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ABSTRACT: Along with the development of electric vehicles and electronic devices, all-solid-state batteries (ASSBs) have 
become the next-generation energy storage batteries, owing to their safety and chemical stability. Sulfide Solid Electrolytes (SSEs) 
are deemed to be crucial materials for ASSBs because of their ultrahigh ionic conductivity (10−3–10−2 S cm−1), but are still plagued 
by the narrow electrochemical window and poor interfacial stability. In this paper, we summarize our systematic research progress 
on sulfide SSEs from the view of how theoretical calculations and simulations play a crucial role in material design. First-principles 
calculation gives evidence of the structure’s stability and ion migration mechanism for electrolytes, MD and AIMD simulations 
provide insights for the dynamic diffusion behavior and the interface reaction mechanism. High-throughput screening and machine 
learning have accelerated new electrolyte designs. Scientists discovered Li10GeP2S12 and explored ion dynamics in a crystal lattice 
of that material. There are also material interface phenomena such as space charge layers and chemical breakdown. These problems 
can be managed by developing and tuning appropriate computational models to steer material doping and protective layer design. 
In this paper, we demonstrate that the combination of computer simulations and real experiments is valuable. 
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1. Introduction 

The progression of fast-developing electronic devices, green vehicles and clean energy sources has emerged 
demand for next-generation energy storage devices with efficiency and stability. Conventional Li-ion batteries with 
liquid electrolytes have been widely used in various energy storage sectors; however, they face risks of thermal 
instability and have a low safety profile. Thus, efforts have been made to enhance safety and power density. These 
include replacing liquid electrolytes with solid-state alternatives. Researchers are also working to increase operating 
voltage by optimizing the surface area of active materials. Another approach involves modifying the formulation of 
existing conductive additives. Moreover, efforts have been extended towards developing high-energy density 
rechargeable electric batteries. Major advancement can be achieved by creating an optimal combination of electrodes, 
solid electrolytes and efficient ways of utilization with extreme thermal and mechanical stability for multiple charge-
discharge cycles. Development of an ideal battery concept requires various key ingredients that facilitate energy 
transmission at a rate applicable in specific devices (microscale), together with overall low thermal and mechanical 
instability. Researchers have also reported a thin-film battery suitable for mass-electricity storage. This battery 
possesses an active area energy density of nearly 0.5 Wh. Its energy density is approximately 120 times greater than a 
comparable solid electrolyte configuration. However, Research on light-weight structure designs and practical 
commercial applications has revealed several promising trends in energy storage technology. Many of these applications 
show strong scalability potential, particularly for handling extremely high currents. They also demonstrate low total 
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power consumption while maintaining high stability. Among the most significant advances are innovative low-
resistance flow batteries for renewable energy storage. Another key development involves all-solid-state batteries 
featuring novel surface liquid electrolytes that enable higher current transport. These batteries offer large discharge 
power and high electrode activity. Self-healing alloy batteries also represent a major breakthrough in current energy 
storage technology. Meanwhile, researchers are making progress in developing multi-scale magnetorheological 
elastomer composites, which are finding increasingly extensive applications in energy storage systems. However, 
flammable ingredients, electrolyte infiltration, and thermal runaway limit their suitability for next-generation devices. 
Solid-state batteries have received more interest as a promising prospect as an alternative thanks to the inherent safety 
structure, broad operating temperature and their superior electrochemical stability. Due to its role as the critical design 
factor in a successful battery, the solid-state electrolyte must optimize a host of competing factors: high ion conductivity, 
mechanical robustness, chemical stability with respect to the active materials in operation, good electrode material 
interfaces, and so on. 

Sulfide solid state electrolytes (SSEs) are considered a very promising candidate with high ionic conductivity, 
between 10−3–10−2 S cm−1, compared to many other SSEs. Although the advantage of sulfide SSEs over others, their 
electrochemical stability windows are limited, reactions with humid gas, unstable interface with electrodes, etc. In order 
to provide a complementary part of this, exhaustive efforts are carried out by doing the theoretical modelling and 
simulations of SSEs composed of sulfides for unravelling their structural, as well as functional properties, to understand 
the fundamental properties in facilitating the experimental development and optimization of the materials. 

Quantum mechanical based advanced computational techniques, for example, ab initio calculations and molecular 
dynamics simulations, are exceptionally useful methods to explore the atomic-level structure-function relations of solid-
state electrolytes. Such machine-learning based predictions allow for quantitative measurements of salient properties 
such as mechanical strength, ion transport behavior, and thermodynamic stability, and thus pave the route toward linking 
theory with experiments. These calculations can also be used as predictors in the exploration and development of next-
generation electrolytes based on systematic material screening. 

Quantum chemistry is combined with computational thermodynamics methods to get an overall evaluation of the 
system stability, making it possible to establish phase diagrams and to draw the convex hull. The determination of the 
electrochemical window using first-principles calculations consists of several analyses—stoichiometric decomposition 
analysis, electronic structure analysis utilizing orbital energy gap and phase stability as a function of the electric 
potential. These multi-scale modeling approaches establish valuable design guidelines. They enable the development 
of high-performance solid-state electrolytes (SSEs) with precisely tailored properties. This methodology significantly 
accelerates the materials development cycle for electrochemical energy storage (EES) systems. The advancement is 
achieved through the systematic implementation of material-by-design strategies. 

Ultimately, computational modeling and simulating of sulfide-based SSEs could greatly facilitate the development 
of solid-state batteries, as shown in this review, improving our understanding of fundamental properties as well as 
accelerating the discovery and optimization of new materials. This highlights the importance of theory calculations for 
materials engineering, and specifically for sulfide electrolytes. Theory calculation provides understanding of the 
correlation between the material structure and properties, makes predictions for experimental results, and guides 
experimental efforts. The above efforts give a guide for further engineering high-performance solid-state batteries. 

2. Sulfide Electrolytes and Theoretical Calculations 

2.1. Research History of Sulfide Electrolytes 

The investigation into sulfide electrolytes dates back to the 1960s with the utilization of β-alumina in high-
temperature sodium-sulfur batteries. This event signaled the commencement of research into solid-state ionic 
conductors [1]. Following the initial development of oxide solid electrolytes, their application in all-solid-state lithium-
ion batteries (ASSLBs) was constrained due to their inherently low ionic conductivity. This limitation prompted further 
exploration into alternative materials. Subsequently, the research groups led by Tatsumisago and Kanno made 
significant strides by investigating a range of sulfide-based electrolytes. Their findings not only marked a pinnacle in the 
quest for high-performance ion conductors but also sparked a surge of interest in the advancement of ASSLBs [2–4]. 
These sulfide-based electrolytes exhibit an impressive level of ionic conductivity, rivaling that of conventional organic 
liquid electrolytes. This characteristic positions them as top contenders for use in ASSLBs. In recent years, the research 
on sulfide electrolytes has made significant progress. For example, the sulfide solid electrolyte developed by Kanno’s 
team has an ionic conductivity (2.5 × 10−2 S cm-1) higher than that of liquid electrolytes [2,3]. The findings from these 
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studies have broadened the potential for ASSLBs to be utilized in applications like electric vehicles and portable 
electronics. However, there are still hurdles to overcome, including limitations in the electrochemical stability range, 
inadequate chemical interaction with electrode materials, and suboptimal mechanical characteristics. 

