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ABSTRACT: The rapid advancement of Industry 4.0 technologies has catalyzed the development of intelligent tools and
methodologies to enhance operational efficiency, reliability, and productivity across modern industrial enterprises. Total Productive
Maintenance (TPM), a foundational approach in manufacturing, traditionally improves equipment reliability, reduces downtime,
and drives continuous improvement through proactive employee involvement. However, in the context of Smart Manufacturing,
traditional TPM reveals significant limitations—chiefly its reliance on manual data collection, reactive maintenance, and limited
real-time insight. This paper explores TPM’s evolution, key innovations, and cross-industry applications while highlighting
challenges in adopting Industry 4.0 technologies. It proposes a comprehensive TPM 4.0 framework integrating Lean Six Sigma’s
DMAIC methodology with advanced digital tools for systematic failure mode classification, risk-based maintenance prioritization,
and real-time performance optimization. Leveraging [loT-enabled condition monitoring, Digital Twin simulations, and machine
learning-driven predictive analytics, the framework supports real-time anomaly detection, cognitive diagnostics, and adaptive
maintenance planning—substantially improving Overall Equipment Effectiveness (OEE), cost efficiency, and system resilience.
Additionally, federated learning promotes scalable, privacy-preserving Al collaboration, while blockchain enhances data security
and transparency, mitigating cybersecurity risks. By merging traditional TPM with Al-driven automation and digital sustainability,
TPM 4.0 establishes a foundation for self-optimizing, cyber-resilient maintenance ecosystems, accelerating the transition to
autonomous manufacturing. Although conceptual, this framework offers a practical roadmap for smart manufacturing
transformation, with future validation planned through case studies and pilot projects.
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1. Introduction

In today’s fast-evolving industrial landscape, effective maintenance strategies are critical for ensuring Reliability,
Availability, Maintainability, and Safety (RAMS) across complex assets and infrastructure. The increasing integration
of automation, digital connectivity, and data-driven decision-making has exposed the limitations of traditional
maintenance approaches—ranging from reactive and preventive to predictive maintenance—in managing highly
dynamic and interconnected production environments. Industries are now confronted with challenges such as unplanned
downtime, inefficient resource utilization, and rising maintenance costs, necessitating the shift toward intelligent, self-
optimizing maintenance frameworks. To address these challenges, organizations are embracing risk-based maintenance
methodologies integrated with Industry 4.0 technologies, enabling proactive, cost-effective, and sustainable
maintenance ecosystems. The convergence of Artificial Intelligence (Al), Industrial Internet of Things (IloT), Big Data
Analytics, Digital Twin technology, cloud-edge computing, and federated learning is accelerating the transformation toward
autonomous, data-driven maintenance strategies, forming the foundation of Total Productive Maintenance (TPM) 4.0. [1,2].

Total Productive Maintenance (TPM) is a holistic, organization-wide strategy designed to enhance operational
excellence, asset reliability, and continuous improvement by actively engaging employees at all levels. Integrated with
Total Quality Management (TQM), TPM strives for zero breakdowns, zero defects, and zero accidents, systematically
eliminating inefficiencies such as downtime, equipment failures, excess inventory, and process delays. At its core, the
5S methodology fosters a structured, organized, and high-performance work environment, ensuring sustained
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productivity, efficiency, and workplace safety. The Japan Institute of Plant Maintenance (JIPM) established an eight-
pillar TPM framework (Figure 1) to optimize process efficiency, asset lifecycle management, and Overall Equipment
Effectiveness (OEE), empowering operators with greater equipment ownership while promoting predictive, preventive,
and autonomous maintenance strategies that minimize unplanned downtime, enhance defect prevention, and optimize
production workflows. Additionally, Figure 2 illustrates the Lean Six Sigma DMAIC (Define, Measure, Analyze,
Improve, and Control) framework, offering a structured, data-driven methodology for achieving sustained process
optimization, defect prevention, and operational excellence [3,4].

As industries advance toward Smart Manufacturing and Industry 4.0, TPM is evolving into an intelligent, data-
driven system by integrating Industrial Internet of Things (IloT), Al-powered analytics, Digital Twins, Edge Al, and
Cloud Computing to facilitate real-time anomaly detection, cognitive diagnostics, and adaptive maintenance strategies,
supporting self-optimizing and cyber-resilient maintenance ecosystems. As illustrated in Figure 3, Industry 4.0 is driven
by a suite of advanced technologies that enable smart, interconnected, and data-driven operations. These key
technologies include [1,2,5,6]:

e Internet of Things (IoT): Facilitates seamless connectivity and communication between physical devices and digital
systems.

e  Smart Sensors: Enable real-time data collection, monitoring, and analysis for proactive decision-making.

e  Advanced Robotics: Automate complex tasks with high precision, flexibility, and efficiency.

e Artificial Intelligence (Al): Enhances decision-making through intelligent data processing, pattern recognition, and learning.

e  Cyber-physical systems (CPS): These link physical assets with digital control systems to enable real-time feedback
and interaction.

e  Augmented Reality (AR) and Virtual Reality (VR): Provide immersive tools for design, maintenance, training, and
remote collaboration.

e  Cloud Computing: Supports scalable, remote access to data storage, applications, and computing resources.

e  Machine Learning (ML): Enables systems to improve performance based on data insights automatically.

e  Digital Twin Technology: Creates virtual models of physical assets to support monitoring, simulation, and optimization.

e  Additive Manufacturing (3D Printing): Allows for rapid prototyping and customized, resource-efficient production.

e  Big Data Analytics: Transforms large volumes of data into actionable insights for strategic and operational improvements.

e  Cybersecurity: Protects networks, data, and systems from digital threats, ensuring resilience and trust.

e Blockchain: Ensures secure, transparent, and decentralized data management and transaction integrity.

e  Location Detection Technologies: Enable real-time tracking and positioning through GPS, RFID, and related systems.

By bridging traditional maintenance principles with Al-driven automation and predictive analytics, TPM 4.0 sets
the stage for the next generation of intelligent, autonomous, and highly efficient industrial operations. This
transformation is embodied in TPM 4.0, a next-generation approach that integrates real-time monitoring, advanced
analytics, and intelligent automation to create self-learning, adaptive maintenance frameworks. Unlike traditional TPM,
which relies on manual inspections and scheduled interventions, TPM 4.0 enhances maintenance efficiency through Al-
driven automation, prescriptive analytics, and Digital Twin simulations, significantly improving failure prediction accuracy,
asset longevity, and downtime reduction. By leveraging Cyber-Physical Systems (CPS), machine learning, and IloT-enabled
condition monitoring, TPM 4.0 empowers industries to maximize OEE, enhance operational resilience, and achieve cost-
efficient, sustainable maintenance in increasingly complex and hyperconnected production environments [5,6].

This paper introduces TPM 4.0, an advanced Industry 4.0-driven maintenance framework that enhances Total
Productive Maintenance (TPM) through the integration of [1oT, Big Data Analytics, Digital Twins, Edge Al, and Cloud
Computing. It enables autonomous, predictive, and prescriptive maintenance, optimizing asset reliability, lifecycle
performance, and operational efficiency while reducing downtime.

The remainder of this paper is structured as follows: Section 2 presents a comprehensive literature review that
analyses existing TPM methodologies and their integration with digital technologies. Section 3 identifies the research
gap, highlighting key challenges and opportunities in the implementation of TPM 4.0. Section 4 details the proposed
methodology, outlining the architecture and operational mechanisms of the digital TPM 4.0 framework. Section 5
discusses results and key findings, evaluating the impact of TPM 4.0 on OEE, cost efficiency, and operational resilience.
Section 6 concludes the study and explores future research directions, including advancements in 5G-powered real-time
monitoring, blockchain-secured predictive maintenance, autonomous robotic maintenance, and edge Al-powered diagnostics.
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2. Literature Review

Continuous improvement in production enhances efficiency, quality, and cost reduction. Lean manufacturing
optimizes operations by eliminating waste and increasing value. This study reviews Total Productive Maintenance
(TPM), a proactive strategy for minimizing breakdowns, defects, and delays. TPM improves equipment reliability,
mitigates unplanned downtime, and reduces maintenance-related losses. Its global adoption has enhanced product
quality, reduced costs, and increased Overall Equipment Effectiveness (OEE). Table 1 provides a structured overview
of recent studies on TPM and its integration with Lean, Six Sigma (LSS), and DMAIC methodologies across various
industries. It highlights key aspects such as authors, contributions, industry applications, and main objectives, reflecting
the ongoing evolution of maintenance strategies toward greater efficiency, reliability, and performance. The findings
emphasize a shift toward data-driven, proactive, and continuous improvement-based maintenance approaches, aligning
with modern industrial advancements. The Reference column lists the primary author(s) and publication year, providing
context for each study. The Contribution column outlines the specific framework or methodology introduced, ranging
from traditional TPM models to Lean, Six Sigma, and DMAIC-based maintenance approaches. The Application column
identifies the industries where these frameworks were implemented, spanning manufacturing, petrochemicals, aviation,
and crude oil processing, among others. The Main Objectives column defines the study’s focus, such as enhancing OEE,
reducing downtime, increasing machine availability, and improving reliability.

