sites 
is also dynamically controlled by Casein Kinase 1-mediated phosphorylation and Protein Phosphatase 1-dependent 
dephosphorylation, linking it to ER export site turnover [102]. 

Despite these advances, key regulatory aspects remain undefined. The differential control of TANGO1-long and 
TANGO1-short isoforms has not been characterized. It is unknown how MIA3 expression is modulated during 
transitions into hypersecretory states, such as during plasma cell differentiation or myofibroblast activation. Moreover, 
the cell- and tissue-specific regulation of TANGO1 remains largely unexplored. A systematic understanding of how 
secretory demands are matched to TANGO1 isoform expression and activity is still lacking, representing an exciting 
future for how cells and the ECM reciprocally control tissue assembly. 

By integrating cargo selection, membrane remodeling, and trafficking, the TANGO1 family acts as master 
organizers of ERES, particularly for the enhanced secretory capacity imposed by bulky ECM proteins [103]. 
Understanding their function illuminates core principles of membrane traffic and opens up new possibilities for targeting 
secretion in disease. 

6. Therapeutic Implications 

A defining feature of fibrotic disease is the excessive accumulation of extracellular matrix (ECM) components. 
While ECM levels are shaped by both synthesis and degradation, the production and secretion of matrix proteins are 
prerequisites for their pathological build-up. Although proteolytic degradation of ECM has long been recognized as 
important in fibrosis [14,104], targeting ECM synthesis is challenging due to its molecule-specific gene regulation and 
the complex biosynthetic steps involving post-translational modification and assembly. 

In contrast, TANGO1 is a core component of the secretory pathway that governs the export of bulky cargoes, 
including many ECM proteins. Because it controls a common bottleneck for secretion, TANGO1 presents an attractive 
target for reducing matrix deposition across various fibrotic contexts. Modulating secretion could offer a general 
therapeutic strategy, independent of the specific fibrotic trigger or cytokine environment. 

TANGO1 deletion blocked the secretion of collagen I in a mouse model of liver fibrosis. The TANGO1 deletion 
led to intracellular collagen retention, ER stress, and activation of the UPR [54], which in turn induced TANGO1 
expression via TGF-β1 signaling and the transcription factor XBP1 [94]. ER export has long seemed “undruggable” 
because it is essential for cell viability. However, more recent studies have achieved some cargo specificity by inhibiting 
specific interfaces between interacting ERES proteins [105,106]. 

Recent advances in structural prediction and high-resolution mapping of protein complexes now allow precise 
identification of interaction surfaces within multi-protein assemblies. As we gain structural clarity on the interfaces that 
mediate cargo recognition, coat recruitment, and membrane tethering, new therapeutic possibilities emerge. Such 
precision offers a path forward for selectively controlling collagen export without broadly disrupting the secretory 
pathway, and may extend to other large cargoes and disease contexts in the future. 
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This strategy proved useful, as mapping interactions between TANGO1, cTAGE5, and their partners revealed 
specific domains critical for collagen export. Blocking these interactions provides a means to inhibit collagen secretion 
selectively. Membrane-permeant peptide inhibitors have been designed to disrupt interactions between TANGO1 and 
cTAGE5 (Table 3). These inhibitors mimic TANGO1 and cTAGE5’s CC2 domains and are conjugated to cell-
penetrating peptides (CPPs) for intracellular delivery [107,108]. By precisely targeting the TANGO1-cTAGE5 interface, 
these peptides modulate ER export of ECM proteins without broadly disrupting secretion [54]. 

In primary fibroblasts, isolated from both healthy individuals and those with scleroderma, these inhibitors markedly 
reduce the secretion of ECM proteins. Retained collagens are likely cleared by ER-phagy or proteasomal degradation, 
preventing intracellular accumulation [109,110]. In a zebrafish wound-healing model, treatment with peptide inhibitors 
decreases granulation tissue formation. By selectively blocking TANGO1 function, this approach provides a targeted 
strategy to control collagen secretion, thereby opening a new avenue for therapeutic intervention in fibrotic diseases. 

Table 3. ECM Proteins with Secretion Altered by TANGO1/cTAGE5 Inhibition [54]. 

Collagen α1(I) Fibrillin-1 
Collagen α2(I) Fibronectin 

Collagen α1(XII) Extracellular Matrix Protein-1 
Collagen α1(V) Laminin α4 
Collagen α3(VI) Collagen IV 
Collagen α2(VI)  

However, systemic inhibition of TANGO1 is not without risks. Its essential role in secretion is underscored by the 
severe developmental defects seen in patients with TANGO1 mutations. Any therapeutic strategy must therefore allow 
for precise, reversible, and tissue-specific modulation. This could involve transient knockdown approaches—such as 
siRNAs—or new molecules that disrupt specific protein-protein interactions, like the TANGO1–cTAGE5 complexes. 

Local delivery might provide a safer route. Topical or aerosol formulations targeting TANGO1 in accessible 
organs—such as the skin or lung—could suppress fibrosis while limiting systemic effects. This approach could be used 
to treat pulmonary fibrosis, excessive granulation tissue in wounds, or reduce scarring after surgery. It may also hold 
promise in localized fibrotic skin disorders, including scleroderma, lichen sclerosus et atrophicus, or chronic 
sclerodermiform graft-versus-host disease. 

Collagen deposition is a defining molecular event in the development of fibrosis. Its accumulation stiffens tissue, 
disrupts architecture, and drives organ failure. In animal models, reducing collagen secretion consistently leads to 
attenuated fibrosis and preserved function, underscoring a causal role. TANGO1, an essential organizer of collagen 
export at ER exit sites, is now a tractable target. Recent studies have demonstrated that specific inhibitors of TANGO1 
reduce collagen secretion in vivo, with marked decreases in fibrotic burden and no overt toxicity. These results point 
to a direct, mechanistic intervention—interfering with the export of the principal fibrotic substrate—as a viable 
therapeutic strategy. 
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