2.2. Current Research Progress 

Currently, the studies on sulfide electrolytes focus on enhancing their ionic conductivity, tuning the structure to 
maximize the interfacial stability with an electrode, and searching for novel synthesis routes. For instance, sulfide 
electrolytes are synthesized by mechanical ball milling, high-temperature solid phase reaction, and liquid phase 
synthesis to achieve higher ionic conduction and better electrode/electrolyte interface contact [5–7]. Meanwhile, 
Researchers are enhancing sulfide electrolytes through element doping and structure regulation. These modifications 
improve the electrolytes’ electrochemical and chemical stability. Such improvements make the electrolytes more 
suitable for real-world application conditions. The optimized sulfide electrolytes demonstrate superior electrochemical 
performance. Consequently, their application in all-solid-state lithium-sulfur batteries has gained significant attention. 
Current research focuses on three key areas: increasing sulfur cathode utilization rates, suppressing the polysulfide 
shuttle effect, and optimizing overall battery structure and performance. 

2.3. Different Types of Sulfide Electrolytes 

Sulfide electrolytes can be divided into two categories according to their composition: binary and ternary. Binary 
sulfide electrolytes are mainly composed of Li2S and P2S5, such as Li3PS4 and Li7P3S11. This type of electrolyte can 
achieve higher ionic conductivity by controlling the ratio of Li2S and P2S5 and the heat treatment temperature. For 
example, after appropriate heat treatment, the ionic conductivity of 80Li2S–20P2S5 and 75Li2 S–25P2S5 glass-ceramic 
materials is improved to 7.2 × 10−4 S cm−1 and 2.8 × 10−4 S cm−1, respectively [6]. Ternary sulfide electrolytes introduce 
other components such as MS2 (M = Si, Ge, Sn) on the basis of binary electrolytes, such as Li10GeP2S12(LGPS) [2] and 
Li6PS5X (X = Cl, Br, I) [7] and so on. Ternary sulfide electrolytes further improve ionic conductivity and 
electrochemical stability through element substitution and structural regulation, as shown in Figure 1. Taking 
Li10GeP2S12 as an example, it has a unique three-dimensional framework structure composed of (Ge0.5P0.5)S4 tetrahedron, 
PS4 tetrahedron, LiS4 tetrahedron and LiS6 octahedron, showing extremely high ionic conductivity (1.2 × 10−2 Sꞏcm−1). 
The 1D lithium-ion conduction pathway arises from edge-sharing LiS₄ tetrahedra at 16h and 8f sites, forming tetrahedral 
chains connected via corner-sharing (Figure 1c). Neutron diffraction reveals lithium at these sites exhibits highly 
anisotropic thermal vibrations, displacing toward interstitial positions between 16h-16h and 16h-8f sites. This 
displacement directly evidences 1D ion migration along the c-axis. Partial occupancy (0.691(5) at 16h; 0.643(5) at 8f) 
reflects lithium’s average distribution along the pathway—a hallmark of superionic conductors. In addition to the above 
two categories, there are some special sulfide electrolyte structure types, such as thio-LISICON type, tetragonal LGPS 
type and argyrodite Li6PS5X type. Thio-LISICON electrolytes are derived by replacing oxygen in LISICONγ-Li3PO4 

solid electrolytes with sulfur, like (100−x)Li2S–xP2S5, (100−x)Li2S–xSiS2, and Li4−xGe1−xPxS4 (0 < x < 1) [2]. Since the 
electronegativity of sulfur is lower than that of oxygen, this type of electrolyte reduces the binding energy of lithium 
ions. It increases the ion migration channel, thereby promoting the migration of lithium ions and having high ionic 
conductivity. Tetragonal LGPS electrolytes are represented by Li10GeP2S12, whose structure contains (Ge0.5P0.5)S4 
tetrahedrons and LiS6 octahedrons connected by sharing edges to form one-dimensional chains. These one-dimensional 
chains are then connected to each other by PS4 tetrahedrons to form a three-dimensional framework, providing abundant 
migration channels for lithium ions. Taking Li6PS5I as an example of [7], its structure is composed of 136 tetrahedrons 
formed by S atoms, P atoms fill four of the tetrahedral holes, I ions are located in the corners and faces of the unit cell, 
and lithium ions occupy part of the tetrahedral holes formed by S2− and I− in a disordered pattern, showing relatively 
low ionic conductivity, as shown in Figure 2. But, its ionic conductivity can be significantly improved through structural 
optimization and element substitution, like Li6 PS5Cl. 
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Figure 1. (a) Architecture and Lithium Ion Conduction: Schematic illustration of the architecture and lithium ions participating in 
the conduction; (b) Architecture: Schematic representation of the Li10GeP2S12 architecture, the one dimensional (1D) chains of LiS6 
octahedra and (Ge0.5P0.5)S4 tetrahedra connected via the shared edges. These chains are connected by the corners of PS4 tetrahedra; 
(c) Li Ion Conduction Pathway: The zigzag path for the lithium ion hop along the c-axis is visualized. This conduction is governed 
by the lithium ions residing at LiS4 tetrahedra at 16h and 8f sites. The thermal ellipsoid is taken at 30% probability. The anisotropic 
thermal vibration of the lithium ions at those tetrahedral sites makes room for the one-dimensional conduction pathway. Reproduced 
with permission of Ref. [2], Copyright 2011 Nature Materials. 

 

Figure 2. (a) Crystal Structure Section: A segment of the Li6PS5I crystal structure illustrating the arrangement of PS4 tetrahedra, 
along with the distribution of S2 ions (located in four octants of the unit cell) and I ions (positioned at the corners and faces of the 
unit cell); (b) Face-Sharing Tetrahedron: A depiction of the S3I2 double tetrahedron, where the shared face contains Li1 ions 
(positioned above and below the common face) and Li2 ions (located at the center of the shared face). Reproduced with permission 
of Ref. [7], Copyright 2008 Angewandte Chemie. 