A key insight from the table is that while TPM remains a fundamental maintenance strategy, its impact is
significantly enhanced when combined with Lean, Six Sigma, and DMAIC methodologies. For example, Trubetskaya
(2024) [7] and Gomaa (2023) [2] developed DMAIC-based frameworks to optimize maintenance effectiveness, while
Shannon (2023) [8] and West (2023) [9] integrated LSS principles to improve maintenance processes. Similarly, Al
Farihi (2023) [10] and Imanov (2021) [11] introduced Lean Maintenance frameworks, focusing on waste reduction,
shorter maintenance response times, and overall process efficiency. The studies span multiple industries, demonstrating
the flexibility and broad applicability of TPM. While manufacturing remains a dominant focus—including
pharmaceutical production, metal industries, and machining processes—TPM frameworks have also been applied in
asset-heavy industries such as petrochemicals, crude oil processing, aviation, and oil services. This widespread adoption
underscores TPM’s role in driving maintenance excellence across diverse operational environments.

Common objectives across these studies include improving OEE, which is a central focus in research, such as
Jurewicz (2024) [12], Ardi et al. (2023) [13], and Singha (2022) [14]. Reducing downtime is another critical goal,
particularly in industries where unplanned failures cause significant financial losses, as seen in Trubetskaya (2024) [7],
Macalinao (2024) [15], and Imanov (2021) [11]. Additionally, several studies emphasize enhancing machine reliability
and availability, especially in sectors like aviation, oil services, and pharmaceutical manufacturing, where system
failures can have severe operational and financial consequences.

Nardo et al. (2021) [2] present a systematic literature review on the evolution of maintenance within the Industry
4.0 paradigm, focusing on key publications from 2015 to early 2020. The study examines how digital technologies,
such as smartphones and tablets, have reshaped maintenance practices in industrial environments. It categorizes
contemporary maintenance management strategies and emerging trends, with an emphasis on the integration of Industry
4.0 technologies in manufacturing and maintenance operations. The paper also defines “Maintenance 4.0”, outlining its
principal benefits, challenges, and future directions for advancing smarter, more efficient maintenance management.

In conclusion, this literature review highlights the evolution of TPM strategies and their growing alignment with
Industry 4.0 principles. The integration of Lean, Six Sigma, and data-driven maintenance frameworks is enabling more
predictive, intelligent, and highly efficient maintenance practices. As industries continue to embrace digital
transformation, organizations that adopt these advanced TPM methodologies will be better positioned to achieve higher
operational efficiency, improved asset reliability, and long-term sustainability.

Total Productive Maintenance (TPM) plays a pivotal role in improving equipment reliability, minimizing downtime,
and enhancing operational efficiency [16—18]. Its integration with Lean Management principles, Industry 4.0
technologies, and advanced statistical methods has expanded its application across various industries, including
manufacturing, logistics, small and medium enterprises (SMEs), and non-production sectors such as healthcare, services,
and laboratories (Okoro 2024 [19], Rathi et al. 2024 [20], Samadhiya and Agrawal 2024a [21], Tortorella et al. 2024
[22]). As shown in Table 2, numerous studies demonstrate the effectiveness of TPM across sectors.

Biswas (2024) [23] and Jurewicz et al. (2024) [12] demonstrated significant improvements in Overall Equipment
Effectiveness (OEE) and reduced downtime in the steel manufacturing and automotive industries, respectively.
Innovations such as integrating TPM with IoT and big data analytics (Khosroniya et al., 2024 [24]) and using the
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Analytic Hierarchy Process (AHP) in cement plants (Amrina and Firda, 2024 [25]) have further enhanced TPM’s
adaptability. Additionally, Samadhiya and Agrawal (2024b) [26] highlighted the role of TPM in driving sustainability
and accelerating the adoption of Industry 4.0.

Sector-specific studies underscore TPM’s versatility. Harsanto and Yunani (2023) [27] applied TPM to power
distribution systems, achieving cost reductions and enhanced efficiency, while Shannon et al. (2023) [8] reported
improved OEE and reduced maintenance costs in Active Pharmaceutical Ingredient (API) plants.

Vaz et al. (2023) [28] evaluated the impact of TPM in Portuguese industries through a survey of 472 companies,
emphasizing the significance of planned maintenance and training. The study found that TPM practices most
significantly improved productivity, though the effect on costs was less pronounced. Similarly, Pinto et al. (2020) [29]
highlighted substantial gains in machine reliability and efficiency in the machining industry.

Other notable advancements include Kose et al. (2022) [30], who developed a framework for autonomous
maintenance (AM) using lean tools and axiomatic design (AD). Validated in a Turkish textile manufacturing system,
the framework reduced downtime by 69.2% and increased time between failures by 65.1%. Bashar et al. (2022) [31]
investigated the relationship between TPM, people management (PEM), and organizational performance in
Bangladesh’s apparel industry, emphasizing the importance of employee engagement in TPM practices. Flores and
Vega-Alvites (2022) [32] addressed downtime in the plastics sector by incorporating Lean tools such as 5S, SMED,
TPM, and Jidoka, achieving a 13% improvement in OEE and a 48% reduction in setup times.

Integrating TPM with continuous improvement tools, such as Kaizen events, further strengthens its impact on
innovation performance. Habidin et al. (2018) [33] showed that while Kaizen events do not directly influence the TPM-
innovation performance relationship, they enhance TPM’s role in driving innovation within the Malaysian automotive industry.

While TPM has demonstrated significant benefits, its reliance on static data and traditional methods limits its
potential in dynamic operational environments. To address these challenges, future advancements should focus on
integrating real-time data analytics for accurate failure predictions and dynamic maintenance scheduling (Wilson et al.,
2024 [34]; Wolska et al., 2023 [35]). Aligning TPM with supply chain management can optimize parts availability and
improve maintenance coordination. Al-driven decision tools could empower operators to make proactive, data-driven
decisions, enhancing maintenance outcomes.

Future research should prioritize the development of loT-enabled, real-time TPM metrics, integration with supply
chain systems, and Al for predictive maintenance. These innovations will make TPM a more dynamic and adaptable
system, improving resource coordination, reducing downtime, and achieving more efficient decision-making across
maintenance and supply chain operations.

Total Productive Maintenance (TPM) and Reliability-Centered Maintenance (RCM) are complementary strategies
that enhance equipment reliability and operational efficiency. TPM emphasizes proactive and preventive maintenance
by involving all employees in continuous improvement to maximize equipment effectiveness. RCM, on the other hand,
is a systematic approach that prioritizes maintenance tasks based on their impact on system reliability and safety. While
TPM focuses on eliminating equipment-related losses through routine inspections and operator involvement, RCM
analyzes failure modes and effects to implement the most cost-effective maintenance strategies. Integrating TPM and
RCM enables organizations to balance preventive and condition-based maintenance, thereby extending asset longevity,
reducing downtime, and optimizing maintenance resources.

Reliability-Centered Maintenance (RCM) is a vital methodology for improving asset reliability, optimizing
maintenance strategies, and minimizing unplanned downtime across various sectors (Rodriguez-Padial et al., 2024 [36]).
As shown in Table 3, extensive research highlights its effectiveness in aligning maintenance practices with both
operational and organizational objectives. For example, Liu et al. (2025) [37] applied RCM to high-speed rail facilities,
utilizing predictive models to prevent facility deterioration while reducing maintenance costs. Ali Ahmed Qaid et al.
(2024) [38] developed a fuzzy-FMECA-based framework for analyzing failure modes in manufacturing machinery,
enabling data-driven, criticality-focused maintenance strategies. In the utility sector, Asghari and Jafari (2024) [39]
used RCM for water treatment plant pumps, enhancing Mean Time Between Failures (MTBF) and operational
efficiency, while Cahyati et al. (2024) [40] achieved a 70% reduction in maintenance costs at a processing plant.
Industry-specific adaptations further emphasize RCM’s flexibility, with applications ranging from boiler engines (Sembiring,
2024) [41] to cement plants (Al-Farsi and Syafiie, 2023 [42]). Additionally, RCM has been integrated with Industry 4.0
technologies to optimize performance (Introna and Santolamazza, 2024 [43]) and improve resource allocation (Jiang et al.,
2024 [44]). Resende et al. (2024) [45] introduced a Fuzzy FMEA methodology for risk analysis in the acronautical sector,
improving risk prioritization and decision-making through Matlab’s Fuzzy Logic Toolbox. This approach demonstrated value
by addressing uncertainties and providing context-specific risk assessments for aeronautical and other industries.
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Previous studies, including those by Elijaha (2021) [46] and Rosita and Rada (2021) [47], validate RCM’s ability
to enhance asset reliability, reduce downtime, and achieve cost-effective maintenance strategies. These findings collectively
demonstrate RCM’s crucial role in improving operational efficiency and optimizing maintenance across various industries.