2.4. Theoretical Calculation Method 

2.4.1. First Principles Calculation 

First-principles calculation is an atomic-scale simulation method based on the basic principles of quantum 
mechanics. It predicts material properties from the electronic level by solving the Schrödinger equation and can describe 
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the interaction between atoms without relying on empirical parameters. Among them, density functional theory (DFT) 
is the most commonly used calculation framework. By mapping the ground state properties of a multi-body quantum 
system into an electron density functional and using the approximate solution of the Kohn-Sham equation, it can 
accurately predict key performance parameters such as the electronic structure and energy distribution of the material. 
In the study of SSEs, DFT has been widely used in the theoretical prediction of mechanical properties, including the 
calculation of key parameters such as shear modulus (G), bulk modulus (B), Poisson’s ratio (ν) and Young’s modulus 
(E) [8]. These parameters have important guiding values for evaluating the mechanical stability of SSEs and the safety 
of battery operation. 

Studies have shown that the shear modulus of oxide-based SSEs obtained through DFT calculation is generally 
higher than that of traditional liquid electrolytes. This property gives them excellent resistance to shear deformation and 
helps to inhibit lithium dendrite penetration. It is worth noting that DFT has shown unique advantages in the study of 
interface stability. Hideyuki Komatsu’s team [9] used DFT calculations to systematically study the interface reaction 
mechanism between layered LiNixMnyCo1−x−yO2 (NMC) positive electrode materials and sulfide electrolyte Li6PS5Cl 
(LPSCl). The calculation results show that when the nickel content x value increases from 0.33 to 0.80, the interface 
reaction energy barrier decreases by about 0.4 eV, significantly increasing the activity of the interface side reaction. 
The reduction in Co content may increase the risk of side reactions. It is worth noting that the study quantified the 
interface stability trend (Mn > Co > Ni) by constructing a ternary phase diagram (Ni-Mn-Co) and pointed out that 
Li2CO3, NiO surface phase and LiNbO3 buffer layer can be used as an effective interface passivation layer due to their 
limited reactivity with NMC/LPSCl (ΔEmutual > −100 meV atom−1), as shown in Figure 3. This work also used a pseudo-
binary phase diagram to analyze the interface volume change (shrinkage rate > 30%), revealing the contact failure 
mechanism of high-nickel positive electrode under high pressure, and providing a theoretical basis for composition 
optimization. This discovery reveals the regulatory mechanism of transition metal element ratio on interface stability, 
and provides a theoretical basis for interface engineering of high-nickel positive electrodes. At the same time, the study 
also found that solid electrolyte interphase (SEI), such as Li2CO3 and LiNbO3 buffer layer, shows low reactivity with 
the positive electrode/electrolyte system, which points out the direction of material selection for designing new interface 
protection layers. 

 

Figure 3. Ternary contour plot of reaction energies at the LMO/LPSCl interface. The heat map is obtained by interpolating the 
calculated reaction energies of the labeled components. The red dashed line connecting LCO and LiNi0.7Mn0.3O2 shows the trend 
line for the cathode active material with lower Co to maintain the same chemical stability. Reproduced with permission of Ref. [9], 
Copyright 2022 American Chemical Society. 

2.4.2. Molecular Dynamics Simulation (MD) 

Molecular dynamics (MD) simulation is based on Newton’s laws of motion. It numerically solves the equations of 
motion of atoms or molecules, tracks the evolution of the system over time, and then obtains thermodynamic properties 
(such as free energy, diffusion coefficient) and kinetic information (such as ion migration path). According to the choice 
of potential function, MD methods can be divided into two categories: (1) classical MD, which approximates the 
interaction between atoms through empirical potential functions (such as Lennard-Jones potential and Morse potential), 
has high computational efficiency, and is suitable for large systems and long-term simulations; (2) ab initio molecular 
dynamics (AIMD), which calculates the forces on atoms based on quantum mechanics, has higher accuracy but is 
computationally expensive, and is often used for electronic structure coupling analysis of small systems and short time 
scales [10]. 



Sustainable Polymer & Energy 2025, 3, 10005 6 of 21 

 

In the study of grain boundary effects in solid electrolytes, classical MD has become a mainstream tool due to its 
high efficiency. Yu et al. [11] systematically simulated the structural characteristics of three low-energy symmetrical 
tilted grain boundaries (Σ5(310), Σ5(210) and Σ3(112)) and their effects on Li⁺ diffusion in the grain boundary ion 
transport mechanism of lithium lanthanum zirconium oxide (Li7La3Zr2O12, LLZO). By constructing a model system 
containing 160 to 96 LLZO unit cells and using a force field based on bond valence parameters to describe atomic 
interactions, the study revealed that the Li⁺ diffusion coefficient in the grain boundary region is significantly lower than 
that in the bulk phase. The inhibition effect is closely related to the grain boundary structure: the dense Σ3 grain 
boundary only reduces the diffusion rate by about 50% because the activation energy is comparable to that of the bulk 
phase (0.52 eV); while the activation energy of the loose Σ5 grain boundary increases by 35% (to 0.71 eV), resulting in 
a sudden drop of 2 orders of magnitude in the diffusion rate at room temperature. This discovery provides an atomic-
scale explanation for the differences in grain boundary resistance in experimental observations (e.g., grain boundary 
resistance in high-temperature sintered samples accounts for only 8%). In addition, by analyzing the lattice stress 
distribution and atomic trajectories, the researchers further discovered that there is diffusion anisotropy within the Σ3 
grain boundary—the diffusion rate along the crystal interface even exceeds that of the bulk phase, while cross-interface 
diffusion is severely hindered. This type of work highlights the unique value of MD simulation in correlating 
microstructure with macroscopic transport properties. 

2.4.3. Ab Initio Molecular Dynamics (AIMD) 

AIMD combines quantum mechanical calculations with molecular dynamics to obtain the potential energy of 
interactions between atoms by solving the Kohn-Sham equation in real time without relying on empirical potential 
functions. This first-principles method can accurately describe the evolution of electronic structure and the dynamic 
reconstruction of chemical bonds, and is particularly suitable for complex systems involving charge transfer, reaction 
path exploration, etc. (such as electrochemical interfaces, phase change processes). Compared with classical MD, AIMD 
has significant advantages in chemical accuracy and prediction of unknown system properties, but its high 
computational cost limits the scale of simulation systems (usually <1000 atoms) and time scale (usually <100 ps). 

In the study of ion transport mechanisms in SSEs, AIMD has become a key tool due to its high precision. Mo et 
al. [12] used AIMD simulation to simulate the Li⁺ diffusion behavior in the superionic conductor Li10GeP2S12 (LGPS). 
They revealed the cooperative migration mechanism: multiple Li+ migrate synchronously in a non-localized manner 
through dynamic channels, rather than the traditional isolated ion hopping model. The study calculated that the 
activation energy of Li+ is 0.21 eV, which is highly consistent with the experimental value (0.22 eV), and predicted that 
the room temperature ionic conductivity is 14.2 mS cm−1(experimental value: 12 mS cm−1). This work not only verifies 
the reliability of AIMD in quantifying transport parameters but also guides the design of new SSEs (such as doping to 
optimize channel connectivity). 