Gomaa (2025) [48] presents Reliability-Centered Maintenance (RCM) 4.0, an Al-powered framework that
integrates Artificial Intelligence, [loT, Digital Twins, and Big Data to enhance Reliability, Availability, Maintainability,
and Safety (RAMS) in smart industrial systems. By combining RCM with Lean Six Sigma’s DMAIC methodology
shifts maintenance from reactive to predictive and autonomous, enabling real-time anomaly detection, intelligent
diagnostics, and adaptive strategies. This approach boosts operational efficiency, minimizes downtime, and optimizes
asset performance. Future work will explore 5G connectivity, autonomous robotics, blockchain security, and edge Al
to advance next-generation digital maintenance ecosystems further.

Despite its proven benefits, traditional RCM approaches often rely on static schedules and lack integration with
real-time data, limiting their adaptability to dynamic operational environments. Key research gaps include the
development of adaptive frameworks that utilize real-time data to assess and prioritize failure modes, exploring the
influence of human decision-making on RCM effectiveness, and integrating continuous monitoring and predictive
analytics for proactive maintenance. Future research should focus on creating flexible, real-time RCM frameworks that
incorporate operational data and advanced analytics, while also addressing the role of human factors in decision-making
to improve implementation. These advancements will enhance asset performance, reduce unplanned downtime, and
optimize maintenance practices, further solidifying RCM’s importance in modern asset management.

Table 1. Summary of TPM Studies.

Reference Contribution Application Main Objectives
1 Jurewicz, 2024, [11] Proposed a TPM framework Machinery fleet Improving OEE
Developed a DMAIC-based maintenance o . . .
2 Trubetskaya, 2024, [7] Dairy industry Reducing maintenance downtime
framework
3 Macalinao, 2024, [15] Described a TPM framework Pharmaceu?lcal Reducing maintenance downtime
manufacturing

4 Gomaa, 2023, [2]

Reported a DMAIC-based maintenance

framework

Petrochemical company

Improving OEE and reliability

5 Shannon, 2023, [8]

Proposed a Lean Six Sigma (LSS)
framework for maintenance

Pharmaceutical ingredient
plant

Improving OEE and reliability

6 West, 2023, [9]

Developed an LSS-based maintenance

framework

Oil service company

Increasing machine availability

7 Al Farihi, 2023, [10]

Developed a Lean Maintenance
framework

Wiring harness production

Reducing unplanned downtime
and MTTR

8 Ardietal, 2023, [13]

Developed a TPM framework

Cut-size line machines

Improving OEE

9 Antosz, 2022, [16]

Reported an LSS-based maintenance

framework

Floor coverings company

Improving machine reliability

10  Korchagin, 2022, [17]

Developed a Lean Maintenance
framework

Aviation industry

Improving maintenance process
efficiency

11 Drewniak, 2022, [18]

Proposed a TPM framework

Crude oil processing

Improving OEE and reliability

12 Singha, 2022, [14]

Developed a TPM framework

Metal industry

Improving OEE

13 Imanov, 2021, [11]

Proposed a Lean Maintenance framework

Aircraft maintenance

Reducing aircraft downtime

Table 2. Summary of the Review of Total Productive Maintenance.

Aspect Details

Role of TPM Enhances equipment reliability, minimizes downtime, and improves operational efficiency.

Applications Across Manufacturing, logistics, SMEs, healthcare, services, laboratories, power distribution, pharmaceutical, cement,
Sectors and machining industries.

Integration with
Technologies

- IoT and big data analytics (Khosroniya et al., 2024 [24]).
- AHP for decision-making in cement plants (Amrina and Firda, 2024 [25]).
- Industry 4.0 tools to drive sustainability.

Sector-Specific
Successes

- API plants: Lower maintenance costs (Shannon et al., 2023 [8]).

- Steel manufacturing and automotive industries: Improved OEE and reduced downtime (Biswas, 2024 [23];
Jurewicz et al., 2024 [12]).

- Autonomous Maintenance (AM) design using lean tools and axiomatic design (Kose et al., 2022 [30]): Reduced
downtime by 69.2%, increased time between failures by 65.1%.

- Positive effects of planned maintenance and training on productivity in Portuguese industries (Vaz et al., 2023
Organizational Impacts ~ [28]).

- Role of TPM in driving innovation (Habidin et al., 2018 [33]).

- 5S, SMED, TPM, Jidoka in the plastics industry: Improved OEE by 13%, reduced setup times by 48% (Flores
and Vega-Alvites, 2022 [32]).

- Reliance on static data and traditional methods.

Key Frameworks

Advanced Tools Used

Challenges
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- Limited adaptability to dynamic operational environments.

- Real-time data analytics for failure predictions (Gomaa, 2025a [5]; Gomaa, 2025b [6])

Future Directions - Al-driven tools for dynamic maintenance scheduling and proactive decision-making.

- Integration with supply chain systems.

Table 3. Summary of the Review of Reliability-Centered Maintenance.

Aspect Details

Role of RCM

Improves asset reliability, optimizes maintenance strategies, and minimizes unplanned downtime across
various sectors (Rodriguez-Padial et al., 2024 [36]).

Key Applications and Research

- High-speed Rail Facilities: Liu et al. (2025) [37] used predictive models to prevent deterioration and
reduce costs.

- Manufacturing Machinery: Ali Ahmed Qaid et al. (2024) [38] applied fuzzy-FMECA for criticality-
based maintenance strategies.

- Water Treatment Plants: Asghari and Jafari (2024) [39] improved MTBF and operational efficiency.

- Processing Plants: Cahyati et al. (2024) [40] achieved a 70% reduction in maintenance costs.

- Boiler Engines & Cement Plants: Applications in various industries (Sembiring, 2024 [41]; Al-Farsi and
Syafiie, 2023 [42]).

- Industry 4.0 Integration: Introna and Santolamazza (2024) [43]; Jiang et al. (2024) [44] optimized
performance and resource allocation.

Validated by studies like Elijaha (2021) [46] and Rosita and Rada (2021) [47] for enhancing asset

RCM Effectiveness reliability, reducing downtime, and enabling cost-effective strategies.
- Static schedules in traditional RCM models, lack of real-time data integration.
Challenges and Research Gaps - Need for adaptive frameworks that incorporate real-time data and predictive analytics.

- Exploration of human decision-making’s impact on RCM effectiveness.

Future Research Directions

- Focus on flexible, real-time RCM frameworks integrating operational data and advanced analytics.
- Addressing human factors in RCM decision-making for improved implementation.

3. Research Gap Analysis

The evolution of Total Productive Maintenance (TPM) 4.0 in the era of Industry 4.0, Smart Manufacturing, and Al-

driven automation necessitates a shift from conventional preventive and predictive maintenance to autonomous, self-
optimizing, and cyber-resilient maintenance ecosystems. While Artificial Intelligence (Al), Industrial Internet of Things (IIoT),
Digital Twins, Edge Al, Blockchain, and Federated Learning continue to advance, significant research gaps persist, hindering
scalability, adaptability, and real-time decision-making in next-generation maintenance frameworks. As shown in Table 4,
overcoming these gaps is essential to realizing zero-downtime manufacturing, cost-efficient maintenance, sustainable industrial
operations, and intelligent self-healing systems. This section outlines key research gaps and future research directions.

M

@

A3)

Al-Augmented TPM 4.0: From Predictive to Autonomous Maintenance: Current Al-driven predictive maintenance
(PdM) frameworks remain reactive rather than proactive, lacking cognitive intelligence for self-learning and self-
adapting decision-making. The Failure Mode and Effects Analysis (FMEA) model remains static and manually
updated, making it inadequate for dynamic industrial environments. Future research should focus on Cognitive
FMEA, integrating Bayesian networks, reinforcement learning, and explainable Al (XAI) to achieve real-time, adaptive
failure classification. Additionally, existing Al models struggle with explainability and adaptability, limiting industrial
trust. A significant research gap exists in hybrid Al architectures that combine deep learning, reinforcement learning,
genetic algorithms, and physics-informed Al to develop self-optimizing maintenance strategies. Moving beyond
predictive maintenance, Al-powered prescriptive maintenance should leverage causal inference, reinforcement learning,
and cognitive decision-making to recommend and execute maintenance actions in real-time autonomously.
High-Fidelity Digital Twins for Real-Time Maintenance Optimization: Despite widespread adoption, Digital Twins face
limitations in real-time predictive and prescriptive maintenance. The primary challenge is latency in multi-sensor
fusion, leading to delays in fault detection and diagnostics. Future research should explore neuromorphic computing,
event-driven Al architectures, and edge Al processing to enhance real-time sensor fusion and anomaly detection. Moreover,
most Digital Twins are static models that require manual updates, which reduces their effectiveness in dynamic
environments. The next generation should be self-learning, leveraging zero-shot learning, transfer learning, and federated
reinforcement learning (FRL) for continuous adaptation. Another key challenge is scalability, as integrating Digital Twins
across multi-tier supply chains remains complex. Federated Digital Twin architectures should be developed to enable
decentralized, Al-driven asset monitoring, enhancing resilience and adaptability across large-scale industrial networks.
Federated Learning for Secure and Decentralized Al in Maintenance: Federated Learning (FL) presents a promising
framework for collaborative predictive maintenance by enabling industrial plants to train AI models without
sharing raw data. However, security vulnerabilities, such as adversarial attacks, model poisoning, and data leakage,
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“)

)

(6)

present significant risks. Future research should explore blockchain-enhanced FL frameworks incorporating
differential privacy, homomorphic encryption, and zero-knowledge proofs (ZKP) to safeguard sensitive industrial
data. Another critical challenge is non-IID (non-independent and identically distributed) data, which negatively
impacts Al model generalizability across different industrial plants. Quantum-assisted federated learning could
significantly enhance model efficiency in handling non-IID datasets. Additionally, FL models often face high
computational costs and slow training times, making real-time applications infeasible. Future research should
investigate energy-efficient FL architectures using neuromorphic Al and edge-compressed federated learning to
optimize both processing power and scalability.

Blockchain-Enabled Smart Contracts for Secure Maintenance Ecosystems: While blockchain technology enhances
tamper-proof predictive maintenance and decentralized asset management, latency and computational overhead
remain critical barriers to real-time applications. Traditional blockchain protocols are inefficient for Al-driven
predictive maintenance, necessitating research into Directed Acyclic Graph (DAG)-based Distributed Ledger
Technologies (DLTs) for high-speed, low-latency transaction processing. Moreover, Al-integrated smart contracts
remain underdeveloped, limiting their potential to automate and optimize maintenance workflows. Future research
should focus on self-adjusting Al-powered smart contracts that dynamically adapt to asset health conditions and
autonomously trigger maintenance actions. Additionally, blockchain-based maintenance systems remain vulnerable to
ransomware, quantum attacks, and Industrial IoT (IloT) security breaches. Post-quantum cryptographic blockchain
solutions will be critical in ensuring cyber-resilient, decentralized maintenance ecosystems.

Autonomous Robotic Maintenance: Towards Self-Repairing Systems: Current maintenance robots lack cognitive
diagnostics and adaptive intelligence, limiting their ability to manage complex repair tasks autonomously. Future
TPM 4.0 systems should develop self-diagnosing robotic maintenance agents powered by Deep Reinforcement
Learning (DRL), neuromorphic Al, and cognitive analytics to enable real-time self-assessment and autonomous
troubleshooting. An emerging research area is swarm intelligence in robotic maintenance, where multi-agent robotic
teams collaborate to optimize maintenance tasks. Future research should explore multi-agent reinforcement learning
(MARL) to enable self-organizing, decentralized robotic maintenance systems. Additionally, bio-inspired robotics for
extreme environments remains underexplored. Bio-mimetic, self-healing robotic systems could enhance maintenance
efficiency and safety in hazardous industrial settings, such as chemical plants, offshore rigs, and nuclear facilities.
5G/6G-Powered Al-Driven Edge Intelligence for Real-Time Maintenance: The adoption of 5G/6G networks in Al-
driven predictive maintenance enables ultra-low-latency, real-time asset monitoring. However, existing edge Al
frameworks lack the computational efficiency required for real-time decision-making. Future research should
explore Al-optimized edge intelligence, integrating spiking neural networks (SNNs), edge Al accelerators, and
real-time neuromorphic processors to enable low-latency, on-device predictive analytics. Another emerging area is
Quantum IoT (QIoT) for anomaly detection, where Quantum Machine Learning (QML) and next-generation loT
sensors could enable instant fault detection and enhanced predictive capabilities. Additionally, 6G-powered smart
factories will require ultra-reliable low-latency communication (URLLC) to support real-time Digital Twins and Al-
driven maintenance automation. Future research should focus on 6G-powered decentralized intelligence, enabling
fully autonomous, real-time maintenance ecosystems with enhanced cybersecurity and operational scalability.

In conclusion, the next phase of TPM 4.0 necessitates breakthroughs in Al-augmented prescriptive maintenance,

self-learning Digital Twins, federated learning, blockchain-secured predictive maintenance, autonomous robotic self-repair
systems, and 5G/6G-powered edge intelligence. Addressing these research gaps will lead to zero-downtime, self-optimizing,
cyber-resilient, and cost-efficient industrial maintenance ecosystems, redefining the future of Al-driven Smart Manufacturing.

Table 4. Research Gap Analysis for TPM 4.0 in Smart Manufacturing.

Research Gap Key Challenges Future Research Directions

Al-Augmented TPM  Limited Al adaptability; Static FMEA; Lack C(')%lmtlve FMEA with Ba'y?smn netW(l)rks gnd.XAI; Hybrld Al
40 of explainability with deep learning and reinforcement learning; Al-driven

prescriptive maintenance

Neuromorphic computing for real-time processing; Self-

High-Fidelity Digital ~ Latency in multi-sensor fusion; Static models; Jearning Digital Twins; Federated architectures for adaptive

Twins Scalability issues .S
monitoring
Federated Learning Security vulnerabilities; Non-IID data; High Blockchain-secured FL; Quantum-as'smted FL for
3 . - . heterogeneous datasets; Energy-efficient FL with
in Maintenance computational costs .
neuromorphic Al
4 Blockchain-Enabled ~ High latency; Limited Al integration; DAG-based DLTs for fast transactions; Al-driven smart

Smart Contracts Cybersecurity risks contracts; Post-quantum cryptographic blockchain solutions
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. Limited self-diagnosis; Inefficient DRL and neuromorphic Al for self-diagnosing robots; Multi-
Autonomous Robotic . . . . e . .
5 - collaboration; Challenges in extreme agent reinforcement learning; Bio-mimetic self-healing robotic
Maintenance .
environments systems
5G/6G-Powered Inefficient real-time Al; Large-scale anomaly  Al-optimized edge intelligence with SNNs; Quantum IoT for
6 . detection limitations; Need for ultra-reliable real-time fault detection; 6G-powered decentralized
Edge Intelligence . .
networks intelligence

4. Research Methodology

This study develops a TPM 4.0 framework that integrates Total Productive Maintenance (TPM) with Lean Six
Sigma’s DMAIC methodology to enhance Reliability, Availability, Maintainability, and Safety (RAMS) in Smart
Manufacturing. Traditional TPM relies on static failure assessments and fixed schedules, limiting adaptability in
dynamic production environments. To address this, the research introduces a cyber-physical maintenance approach that
leverages Industry 4.0 technologies for an intelligent, self-optimizing system. The framework integrates Al and Machine
Learning for predictive maintenance, IloT for real-time monitoring, Digital Twins for failure prediction and
optimization, and Big Data Analytics for data-driven decision-making. This transforms TPM into a proactive,
autonomous system that continuously refines maintenance strategies through real-time monitoring and Al-driven
analytics, maximizing Overall Equipment Effectiveness (OEE) while minimizing downtime and costs. To validate TPM
4.0, the study employs a multi-method approach, combining Digital Twin simulations, industrial case studies, and
statistical analysis of RAMS and OEE metrics. By merging Lean Six Sigma with Industry 4.0-driven predictive
maintenance, this research pioneers a next-generation TPM paradigm, enhancing resilience, adaptability, and efficiency
in Smart Manufacturing.

4.1. TPM 4.0 Pillars and Industry 4.0 Integration

Total Productive Maintenance (TPM) 4.0 represents a paradigm shift in maintenance and asset management,
integrating Industry 4.0 technologies to enhance efficiency, reliability, and adaptability in Smart Manufacturing. While
traditional TPM focuses on proactive maintenance strategies, TPM 4.0 leverages Artificial Intelligence (Al), Industrial
Internet of Things (I1oT), Digital Twins, and Big Data Analytics to create an autonomous, predictive, and data-driven
maintenance ecosystem. Table 5 outlines the eight core TPM 4.0 pillars, detailing their objectives, implementation
approaches, and the Industry 4.0 technologies that enable them. By transforming maintenance into a real-time,
intelligent system, TPM 4.0 enhances Overall Equipment Effectiveness (OEE), minimizes downtime, and ensures
continuous process improvement, driving operational excellence in modern manufacturing environments.

(1) Autonomous Maintenance: Traditional maintenance models rely heavily on scheduled inspections and reactive
repairs, often leading to inefficiencies and unexpected downtime. TPM 4.0 enhances Autonomous Maintenance
by integrating Al-powered diagnostics, IloT-enabled condition monitoring, and smart sensor networks to detect
anomalies in real-time. Edge computing and machine learning algorithms provide instant alerts and predictive
insights, enabling frontline workers to take proactive measures before failures occur. This shift reduces dependency
on centralized maintenance teams, minimizes downtime, extends asset lifecycles, and improves overall system
reliability. Additionally, digital work instructions and augmented reality (AR)-based guidance empowers operators
to perform complex maintenance tasks with precision, enhancing efficiency and reducing errors.