3. Interface Issues between Sulfide Electrolytes and Electrode Materials 

3.1. Interface Stability Issues 

When sulfide solid electrolyte comes into contact with electrode materials, chemical reactions easily occur to form 
an interface layer, which leads to electrolyte instability. Haruyama et al. [13] studied the cation diffusion, they discussed 
the interface characteristics of the LiCoO2/β−Li3PS4 in detail by the density functional theory (DFT) calculations. They 
found that the exchange energy of elements of Co and P are negative, and this means that it is easy for the elements to 
diffuse at the interface and a thermodynamically stable interface layer will be formed because of the element diffusion, 
while the ionic conductivity of the interface layer is low and the interface impedance increases significantly. In particular, 
Co and P exchange energy values are −1.2 eV and −0.8 eV, respectively, suggesting that the diffusion process of those 
elements at the interface possesses a strong driving force thermodynamically, as shown in Figure 4. 
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Figure 4. (a) Interface Composition: The interface of LCO (110)-LPS (010). Different colours indicate Li (light green), O (red), P 
(purple), S (yellow), and Co (blue). Polyhedra in the Figure represent the CoO6 (blue), PS4 (purple) and LiS4 (lightgreen) complexes. 
(b) Exchange Energy: The plot of exchange energy vs. the Li label, where the x-axis is the label of Li and the y-axis is in eV. 
Reproduced with permission of Ref. [13], Copyright 2016 American Chemical Society. 

In addition, some sulfide electrolytes show thermodynamic and kinetic instability towards metallic lithium. When 
Li10GeP2S12 [14] is used to generate interface products such as Li2S and Li3P, as shown in Figure 5. The formation of 
these products not only increases the interface resistance but also affects the overall performance of the battery. 
Experimental data show that after Li10GeP2S12 comes into contact with lithium metal, the interface resistance increases 
from the initial 10 Ω cm2 to about 50 Ω cm2, significantly reducing the charge and discharge efficiency of the battery. 

 

Figure 5. Schematic diagram of the interaction between lithium metal and sulfides, phosphides, and arsenides in SSEs. Reproduced 
with permission of Ref. [14], Copyright 2018 Elsevier. 

3.2. Interface Resistance Problem 

When the oxide positive electrode contacts the sulfide solid electrolyte, due to the significant difference in 
electrochemical potential between the two, lithium ions tend to migrate from the sulfide electrolyte to the oxide positive 
electrode, forming a space charge layer (SCL). The ion concentration gradient in this area not only significantly 
increases the interface resistance but also inhibits the kinetic performance of lithium ion migration. Takada et al. [15] 
modified the interface between LiCoO2 and Li3.25Ge0.25P0.75S4 electrolyte by LiNbO3 coating, and found that the interface 
resistance of the uncoated electrode was as high as 1 × 104 Ω, while the resistance after coating was reduced by two 
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orders of magnitude, indicating that the space charge layer (thickness of only a few nanometers) plays a decisive role 
in the interface impedance, as shown in Figure 6. It is worth noting that although the physical thickness of the space 
charge layer is limited, the local lithium-ion depletion effect caused by it will significantly hinder carrier transport. In 
addition, the volume change of the positive electrode material during the charge and discharge process, such as the 
lattice shrinkage of LiNi0.8Co0.1Mn0.1O2 when de-lithiation occurs, will lead to mechanical contact loss between the 
particles and the electrolyte, further deteriorating the interface impedance. Koerver et al. [16] compared the morphology 
of the interface between NCM-811 and β-Li3PS4 before and after charge and discharge and found that micron-scale 
cracks appeared at the interface after cycling, confirming the direct correlation between the volume effect and interface 
degradation, as shown in Figure 6b,c. 

 

Figure 6. (a) Complex impedance diagram of In-Li//LiMn2O4 battery. Reproduced with permission of Ref. [15], Copyright 2012 
Elsevier. (b,c) SEMs of a Li−In|β-Li3PS4|NCM-811/β-Li3PS4 cell after single charging to 4.3 V vs. Li/Li+ at 0.1 C. Reproduced 
with permission of Ref. [16], Copyright 2017 American Chemical Society. 

3.3. Theoretical Calculation Simulation and Optimization Methods of Interface Properties 

Theoretical calculation simulation provides key insights into the interface reaction mechanism and optimization 
design of solid-state batteries. Taking the oxide cathode/sulfide solid electrolyte interface as an example, Haruyama et 
al. [13] systematically studied the cation diffusion behavior at the interface of LiCoO2 (LCO) and β−Li3PS4 (LPS) by 
first-principles calculation. Their results showed that exchange energy between Co and P (ΔE < 0) is strongly negative 
(about −2.18 eV), which means that the Co and P at the interface is a thermodynamically spontaneous process. The 
formation of interface states can be attributed to the stabilization of their electronic structure, as shown in Figure 7. As 
a result, this interdiffusion behavior not only decreases the formation energy of lithium vacancy in the interface and 
aggravates the growth of the lithium depletion layer, but also causes the high interface impedance and cycle performance 
degradation problem in experiments. It should be mentioned that the research further showed that the addition of a LiNbO3 
(LNO) buffer layer can effectively inhibit Co diffusion, since the exchange energy between Co and Nb is substantially 
increased to +1 eV, which offers important theoretical guidance for interface engineering, as shown in Figure 7c. 
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Figure 7. (a) Interface Structures: Depiction of the LCO (110)/LNO (110) and LNO (110)/LPS (010) interfaces. Nb atoms are 
shown as green spheres, and NbO6 complexes are represented by green polyhedra; (b) Exchange Energies: Analysis of the exchange 
energies at the LCO/LNO interface; (c) Co↔Li/Nb exchange, and at the LNO/LPS interface; (d) P↔Li/Nb exchange. Reproduced 
with permission of Ref. [13], Copyright 2016 American Chemical Society. 