(2) Planned Maintenance: Conventional planned maintenance follows a fixed schedule, which can result in unnecessary
servicing or unexpected breakdowns. TPM 4.0 introduces predictive and prescriptive maintenance models,
leveraging Al-driven analytics, Digital Twins, and federated learning architectures. Predictive maintenance
algorithms analyze sensor data to anticipate failures, while prescriptive Al models recommend optimized
maintenance actions based on real-time conditions. Cloud-edge computing ensures fast and decentralized decision-
making across industrial environments. This transformation from fixed schedules to dynamic, data-driven maintenance
planning enhances asset utilization, reduces costs, and improves Overall Equipment Effectiveness (OEE).

(3) Quality Maintenance: Defects, process deviations, and inconsistent quality control impact productivity and
profitability. TPM 4.0 enhances Quality Maintenance through machine vision, Al-powered defect detection, and
blockchain-secured traceability. Smart cameras and deep learning algorithms monitor production processes in real-
time, detecting defects, variations, and failures before they affect product quality. Additionally, blockchain
technology ensures transparent and tamper-proof quality records, improving compliance and traceability across
the supply chain. By employing self-learning quality control mechanisms, TPM 4.0 supports zero-defect
manufacturing, minimal rework, and enhanced customer satisfaction.
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(4) Focused Improvement (Kobetsu Kaizen): Kobetsu Kaizen focuses on structured, continuous improvement. TPM
4.0 advances this pillar with Al-driven root cause analysis, real-time process optimization, and digital lean
management platforms. Al-powered predictive models analyze operational data to identify inefficiencies, suggest
corrective actions, and fine-tune production parameters autonomously. Collaborative digital platforms facilitate
real-time decision-making among cross-functional teams, streamlining problem-solving efforts. Robotic Process
Automation (RPA) and Al-driven workflow optimization further enhance productivity by eliminating repetitive
tasks, leading to sustained process excellence and increased throughput.

(5) Early Equipment Management: Designing maintenance-friendly equipment is key to minimizing lifecycle costs and
downtime. TPM 4.0 integrates Digital Twins, Al-driven failure simulations, and predictive wear modeling to
enhance equipment reliability during the design phase. Engineers leverage virtual prototyping and real-time
structural health monitoring to detect potential failure points before mass production. Additionally, smart materials
and embedded sensors provide continuous operational feedback, ensuring dynamic design improvements. These
innovations reduce early-life failures, enhance maintainability, and lower total cost of ownership (TCO).

(6) Training & Skill Development: As industries transition to Al-driven, digitalized maintenance ecosystems,
workforce upskilling is critical. TPM 4.0 incorporates Al-powered adaptive learning platforms, AR/VR-based
training, and interactive Digital Twins to enhance skill development. Augmented Reality (AR) smart glasses
provide real-time guidance, enabling technicians to execute complex tasks efficiently. Virtual simulations allow
workers to practice troubleshooting scenarios in a risk-free environment, improving expertise without production
downtime. Additionally, Al-driven competency mapping customizes training programs to individual learning
needs, ensuring a highly skilled, future-ready workforce.

(7) Safety, Health, and Environment (SHE): TPM 4.0 integrates smart safety systems, Al-driven risk assessment
models, and IoT-based real-time hazard monitoring to improve workplace safety and sustainability. Wearable
safety devices, fatigue detection sensors, and Al-powered ergonomic analysis prevent injuries by monitoring
worker conditions. Connected helmets and exoskeletons assist in physically demanding tasks, reducing strain and
injury risks. Additionally, blockchain-enabled environmental compliance tracking and Al-driven energy
optimization algorithms support eco-friendly manufacturing by reducing emissions and optimizing energy
consumption. These advancements enhance workplace safety, regulatory compliance, and sustainability, fostering
a zero-accident, zero-emission environment.

(8) Administrative & Support Functions: TPM 4.0 extends beyond production operations to business processes through
Al-enhanced decision support systems, cloud-based Enterprise Asset Management (EAM) solutions, and
blockchain-secured maintenance records. Al-driven predictive resource planning ensures optimal spare parts
inventory management, minimizing shortages and excess stock. Blockchain technology enhances maintenance
transparency, providing tamper-proof, auditable records that streamline compliance reporting. By integrating
automated workflow management, Digital Twin-based simulations, and Al-powered procurement optimization,
industries improve agility, reduce administrative costs, and enhance cross-functional collaboration.

In conclusion, TPM 4.0 represents a fundamental transformation in industrial maintenance by integrating
traditional TPM principles with Industry 4.0 innovations to develop intelligent, autonomous, and self-learning
maintenance ecosystems. Through Al, IIoT, Digital Twins, edge computing, and blockchain, industries shift from
reactive and preventive maintenance to predictive, prescriptive, and autonomous frameworks. This evolution enhances
OEE, reduces downtime, increases cost efficiency, and supports sustainable industrial operations. By implementing
TPM 4.0, industries establish a data-driven maintenance strategy that ensures long-term competitiveness and aligns
with the principles of Smart Manufacturing and Industry 5.0. As research and technology evolve, future advancements
will include 5G-enabled real-time monitoring, autonomous robotic maintenance, and Al-driven self-healing
manufacturing, further solidifying TPM 4.0 as the cornerstone of next-generation industrial maintenance.

Table 5. TPM 4.0 Pillars and Industry 4.0 Integration.

# Pillar Objective Approach Industry 4.0 Integration  Key Benefits
Operators perform routine
maintenance, preventing

IIoT sensors, Al Reduced downtime,
diagnostics, AR assistance  faster issue resolution

Autonomous Empower operators,
Maintenance enhance reliability

failures.
Transition to Real-time data enables Predictive analytics, Lower costs. optimized
2 Planned Maintenance condition-based Digital Twins, Al » OP

predictive strategies asset utilization

maintenance. monitoring
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Achieve zero defects, Automated systems ensure Al defect detection, Fewer defects, improved
enhance control defect-free production. Blockchain traceability compliance
Structured problem-

3 Quality Maintenance

Drive continuous . L Al root cause analysis, Increased efficiency,

4 Focused Improvement AR solving eliminates C

optimization ) S RPA, Digital Lean reduced waste
inefficiencies.

5 Early Equipment Design reliable, low- Embeds reliability innew  Digital Twins, Al failure Higher reliability,
Management maintenance assets equipment design. simulation, Smart sensors __extended lifespan
Training & Skill Enhance workforce Al-driven, AR/VR-based Al adaptive learning, Faster skill

6 L .. . . development, fewer
Development digital competency training programs. AR/VR simulations

human errors
Safety, Health & Ensure workplace Progctlve safety.and Smart safety systems, Fewer incidents,

7 . N environmental risk Wearable IoT, Al risk .

Environment (SHE) safety & sustainability . regulatory compliance
management. analysis
Administrative & Streamline processes, Opt.IH.lIZed planning, AI-drlveq planning, Better decision-making,

8 . . logistics, and data Blockchain records, .

Support Functions enhance compliance .. . seamless audits
management. Digital Twins

4.2. Implementing TPM 4.0: A DMAIC-Driven Intelligent Framework

Total Productive Maintenance (TPM) 4.0 marks a shift from reactive to Al-driven predictive and autonomous
maintenance. By integrating Industry 4.0 technologies with Lean Six Sigma’s DMAIC (Define-Measure-Analyze-
Improve-Control) methodology, TPM 4.0 enhances real-time asset monitoring, predictive diagnostics, and automated
interventions, ensuring maximum reliability, minimal downtime, and cost efficiency. Leveraging Al, the Industrial
Internet of Things (IloT), Digital Twins, Cloud-Edge Computing, and Advanced Analytics, TPM 4.0 replaces fixed
schedules with predictive, condition-based strategies, aligning maintenance with business objectives for agile, resilient
Smart Manufacturing. Table 6 outlines the DMAIC-driven TPM 4.0 framework, demonstrating how each phase
integrates Industry 4.0 technologies to enhance efficiency, reliability, and cost-effectiveness.

(1) Define: Strategic Asset Prioritization & Risk Assessment: This phase establishes TPM 4.0 by identifying critical
assets, maintenance objectives, and failure risks. Al-driven asset mapping, Digital Twins, and risk-based
prioritization classify equipment based on failure probability and operational impact. Failure Mode and Effects
Analysis (FMEA) pinpoints potential failures, while real-time data enhances decision-making. A data-driven
roadmap ensures maintenance aligns with business goals, optimizing resources and proactively mitigating risks.

(2) Measure: Real-Time Data Acquisition & Condition Monitoring: IloT sensors, edge computing, and cloud-based
analytics enable continuous condition monitoring and performance tracking. Key metrics, including Overall
Equipment Effectiveness (OEE), vibration analysis, thermal imaging, and Al-driven anomaly detection, are used
to assess asset health. Smart sensors stream real-time data to Al-powered diagnostics, shifting maintenance from
time-based to condition-based interventions for improved accuracy and efficiency.