Theoretical calculations also show an important guiding value in optimizing the interfacial stability of sulfide solid 
electrolytes. Xu et al. [17] systematically studied the electrochemical stability of the argyrodite-type Li6PA5Cl (A = O/S) 
electrolyte system and revealed the key role of oxygen doping in inhibiting interfacial reactions. The electrochemical 
potential diagrams of Li6PO5Cl, Li6PO4SCl and Li6PS5Cl constructed by them are shown in Figure 8, which shows that 
the electrochemical windows of the three are 0–3.49 V, 0–2.62 V and 1.7–2.19 V (vs. Li/Li+), respectively. Among 
them, Li6PO5Cl shows the widest electrochemical window due to the stabilization effect of the strong P-bond. Its 
oxidation potential is about 1.3 V higher than that of Li6PS5Cl, which significantly broadens its compatibility with high-
voltage positive electrodes (such as Li0.25MnO2, with an operating voltage of 2.72–3.65 V). AIMD simulations further 
verified the structural stability of the Li6PO5Cl|Li interface at 600 K, as shown in Figure 9a. The radial distribution 
functions of P-O and P-Li, showed no significant changes, indicating that oxygen doping can effectively inhibit the 
reduction and decomposition of sulfide electrolytes and the formation of low-conductivity phases such as Li3P/Li2S, as 
shown in Figure 9b,c. 
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Figure 8. (a) Convex hull for Li6(1-x)PS5Cl (0 < x < 1); (b) Electrochemical potentials of Li6(1−x)PS5Cl structures. Inset structures: 
(C) Li6PS5Cl, (D) Li5.5PS5Cl, (E) Li2PS5Cl, (F) Li0.5PS5Cl. The electrochemical window of Li6PS5Cl is only 0.49 V. (c) Convex 
hull and (d) electrochemical potentials for Li6(1−x)PO4SCl. (e) Convex hull and (f) electrochemical potentials for Li6(1−x)PO5Cl. 
Substituting S with O increases the electrochemical window from 2.62 V to 3.49 V. Reproduced with permission of Ref. [17], 
Copyright 2019 The Royal Society of Chemistry. 

 

Figure 9. (a) Slab model for characterizing the interface of Li6PO5Cl|Li; Pairwise correlation functions (PCFs) before (black 
line)/after (red line) AIMD simulation (90 ps at 600 K): (b) P-O and (c) P-Lipcf for Li6PO5Cl|Li interface. Reproduced with 
permission of Ref. [17], Copyright 2019 The Royal Society of Chemistry. 
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3.4. Real-Time Monitoring and In Situ Analysis Techniques for Interface Degradation 

Understanding the dynamic evolution of interfacial reactions in sulfide-based solid-state batteries requires the 
integration of advanced in situ characterization techniques and theoretical simulations. Yamagishi et al. [18] achieved 
the first real-time visualization of lithium distribution and interface degradation in NCA/LPS composite electrodes 
using operando time-of-flight secondary ion mass spectrometry (TOF-SIMS). By mapping Li-containing fragments 
(e.g., 6Li+, Li2O+) and degradation products (POx

−, SOx
−), this technique revealed that during charging, the 6Li+ signal 

intensity decreased in NCA particles, but some particles retained high Li concentration due to insufficient electron/ion 
pathways. This indicates that the microstructure of composite electrodes needs optimization to reduce “inactive particles”. 

Under high-voltage stress (5–6 V), the Pox
− fragment intensity monotonically increased, corresponding to the 

oxidation of LPS to form insulating phases such as Li3PO4. In contrast, the SO3
− fragment exhibited reversible redox 

behavior, suggesting dynamic polymerization/depolymerization reactions of sulfides at the interface. Additionally, 
Auvergniot et al. confirmed the redox activity of Li3PS4Cl electrolytes during cycling using XPS [19]. Sakuda et al. 
directly observed crack propagation and phase transitions at the LiCoO2/Li3PS4 interface through in situ TEM [20], 
while Xu et al. employed AIMD simulations to validate the mechanism of oxygen doping in suppressing decomposition 
at the Li6PO5Cl|Li interface [21]. These findings collectively highlight the importance of complementary techniques in 
elucidating interfacial mechanisms. 

4. Ion Migration and Diffusion Behavior 

Ion migration and diffusion behaviors are important factors to study SSEs and deeply influence the performance 
of batteries, including charge and discharge rate, cycle life and energy density. These important behaviors are significant 
for high-performance solid-state batteries’ design. 

4.1. ML Potential Energy Surface 

Machine learning (ML) potential energy surfaces are constructed based on machine learning methods and are used 
to describe the potential energy surface of atomic interactions. Common construction methods include Gaussian 
approximate potentials (GAPs) [22], neural network potentials (NNPs) [23–26], etc. These methods can predict the 
energy and force of atomic interactions with high accuracy by learning from a large amount of first-principles 
calculation data. Compared with traditional empirical potentials, ML potential energy surfaces have higher accuracy 
and better transferability, and can more accurately describe complex chemical environments and multi-body interactions. 
GAP Gaussian process regression-based machine learning technique that constructs potential energy surfaces by fitting 
the relation between interatomic distances and energies. The benefit of GAP is that it can deal with complex potential 
energy surfaces and could be very accurate in the prediction of new structures. For instance, when studying the sulfide 
electrolytes, GAP could be used to simulate the migration route and energy barrier of ions in the lattice. NNP uses the 
excellent fitting function of neural networks to build a potential energy surface. By training a lot of atomic 
configurations and their corresponding energy data, NNP could learn the complex potential energy relationship and 
have excellent generalization ability when predicting a new configuration. In sulfide electrolytes research, we can adopt 
NNP to do the structural optimization, predict ionic conductivity, etc. 

4.2. Application of MLMD in Sulfide Electrolyte Research 

Machine learning molecular dynamics (MLMD) combines machine learning potential energy surfaces and 
molecular dynamics simulations to study ion migration and diffusion behavior on a large scale and over a long time 
scale. Through MLMD simulation, the diffusion coefficient and activation energy of ions in sulfide electrolytes can be 
calculated [23]. Fu et al.[27] used MLMD to study the diffusion behavior of Li ions in Li10GeP2S12 and found that its 
activation energy was consistent with the experimental value, indicating that MLMD can accurately predict ionic 
conductivity. In addition, Pei et al. [28] and Li et al. [29] used MLMD to study the ion diffusion behavior in 
antiperovskite Li3OX (X = Cl or Br) and Na3OBr, respectively, and found that the diffusion coefficient was linearly 
related to the defect concentration. MLMD can also be used to optimize the material structure of sulfide electrolytes. 
Wang et al. [30] and Xu et al. [31] used MLMD to study the structure and phase transition behavior of Li3YCl6 and 
Li3ErCl6, respectively, and found that these materials undergo phase transitions at around 460 K, resulting in a 
significant decrease in activation energy and exhibiting nonlinear Arrhenius behavior. These research results provide 
an important theoretical basis for optimizing material structure. 
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5. Ion Conduction Mechanism of Sulfide Electrolytes 