(3) Analyze: Predictive Analytics & Failure Mode Classification: Big Data analytics, machine learning, and Digital
Twin simulations predict asset degradation and optimize maintenance strategies. Al-powered failure classification
enhances diagnostics, while predictive analytics forecast breakdowns before they occur. Root cause analysis
through FMEA and risk-based models strengthens reliability-centered maintenance, reducing unplanned downtime
and improving asset performance.

(4) Improve: Al-Driven Autonomous Maintenance & Optimization: Al-driven models, robotic maintenance systems,
and adaptive automation optimize execution. Intelligent decision-making supports real-time scheduling, dynamic
work orders, and autonomous robotic repairs. Cognitive automation enables self-adjusting workflows, reducing
unnecessary interventions while ensuring asset reliability. Al-powered adaptive control enhances efficiency, cost
reduction, and overall equipment effectiveness.

(5) Control: Continuous Optimization, Cybersecurity & Scalable Networks: The Control phase ensures TPM 4.0
remains secure, scalable, and continuously improving. Federated learning enables decentralized Al training while
preserving data privacy. Blockchain-secured predictive workflows enhance data integrity, while 5G-enabled
monitoring strengthens reliability and connectivity. Cyber-physical security systems and Al-driven anomaly
detection safeguard assets, establishing a resilient, intelligent maintenance ecosystem.

In conclusion, TPM 4.0 revolutionizes maintenance by integrating Al-driven intelligence, predictive analytics, and

autonomous interventions within the DMAIC framework. This transformation enhances asset availability, cost
efficiency, and operational resilience, driving sustainable excellence in Smart Manufacturing.
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Table 6. DMAIC-Driven TPM 4.0 Framework.

Phase Objective Key Actions Industry 4.0 Integration Outcomes
Identify critical assets ~ Asset classification, FMEA, risk- Al-driven asset mapping, Optlm{zed resource
Define . BT .. . . allocation, reduced failure
& risks based prioritization Digital Twin modeling risks
Capture real-time IToT sensor deployment, OEE IIoT, Al-powered anomaly Early failure detection, data-
Measure . L. . . . . .
asset health tracking, condition monitoring detection, Edge computing driven maintenance
Analvze Predict failures & RCA, predictive analytics, failure Machine Learning, Big Data,  Proactive maintenance,
Y optimize strategies classification Digital Twin simulations reduced downtime
Automate & optimize  Al-driven scheduling, robotic Self-learning AlI, Cognitive Cost reduction, enhanced
Improve . . . h . . . .
maintenance interventions, adaptive automation  automation, RPA OEE, real-time optimization
Ensure security & Cybersecurity measures, federated Al anomaly detection, 5G- Resilient, secure, and scalable
Control I . . . .
scalability learning, blockchain enabled monitoring maintenance network

4.3. Strategic Objectives and KPlIs for TPM 4.0 Implementation

TPM 4.0 adoption requires a data-driven approach that integrates Al-driven predictive analytics, [oT-enabled asset

monitoring, and autonomous decision-making. As industries transition to cyber-physical maintenance ecosystems,
organizations must define clear strategic objectives and performance-driven KPIs to enhance reliability, cost efficiency,
and resilience. This section presents a comprehensive framework for aligning TPM 4.0 objectives with real-time
performance tracking, leveraging Al, Digital Twins, and predictive maintenance algorithms. Table 7 outlines key
strategic objectives and KPIs, incorporating Industry 4.0 technologies such as Al, IloT, Digital Twins, and Edge Computing
to optimize maintenance performance, reduce costs, enhance sustainability, and improve workforce productivity.

Q)

2

3

4

)

(6)

(7

Maximizing asset reliability and availability is critical to reducing unplanned downtime and improving equipment
performance. KPIs such as Mean Time Between Failures (MTBF) and Mean Time to Repair (MTTR) measure
system reliability and response efficiency. Al-driven predictive maintenance, Digital Twins, and real-time
monitoring ensure failures are anticipated and prevented, resulting in higher uptime and operational stability.
Optimizing maintenance costs and resource utilization focuses on reducing expenditures while maintaining
efficiency. Tracking maintenance costs as a percentage of revenue ensures cost-effectiveness, while loT-enabled
condition monitoring adoption reflects the degree of smart technology deployment. Al-based inventory
optimization prevents overstocking and stockouts, ensuring spare parts are available without excessive investment,
thus reducing waste and unnecessary expenditures.

Leveraging Al IoT, and Edge Computing enables autonomous, self-adaptive maintenance. Edge Al response time
measures how quickly Al detects and responds to anomalies, reducing reaction time. Digital Twin simulation
accuracy ensures predictive models align with real-world failures. Automated work order execution and self-
healing system activation improve maintenance efficiency by allowing machines to diagnose and correct issues,
enhancing overall productivity autonomously.

Sustainability and ESG compliance play a crucial role in maintenance strategies, aligning operations with environmental
goals and regulatory requirements. KPIs such as energy efficiency improvement and carbon footprint reduction track
Al-driven energy optimization and emission control. Compliance scores assess adherence to global maintenance
standards, such as ISO 55000, while waste reduction KPIs measure sustainability efforts. Industry 4.0 technologies
ensure maintenance operations contribute to environmental sustainability while enhancing operational efficiency.
Developing autonomous, self-learning maintenance systems ensures continuous improvement. Al self-learning
model accuracy evaluates how well Al adapts and refines maintenance strategies. Automated failure diagnosis rate
measures Al’s ability to identify and address root causes correctly. The continuous improvement index assesses
Al-driven refinements, ensuring maintenance systems evolve and optimize over time without human intervention.
Enhancing workforce productivity and digital skill development ensures human workers are equipped with the
knowledge and tools needed for Industry 4.0-driven maintenance. Al-assisted maintenance efficiency measures
AT’s role in supporting human tasks, improving speed and accuracy. The adoption of Augmented Reality (AR) for
training and remote troubleshooting enhances workforce capabilities. Workforce digital training completion rates
ensure employees are prepared for Al-driven maintenance processes, reducing errors and improving productivity.
Improving resilience and emergency maintenance preparedness is vital to minimizing disruptions and maintaining
operational continuity. Emergency downtime response time measures the speed at which failures are detected and
recovered. Backup system activation rates track the effectiveness of redundancy mechanisms in maintaining
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uptime. Al-driven fault escalation ensures critical failures are addressed swiftly, reducing risks and enhancing
emergency preparedness.

Overall, this table provides a structured framework for implementing TPM 4.0, integrating smart technologies to
transform maintenance from a reactive, cost-intensive process into an intelligent, proactive, and self-optimizing system.
By leveraging Al IoT, and advanced analytics, TPM 4.0 ensures reliability, efficiency, sustainability, and resilience,

driving the future of smart maintenance in manufacturing.

Table 7. Strategic Objectives & KPIs for TPM 4.0 Implementation.

#  Strategic Objective

Key Performance Indicators
(KPIs)

Formula/Measurement

Industry 4.0 Relevance &
Impact

Maximize Asset
1 Reliability &
Availability

Mean Time Between Failures
(MTBF)

Total Operating Time/Number of
Failures

Al-driven predictive maintenance
minimizes unexpected
breakdowns.

Mean Time to Repair (MTTR)

Total Downtime/Number of
Repairs

Al-powered diagnostics reduce
repair time.

Overall Equipment Effectiveness
(OEE)

Availability x Performance x
Quality

Real-time monitoring enhances
reliability and performance.

Failure Detection Lead Time
(FDLT) (%)

(Time Before Al Prediction/Time
Before Actual Failure) x 100

Measures Al’s effectiveness in
early failure detection.

Predictive Maintenance Accuracy
(%)

(Correct Al Predictions/Total
Predictions) x 100

Evaluates Al & IoT-enabled
failure forecasting precision.

Optimize Maintenance
2 Costs & Resource
Utilization

Maintenance Cost as % of
Revenue

(Total Maintenance Cost/Total
Revenue) x 100

Al-driven maintenance reduces
costs and optimizes resource
allocation.

Reduction in Unplanned
Downtime (%)

(Previous Downtime—Current
Downtime)/Previous Downtime X
100

Quantifies the impact of predictive
maintenance.

IoT-Enabled Condition Monitoring
Adoption (%)

(IoT-Monitored Assets/Total
Assets) x 100

Tracks real-time predictive
maintenance implementation.

AI-Optimized Spare Parts
Inventory Reduction (%)

(Previous Inventory Cost—
Current Inventory Cost)/Previous
Inventory Cost x 100

Reduces overstock and stockouts
through Al-optimized inventory.

Leverage Al IoT &
3 Edge Computing for
Smart Maintenance

Edge Al Response Time (ms)

Time from Anomaly Detection to
Automated Response

Measures Al-driven maintenance
automation speed.

Digital Twin Simulation Accuracy
(o)

(Predicted Failures Matched with
Actual Failures)/Total Failures x
100

Assesses Digital Twin reliability
in predictive maintenance.

Automated Work Order Execution
Rate (%)

(AI-Generated Work Orders/Total
Work Orders) x 100

Tracks Al-driven maintenance
workflow automation.

Self-Healing System Activation
Rate (%)

(Self-Corrected Failures/Total
Failures) X 100

Measures Al’s ability to
autonomously resolve issues.

Enhance Sustainability
& ESG Compliance

Energy Efficiency Improvement
(%)

(Previous Energy Use—Current
Energy Use)/Previous Energy Use
x 100

Al optimizes energy consumption
across industrial assets.

Carbon Footprint Reduction (%)

(Previous CO2 Emissions—
Current CO2 Emissions)/Previous
CO: Emissions x 100

Aligns maintenance practices with
sustainability goals.

Regulatory Compliance Score

Compliance Rating (ISO 55000,
IEC 61508, etc.)

Tracks adherence to industry-
specific standards.

Waste Reduction in Maintenance
(%)

(Previous Waste Generated—
Current Waste)/Previous Waste x
100

Measures sustainability
improvements in maintenance.

Develop Autonomous,
5  Self-Learning
Maintenance Systems

Al Self-Learning Model Accuracy
(%)

(Correct AI Model
Adjustments/Total Adjustments)
x 100

Evaluates Al adaptability in
optimizing maintenance strategies.

Automated Failure Diagnosis Rate
(%)

(Al-Diagnosed Failures/Total
Failures) x 100

Tracks AI’s efficiency in
identifying root causes.

Continuous Improvement Index

Rate of AI-Optimized
Maintenance Process Refinement

Measures Al-driven improvements
in maintenance practices.

Anomaly Detection Sensitivity
(o)

(Detected Anomalies/Total
Anomalies) x 100

Assesses Al’s effectiveness in
identifying complex failure
patterns.

Enhance Workforce
6  Productivity & Digital
Skill Development

Al-Assisted Maintenance
Efficiency (%)

(AI-Supported Tasks/Total Tasks)
x 100

Evaluates AI’s role in augmenting
human maintenance capabilities.

Augmented Reality (AR)
Maintenance Adoption (%)

(AR-Guided Repairs/Total
Repairs) x 100

Tracks AR’s role in remote
troubleshooting and training.
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Digital Workforce Training (Employees Trained on Digital Measures workforce readiness for
Completion Rate (%) RCM/Total Workforce) X 100 digital transformation.

(Robotic Maintenance
Tasks/Total Maintenance Tasks)

Maintenance Robotics Assesses automation in

Deployment Rate (%) « 100 maintenance operations.
Emergency Downtime Response Time from Failure Detection to Ensures rapid response to critical
Improve Resilience & Time (min) _ Initial Recovery system failures.
Emergency Backup System Activation Rate (Sugce;sful Backup . Mg@sures system redundancy and
7 . (%) Activations/Total Failures) x 100 resilience.
Maintenance - -
Preparedness Al-Driven Fault Escalation (Correct Escalations/Total Ensures AI-drlven.escqlanf)n .
Efficiency (%) Escalations) x 100 reduces response time in high-risk

failures.

5. Conclusions and Future Work

This study introduces TPM 4.0, an advanced maintenance framework that redefines Total Productive Maintenance
(TPM) by leveraging Industry 4.0 technologies, including [1oT, Big Data Analytics, Digital Twins, Edge Al, and Cloud
Computing. By shifting from reactive and time-based maintenance to autonomous, predictive, and prescriptive
strategies, TPM 4.0 enhances asset reliability, optimizes lifecycle performance, and minimizes operational disruptions.
Through real-time sensor fusion, Al-driven diagnostics, and intelligent decision-support systems, this framework fosters
a resilient, adaptive, and data-driven industrial ecosystem.

A key contribution of this research is the seamless integration of TPM principles with Lean Six Sigma’s DMAIC
methodology, offering a structured, data-driven approach to failure mode classification, risk-based prioritization, and
real-time performance optimization. The incorporation of IloT-enabled condition monitoring, Digital Twin-powered
simulations, and machine learning-driven predictive analytics enable real-time anomaly detection, cognitive diagnostics,
and dynamic asset management. Additionally, federated learning enhances scalability, security, and collaboration by
enabling decentralized Al model training while preserving data integrity and privacy.

By positioning TPM 4.0 as a foundation for Smart Manufacturing, this research bridges the gap between traditional
maintenance and Al-driven automation, cognitive analytics, and digital sustainability. Al-powered decision-making,
real-time Digital Twins, and self-learning maintenance algorithms facilitate continuous asset monitoring, autonomous
optimization, and proactive failure prevention. Furthermore, blockchain technology enhances data security, integrity,
and transparency, mitigating cybersecurity risks in interconnected industrial environments. As industries advance
toward Industry 5.0, TPM 4.0 paves the way for intelligent, cyber-resilient, and self-optimizing maintenance ecosystems,
driving the future of autonomous and sustainable manufacturing.

While this study lays a strong foundation for intelligent maintenance ecosystems, future research will focus on
enhancing scalability, security, and automation capabilities to improve maintenance efficiency further. Advancements
in 5G-powered real-time asset monitoring will enable instantaneous condition-based monitoring and remote asset
management, allowing industries to respond to maintenance needs in real-time. Blockchain-secured predictive
maintenance will ensure tamper-proof maintenance records, secure data exchange, and transparent equipment
performance tracking, fostering trust and security across decentralized industrial networks. Additionally, Al-driven
autonomous robotic maintenance systems will be capable of self-diagnosing, repairing, and optimizing industrial assets
in real-time, reducing reliance on manual intervention and significantly improving operational efficiency.

By integrating these emerging technologies, TPM 4.0 will pave the way for fully autonomous, self-healing, and
cyber-resilient maintenance ecosystems, driving the next generation of smart manufacturing environments that are more
efficient, adaptive, and secure.

Ethics Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.



Intelligent and Sustainable Manufacturing 2025, 2, 10019 15 of 17

Funding

This research received no external funding.

Declaration of Competing Interest

The authors declare no conflicts of interest.

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Mouhib Z, Naciri L, Gallab M, Merzouk S, Soulhi A, Bhiri BEL, et al. TPM and TQM: What Connections and How They Are
Changing Through Industry 4.0 Technologies? In Proceedings of the International Conference on Advanced Technologies for
Humanity; Springer Nature: Cham, Switzerland, 2022; pp. 125-134. doi:10.1007/978-3-031-46849-0 14.

Nardo MD, Madonna M, Addonizio P, Gallab M. A mapping analysis of maintenance in Industry 4.0. J. Appl. Res. Technol.
2021, 79, 653-675. doi:10.22201/icat.24486736€.2021.19.6.1460.

Gomaa AH. Improving Shutdown Maintenance Management Performance Using Lean Six Sigma Approach: A Case Study.
Int. J. Appl. Phys. Sci. 2024, 10, 1-14. doi:10.20469/ijaps.10.50001.

Gomaa AH. Enhancing proactive maintenance of critical equipment by integrating digital twins and lean six sigma approaches.
Int. J. Mod. Stud. Mech. Eng. 2024, 10, 20-35. doi:10.20431/2454-9711.1001003.

Gomaa AH. Optimizing Asset Integrity for Critical Manufacturing Systems Using Advanced Proactive Maintenance Strategies.
Int. J. Emerg. Sci. Eng. 2025, 13,21-33.

Gomaa AH. Maintenance 4.0: Optimizing Asset Integrity and Reliability in Modern Manufacturing. Int. J. Inven. Eng. Sci.
2025, 12, 18-26.

Trubetskaya A, Ryan A, Powell S. Utilising a hybrid DMAIC/TAM model to optimise annual maintenance shutdown
performance in the dairy industry: a case study. Int. J. Lean Six Sigma 2024, 15, 70-92. doi:10.1108/1JLSS-05-2023-0083.
Shannon N, Trubetskaya A, Igbal J. A Total Productive Maintenance & Reliability Framework for an Active Pharmaceutical
Ingredient Plant Utilising Design for Lean Six Sigma. Heliyon 2023, 9, €20516. doi:10.1016/j.heliyon.2023.e20516.

West A, Okafor B. Implementation of Lean Six Sigma for Strategic Maintenance Management. Int. J. Recent Sci. Res. 2023,
14,3159-3163. doi:10.20469/ijaps.10.50001.

Al Farihi A, Sumartini S, Herdiman L. Designing Lean Maintenance Using Total Productive Maintenance Method—A Case
Study at Wiring Harness Production. E3S Web Conf. 2023, 465, 02016. doi:10.1051/e3sconf/202346502016.

Imanov T, Yildiz M, Koruyucu E. Application and Development of Aircraft maintenance Procedures Using Lean Tools. In
Proceedings of the International Symposium on Aircraft Technology, MRO & Operations, ISATECH-2021, Budapest,
Hungary, 28-30 June 2021; pp. 1-3.