5.1. Ionic Conductivity of Sulfide Electrolytes 

The ionic conductivity of sulfide electrolytes is closely related to their structural characteristics. Taking crystalline 
Li10GeP2S12 (LGPS) as an example, its unique layered tetragonal structure (space group P42/nmc) forms a three-
dimensional sulfur skeleton network. Kuhn et al. [32] found through synchrotron X-ray diffraction and pulsed field 
gradient nuclear magnetic resonance (PFG-NMR) that Li⁺ ions migrate rapidly mainly through one-dimensional tunnels 
(Li1–Li3 sites) along the c-axis (diffusion coefficient D = 3.5 × 10−12 m2 s−1, 300 K), while the interstitial octahedral 
sites (Li4) in the ab plane provide auxiliary paths for ion transport. The synergistic effect of this multidimensional 
conduction mechanism enables LGPS to exhibit ultra-high ionic conductivity (>12 mS cm−1). It is worth noting that 
this study revealed for the first time through ³¹P MAS NMR that Si doping (Li11Si2PS12) can reduce the unit cell volume 
(a=8.21→8.12 Å, c=6.62→6.59 Å), thereby reducing the activation energy to 0.19 eV, confirming the role of lattice 
contraction in promoting ion migration, as shown in Figure 10b. 

 

Figure 10. (a) Diffusion Coefficients: Measurement of Li tracer diffusion coefficients in LGPS-type electrolytes using 7Li PFG 
NMR; (b) Diffusion and Volume Correlation: Analysis of the relationship between diffusion parameters and the unit cell volume 
for LGPS-type electrolytes. The plot shows the variation of diffusion parameters with changes in unit cell volume. Reproduced 
with permission of Ref. [32], Copyright 2014 the Owner Societies. 

Compared with crystalline materials, the conduction mechanism of the glassy Li2S−P2S5 system shows significant 
differences. Ooura et al. [33] prepared an 86.9Li₃PS₄ꞏ13.1LiAlS2 amorphous electrolyte by high-energy ball milling 
and showed that the addition of Al2S3 can effectively reduce the proportion of non-bridging sulfur (NBS). When the 
Al2S3 content increased to 13.1 mol%, the ionic conductivity reached 6.0 × 10−4 S cm−1 (298 K), which is 2–3 times 
higher than that of the undoped Li3PS4 system. This improvement is attributed to the formation of a more uniform sulfur 
network by the [AlS4]− tetrahedron and [PS4]3− anions sharing vertices, thereby reducing the electrostatic barrier for Li+ 
migration. However, excessive doping (>13.1 mol%) leads to Al2S3 crystallization, which hinders ion transport. 

5.2. Theoretical Calculations to Predict Ion Migration Paths and Migration Energy Barriers 

Density functional theory (DFT) in conjunction with the Neural Embedding-Based (NEB) technique constitutes 
the backbone for exploring the migration paths and energy barriers of ions in solid electrolytes. With an illustration of 
a common oxide electrolyte, Li7La3Zr2O12 (LLZO), the NEB technique provides the precise computation of the 
migration energy barrier of the Li+ moving between lattice sites [34,35]. This technique also exposes its transition state 
configuration by forming an energy minimization pathway. In recent years, it has gained recent attention for the 
discovery of the migration pattern of metal ions extended to the study of sulfide antiperovskite systems. Kim et al. [36] 
found through systematic DFT calculations that the Li⁺ migration energy barrier and the degree of lattice distortion 
(quantified by the Goldschmidt tolerance factor t) show a significant negative correlation: in sulfides such as Li3OCl, 
the vacancy migration mechanism energy barrier ranges from 95–426 meV, while the interstitial dumbbell mechanism 
has a significantly reduced energy barrier to 24–165 meV due to the channel widening effect, as shown in Figure 11. 
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This discovery shows that by regulating the tolerance factor to induce lattice distortion, specific migration channels can 
be selectively optimized, providing a theoretical basis for designing high ionic conductivity electrolytes. 

 

Figure 11. Correlation between the limiting barriers for vacancy (top) and interstitial dumbbell (bottom) migration. Blue squares 
represent compounds centered at F. Reproduced with permission of Ref. [36], Copyright 2019 Materials Chemistry A. 

AIMD provides a dynamic perspective for ion migration research. Unlike the NEB method, which requires a preset 
reaction path, AIMD can spontaneously capture the ion migration trajectory and statistically analyze the diffusion 
characteristics by simulating the dynamic evolution of the system at a finite temperature. Taking Li10GeP2S12 (LGPS) 
as an example, Mo et al. [37] revealed its three-dimensional ion conduction network through AIMD simulation (600–
1500 K): not only verified the one-dimensional fast conduction channel along the c-axis (activation energy 0.17 eV), 
but also discovered the cross-channel diffusion path within the ab plane (activation energy 0.28 eV), breaking the 
traditional belief that LGPS only has one-dimensional conduction characteristics. The calculated overall activation 
energy (0.21 eV) is highly consistent with the experimental value (0.24 eV), and the predicted range of room 
temperature ionic conductivity (2–40 mS cm−1) also covers the experimental measurement value (12 mS cm−1). The 
unique advantage of AIMD simulation is that it can capture the cooperative mechanism of ion conduction. By fitting 
the Arrhenius relationship, not only can the activation energy be obtained, but also the transition of conduction 
mechanisms in different temperature ranges can be revealed. In LGPS, the conductivity of c-axis conduction at 300 K 
(40 mS cm−1) is two orders of magnitude higher than that of ab-plane conduction (0.9 mS cm−1). However, cross-channel 
diffusion within the ab plane still makes an important contribution to the overall conduction performance, especially in 
the presence of grain boundaries or defects. This three-dimensional conduction network can effectively avoid the 
problem of one-dimensional conduction channels being blocked, as shown in Figure 12. 
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Figure 12. (a) Arrhenius plots illustrating the overall diffusion coefficient, along with the diffusion coefficients in the c-direction 
(Dc) and the ab-plane (Dab). The plots show the temperature dependence of these coefficients; (b) Error bars indicating the 
statistical uncertainty derived from fitting the mean square displacement to time curves. This provides a measure of the reliability 
of the diffusion coefficient estimates. Reproduced with permission of Ref. [37], Copyright 2012 American Chemical Society. 

In recent years, MLMD has achieved breakthrough progress in the prediction of ion migration paths by combining 
neural network potential functions with molecular dynamics, while maintaining the accuracy of first principles and 
achieving large-scale simulations at the microsecond level. Taking the study of the cooperative diffusion mechanism of 
Li10GeP2S12 (LGPS) as an example, Fu et al. [27] captured the temperature-dependent ion migration pattern in a 40 ns 
long-term simulation by training a deep potential model based on 2400 sets of first principles data, as shown in Figure 
13. The study found that at 300 K, Li⁺ mainly migrates along the c-axis through three-ion cooperative transitions (Li1–
Li3–Li4 mode), with a diffusion coefficient of 7.1 × 10−12 m2 s−1 and an activation energy of 0.23 eV, which is highly 
consistent with the experimental value (4.1 × 10−12 m2 s−1, 0.24 eV); when the temperature rises to 1000 K, the four-ion 
cooperative migration involving the two-dimensional Li2 site is activated, and its transition frequency increases linearly 
with temperature (R2 = 0.98), causing the diffusion anisotropy index to drop from 0.62 to 0.38. This temperature-induced 
diffusion mode transition originates from the increase in the vacancy concentration of Li₂ sites (300 K: 0.09→1000 K: 
0.21, as shown in Figure 13c. Its essence is that the vibration amplitude of the Li-S bond is enlarged (the mean square 
displacement is from 0.12→0.35 Å2), which reduces the migration barrier. This work revealed for the first time the 
Arrhenius temperature-dependent nature of cooperative diffusion through MLMD——the activation energy of different 
transition modes (0.15–0.36 eV) is weakly correlated with temperature, while the linear increase of the transition 
frequency dominates the change of macroscopic ionic conductivity. 
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Figure 13. Analysis of Li sites in LGPS. (a) Schematic representation of the residence time tr and migration time tm of a mobile 
ion. (b) Average residence time of four Li atoms and (c) site occupancy ratio as a function of inverse temperature. Average Li site 
in the LGPS lattice. (d) Li vacancy formation energy. Reproduced with permission of Ref. [27], Copyright 2022 Elsevier. 

6. High-Throughput Screening and Machine Learning 

6.1. Applications of High-Throughput Screening 

First, construct a candidate material library. In search of new sulfide electrolytes, in high-throughput screening, 
one can first produce a large number of candidate material structures by building the structure of known sulfides and 
abiding by the rules of chemical composition of sulfides. For example, if one changes the metal type and proportion of 
the elements of the sulfide or inserts other elements for doping, a candidate sulfide electrolyte material structure of 
hundreds of different structures and compositions can be constructed, etc. These types of candidate materials can 
represent various stoichiometric ratios and crystal structure types, thus affording a wealth of structural examples for 
subsequent searching. With the assistance of automatically written scripts and computational chemistry software, the 
primitive structural models of candidate materials, such as atom coordinates, lattice parameters and others, could be 
rapidly generated so that they would be ready for subsequent searching in terms of material stability and calculation in 
terms of material performance. 

Secondly, stability analysis is performed. High-throughput screening can rapidly screen the thermodynamic 
stability of candidate sulfide electrolytes. Calculating the formation energy of each candidate material, the stability 
under specific conditions can be determined. By matching the formation energy of a large number of candidate sulfide 
electrolytes through the first-principles calculations (such as DFT) together with a high-throughput computing 
framework, the thermodynamic stability of sulfide electrolytes can be predicted by calculating the formation energy of 
sulfide electrolytes in batches if it is small, which is difficult to decompose. 

At the same time, it is possible to estimate its kinetic stability, for example, the change of structure of candidate 
materials in a simulated electrochemical environment by molecular dynamics simulation. As long as the structure of 
the material in the simulation does not collapse or undergo any phase transition, then the material has good kinetic 
stability in the work application. 

6.2. Performance Prediction: High-Throughput Calculation from Ion Migration to Electrochemical Stability 

In the performance prediction of sulfide electrolytes, the coordinated optimization of ionic conductivity and 
electrochemical stability window is the core goal. For ion migration characteristics, the NEB method based on DFT can 
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accurately calculate the migration energy barrier of lithium/sodium ions by constructing a multi-image reaction path 
[37]. In the study of adsorbed atom diffusion on the Cu (100) surface, Jónsson et al. [38,39] verified the consistency of 
the migration energy barrier with the experimental value by the NEB method (error < 0.02 eV), and pointed out that the 
system with an energy barrier below 0.3 eV can achieve a room temperature ionic conductivity of >10−3 S cm−1. 
Combined with a high-throughput computing framework, this method can batch evaluate the topological characteristics 
of the migration path of candidate materials (such as cooperative migration or vacancy-dominated mechanism), 
significantly improving the screening efficiency. 

For the prediction of the electrochemical stability window, it is necessary to combine electronic structure analysis 
with thermodynamic phase equilibrium calculation. The traditional HOMO-LUMO method estimates the upper limit 
of the stability window by band gap, as shown in Figure 14, but it ignores the interface dipole effect, resulting in an 
absolute potential prediction error of up to 1.0 V [40]. Recent studies have proposed a three-dimensional phase diagram 
method (Phase Stability Method) based on Gibbs free energy. By calculating the equilibrium potential of the 
decomposition reaction LixM→Lix − ΔM + ΔLi, the stability window boundary can be more accurately defined. Taking 
Li7La3Zr2O12 (LLZO) as an example, the HSE06 hybrid functional calculation shows that its phase stability window is 
0.0–2.84 V vs. Li⁺/Li, which is 0.68 V wider than the PBE functional prediction value, highlighting the influence of the 
exchange correlation functional selection on the prediction accuracy as shown in Table 1. 

 

Figure 14. The width ∆Φstoi of the stoichiometric stability window of the studied SSE materials compared to the HOMO-LUMO 
gap ∆Eୌ

 . Reproduced with permission of Ref. [40], Copyright 2019 Royal Society of Chemistry. 

Table 1. Computational Results from Hybrid Functional DFT Using HSE06 Functional and SG15 ONCV Pseudopotentials: The 
table presents the lower and upper limits (Φ୰ୣୢ

ୱ୲୭୧ and Φ୭୶
ୱ୲୭୧) of the stoichiometric stability windows, the corresponding width (∆Φstoi), 

and the electronic HOMO–LUMO gaps (∆Eୌ
 ) for systems with stable A-stoichiometry N. Reproduced with permission of Ref. 

[40], Copyright 2019 Royal Society of Chemistry. 