Jurewicz D, Dabrowska M, Burduk A, Medynski D, Machado J, Motyka P. Implementation of Total Productive Maintenance
(TPM) to Improve Overall Equipment Effectiveness (OEE)—Case Study. In Proceedings of the ISPEM 2023, Wroclaw,
Poland, 13—15 September 2023; pp. 543-561. doi:10.1007/978-3-031-44282-7 42.

Ardi M, Sutanto A, Susilawati A. Analysis of effectiveness of cut size line machines based on total productive maintenance
(TPM) and analytical hierarchy process (AHP)-A case study. J. Ocean. Mech. Aerosp. -Sci. Eng. 2023, 67, 109—117.

Singha Mahapatra M, Shenoy D. Lean maintenance index: a measure of leanness in maintenance organizations. J. Qual. Maint.
Eng. 2022, 28, 791-809.

Macalinao JC. Implementation of Total Productive Maintenance in a Local Pharmaceutical Manufacturing Company in the
Philippines. Matrix Sci. Pharma 2024, 7, 119—123. doi:10.4103/mtsp.mtsp 18 23.

Antosz K, Jasiulewicz-Kaczmarek M, Waszkowski R. Application of Lean Six Sigma for Sustainable Maintenance: Case study.
IFAC-PapersOnLine 2022, 55, 181-186. doi:10.1016/.ifacol.2022.09.204.

Korchagin A, Deniskin Y, Pocebneva 1. Lean Maintenance 4.0: implementation for aviation industry. Transp. Res. Procedia
2022, 63, 1521-1533. doi:10.1016/j.trpro.2022.06.164.

Drewniak R, Drewniak Z. Improving business performance through TPM method: The evidence from the production and
processing of crude oil. PLoS ONE 2022, 17, €0274393.

Okoro GO. Total productive maintenance (TPM) implementation and overall equipment effectiveness (OEE) in manufacturing
firms in RIVERS STATE. Int. Entrep. Manag. J. 2024, 8, 113—-146.

Rathi SS, Sahu MK, Kumar S. Implementation of total productive maintenance to improve productivity of rolling mill. Indian
J. Eng. Mater. Sci. 2024, 30, 882—-890.

Samadhiya A, Agrawal R. Total productive maintenance and sustainability performance: Resource-based view perspective.
Benchmarking Int. J. 2024, 31,2177-2196.

Tortorella GL, Saurin TA, Fogliatto FS, Tlapa Mendoza D, Moyano-Fuentes J, Gaiardelli P, et al. Digitalization of maintenance:
exploratory study on the adoption of Industry 4.0 technologies and total productive maintenance practices. Prod. Plan. Control.
2024, 35, 352-372.



Intelligent and Sustainable Manufacturing 2025, 2, 10019 16 of 17

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

Biswas J. Total productive maintenance: an in-depth review with a focus on overall equipment effectiveness measurement.
Int. J. Res. Ind. Eng. 2024, 13, 376-383.

Khosroniya M, Hosnavi R, Zahedi MR. Enhancing operational performance in industry 4.0: The mediating role of total quality
management and total productive maintenance at Zarharan industrial complex. /nt. J. Ind. Eng. Oper. Res. 2024, 6, 96—122.
Amrina E, Firda S. Evaluation Model of Total Productive Maintenance Implementation for Cement Plant. AIP Conf. Proc.
2024, 2710, 1-8. doi:10.1063/5.0144566.

Samadhiya A, Agrawal R. Integrating Industry 4.0 and Total Productive Maintenance for global sustainability. TQM J. 2024,
36,24-50. doi:10.1108/TQM-05-2022-0164.

Harsanto B, Yunani A. Electric power distribution maintenance model for industrial customers: Total productive maintenance
(TPM), reliability-centered maintenance (RCM), and four-discipline execution (4DX) approach. Energy Rep. 2023, 10, 3186—
3196.

Vaz E, Vieira De Sa JC, Santos G, Correia F, Avila P. The value of TPM for Portuguese companies. J. Qual. Maint. Eng. 2023,
29,286-312.

Pinto G, Silva F, Baptista A. TPM implementation and maintenance strategic plan—A case study. Procedia Manuf. 2020, 51,
1423-1430. doi:10.1016/j.promfg.2020.10.198.

Kose Y, Muftuoglu S, Cevikcan E, Durmusoglu MB. Axiomatic design for lean autonomous maintenance system: an
application from textile industry. Int. J. Lean Six Sigma 2022, 14, 555-587.

Bashar A, Hasin AA, Jahangir N. Linkage between TPM, people management, and organizational performance. J. Qual. Maint.
Eng. 2022, 28, 350-366.

Flores JCQ, Vega-Alvites ML. Review Manufacturing Model of Production Management under the Preventive Maintenance
Approach to Improve Efficiency in Plastics Industry SMEs: A Case Study. S. Af: J. Ind. Eng. 2022, 33, 143-156.

Habidin NF, Hashim S, Fuzi NM, Salleh MI. Total productive maintenance, kaizen event, and performance. Int. J. Qual. Reliab.
Manag. 2018, 35, 1853—-1867.

Wilson E, Amgbari C, Jacob U. Hybrid implementation of total productive maintenance (TPM): A case study of a brewery.
Int. J. Appl. Adv. Eng. Res. 2024, 5,201-210.

Wolska M, Gorewoda T, Roszak M. Implementation and Improvement of the Total Productive Maintenance Concept in an
Organization. Encyclopedia 2023, 3, 1537-1564. doi:10.3390/encyclopedia3040110.

Rodriguez-Padial N, Marin MM, Domingo R. Improvement of industrial maintenance plans through assistance-driven
reliability-centered  maintenance  and  case-based  reasoning  Design.  Electronics 2024, 13,  639.
doi:10.3390/electronics13030639.

Liu G, Liu L, Li Q, Wang Q, Zhang H. Reliability-centered maintenance scheduling optimization for high-speed railway
facilities with multi-level tasks. In Proceedings of the 11th International Conference on Traffic and Transportation Studies,
ICTTS 2024, Lecture Notes in Civil Engineering; Springer: Singapore, 2025; Volume 616. doi:10.1007/978-981-97-9644-1 6.
Ali Ahmed Qaid A, Ahmad R, Mustafa SA, Mohammed BA. A systematic reliability-centred maintenance framework with
fuzzy computational integration—A case study of manufacturing process machinery. J. Qual. Maint. Eng. 2024, 30, 456—492.
doi:10.1108/JQME-04-2022-0021.

Asghari A, Jafari SM. Investigating the Influence of reliability centered maintenance on water treatment plant pumps (Case
study: Guilan water treatment plant). Water Wastewater 2024, 35, 86—102. (In Persian)

Cahyati S, Puspa SD, Himawan R, Agtirey NR, Leo JA. Optimization of preventive maintenance on critical machines at the
Sabiz 1 plant using reliability-centered maintenance method. Sinergi 2024, 28, 355-368. doi:10.22441/sinergi.2024.2.015.
Sembiring AC. Analysis of boiler machine maintenance using the reliability-centered maintenance method. J. Knowl. Ind. Eng.
2024, 11, 1-8.

Al-Farsi N, Syafiie S. Reliability centered maintenance application for the development of maintenance strategy for a chemical
plant. In Proceedings of the International Conference on Mathematical and Statistical Physics, Computational Science,
Education, and Communication (ICMSCE 2022), Istanbul, Turkey, 8-9 December 2022; Volume 12616, pp. 211-214.
Introna V, Santolamazza A. Strategic maintenance planning in the digital era: A hybrid approach merging Reliability-Centered
Maintenance with digitalization opportunities. Oper: Manag. Res. 2024, 17, 1397-1420.

Jiang Q, Li X, Yang L, Ma Y, Li H. Innovation and application of reliability-centered maintenance technology for pumped
storage power plant. J. Phys. Conf. Ser. 2024, 2694, 012014.

Resende BAD, Dedini FG, Eckert JJ, Sigahi TF, Pinto JDS, Anholon R. Proposal of a facilitating methodology for fuzzy
FMEA implementation with application in process risk analysis in the aeronautical sector. Int. J. Qual. Reliab. Manag. 2024,
41, 1063-1088. doi:10.1108/IJQRM-07-2023-0237.

Elijaha PT, Obaseki, M, Ojong OE. Modeling effective maintenance strategy using reliability centered maintenance with risk
maintenance. FUPRE J. Sci. Ind. Res. 2021, 5, 38-56.

Rosita KKM, Rada MV. Equipment reliability optimization using predictive reliability centered maintenance. In Proceedings
of the 2021 IEEE 8th International Conference on Industrial Engineering and Applications (ICIEA), Chengdu, China, 23-26
April 2021; pp. 348-354. doi:10.1109/ICIEAS52957.2021.9436745.



Intelligent and Sustainable Manufacturing 2025, 2, 10019 17 of 17

48. Gomaa AH. RCM 4.0: A Novel Digital Framework for Reliability-Centered Maintenance in Smart Industrial Systems. /nt. J.
Emerg. Sci. Eng. 2025, 13, 32-43. doi:10.35940/ijese.E2595.13050425.