Material 𝚽𝐫𝐞𝐝
𝐬𝐭𝐨𝐢/Vvs.Li 𝚽𝐨𝐱

𝐬𝐭𝐨𝐢/Vvs.Li ∆Φstoi/V 𝚫𝐄𝐇𝐋
𝐍 /eV 

LLZO −1.08 3.92 5.00 5.81 
LLTO 1.44 5.36 3.92 4.28 
LATP 0.75 4.03 3.28 4.19 

6.3. Discovery of Novel Sulfide Electrolytes by High-Throughput Screening 

High-throughput screening technology based on multi-scale computing has become a key paradigm for discovering 
high-performance solid-state electrolytes. Taking the discovery of the sulfur-based superionic conductor 
Li10GeP2S12(LGPS) as an example, the research team systematically analyzed the thermodynamic stability and 
migration path topological characteristics of the Li-Ge-PS quaternary system by constructing a multidimensional 
screening framework of “chemical composition-crystal structure-ion transport characteristics”. Fu et al. [27] used 
MLMD and deep potential energy models to reveal for the first time the temperature-dependent cooperative diffusion 
mechanism of lithium ions in LGPS: in the range of 300–1200 K, the cooperative migration of Li+ through the Li1-Li3-
Li1 chain channel showed Arrhenius-type temperature dependence, and its activation energy was only 0.23 eV, as 
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shown in Figure 15e. This potential energy surface smoothing effect caused by the cooperative motion of multiple ions 
enables LGPS to obtain an ultra-high ionic conductivity of 12 mSꞏcm−1 at room temperature, which is two orders of 
magnitude higher than traditional oxide electrolytes. More importantly, through dynamic site occupancy analysis, this 
study found that the activation of Li2 sites under high temperature conditions significantly enhanced the ab plane diffusion 
contribution, as shown in Figure 15b–d, providing a new idea for the anisotropic regulation of sulfide electrolytes. 

 

Figure 15. The diffusion mechanism in LGPS. (a) Voronoi tessellation visualization of the LGPS crystal structure with different 
lithium (Li) sites; (b) Visualization of lithium site occupation in LGPS at two temperature points, 300 K and 1000K, displaying the 
influence of temperature on the lithium concentration.Spatial distribution of the time evolution of Li site occupancy at (c) 300 K 
and (d) 1000 K, the blue (white) grid points denote occupied (unoccupied) state respectively; (e) Schematic representation of the 
possible cooperative pathways for diffusion on the (110) plane of LGPS, plane 1 and Plane 2 include pathways 1–2 and 3–5, 
respectively. The relative orientation of these planes is shown in the inset; (f) Degrade of the hopping frequency of the cooperative 
diffusion mode with temperature. Reproduced with permission of Ref. [27], Copyright 2022 Elsevier. 

6.4. Machine Learning to Optimize Sulfide Electrolyte Performance 

In the study of doping optimization of LLZO (Li7La3Zr2O12) electrolytes, machine learning technology provides 
an efficient prediction tool for material design by establishing a complex mapping relationship between element doping 
and ionic conductivity. For example, based on random forest or deep neural network models, researchers can build a 
high-precision prediction system by integrating experimental and computational data such as doping element type, 
concentration, lattice parameters and corresponding ionic conductivity [41]. After the model training is completed, the 
candidate doping scheme can be input to quickly screen out potential high-performance combinations. This method is 
particularly suitable for complex systems with synergistic effects of multiple variables. Gao et al. [42] revealed the key 
role of doping atoms in LLZO grain boundaries (GBs) through AIMD simulations. The study found that Nb dopants 
significantly improved the ionic conductivity of the grain boundary region (σ(300 K) reached 2.66 × 10−3 S cm−1) by 
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reducing the Li concentration and increasing the Li vacancy density, while Al doping hindered the Li⁺ migration 
network, resulting in a conductivity similar to that of the undoped system (3.85 × 10−4 S cm−1). Based on such atomic-
scale mechanisms, machine learning models can predict the nonlinear relationship between Nb doping ratio and 
conductivity gain. Subsequent experimental verification showed that when the Nb doping concentration is 0.15–0.32 
mol%, the bulk ionic conductivity of LLZO can be increased to the order of 10−3 S cm−1, which is highly consistent 
with the simulation prediction trend, as shown in Figure 16. 

 

Figure 16. (a) Arrhenius plots showing the diffusion coefficients for undoped, Al-doped, and Nb-doped S3(112) grain boundary 
(GB) models of LLZO. The plots illustrate the temperature dependence of diffusion in these systems; (b–d) Partial Li-ion trajectory 
densities accumulated from 20 to 55 ps in FPMD simulations at 1000 K for (b) undoped, (c) Al-doped, and (d) Nb-doped S3(112) 
GB models. The dashed circle highlights the disconnection in the trajectory density. In (c) and (d), light blue spheres indicate the 
positions of Al and Nb dopants, respectively, with arrows marking their locations. Reproduced with permission of Ref. [42], 
Copyright 2022 The Royal Society of Chemistry. 

6.5. Design of Novel Sulfide Electrolyte Structures 

Based on the reverse design idea of machine learning, researchers set target performance requirements, such as 
hoping to obtain a sulfide electrolyte with an ionic conductivity higher than a certain value and a wide electrochemical 
window width. Then, the machine learning model is used to reversely analyze possible material feature combinations, 
such as specific element ratio ranges, crystal structure parameters, etc. [43]. Based on these feature combinations, new 
sulfide electrolyte structures are designed. After high-throughput screening and experimental verification, it was found 
that these newly designed sulfide electrolytes did have significant improvements in performance and met the application 
requirements of high-performance electrolytes. Chen et al. [44] used a machine learning-assisted hierarchical screening 
strategy to quickly and accurately identify sulfide electrolyte candidate materials with high ionic conductivity from 
20,717 lithium-containing materials. They used machine learning models to predict the ionic conductivity of the 
materials and combined AIMD simulations to verify the ion transport performance of these materials. Finally, they 
discovered three new sulfide electrolytes with high room temperature ionic conductivity: Li3BiS3, Li5BiS4, and 
Li10ZnP4S16. In addition, Zhang et al. [45] used machine learning models, combined with high-throughput computing 
and experimental verification, to design new sulfide electrolytes. They predicted the ionic conductivity of the materials 
through machine learning models and validated the performance of these materials through experiments. The test results 
showed that the newly designed sulfide electrolytes exhibited good performance, which was suitable for high-
performance electrolytes’ application requirements. 

7. Conclusions and Outlook 

Sulfide solid electrolyte has become one of the main focuses of the whole-field of research of all-solid-state 
batteries owing to its high ionic conductivity and broad temperature adaptability. Based on the theoretical calculation 
and simulation, a deep explanation has been made for the ion transport path, activation energy and interface reaction 
mechanism of sulfide electrolytes, and the design of element doping and structural optimization, and interface 
engineering has been directed. For instance, the oxygen doping drastically enhances the electrochemical stability of the 
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sulfide electrolytes, and the LiNbO3 buffer layer can effectively avoid the interfacial side reactions. The integrations of 
machine learning and high-throughput screening promote the development of high-performance materials (e.g., 
Li10GeP2S12) and suggest new doping methods (e.g., Nb-doped LLZO). However, the application of sulfide electrolytes 
still has some difficulties: the first one is the narrow electrochemical window which restricts its compatibleness with 
high-voltage positive electrodes; the second one is the impedance problem which caused by bad solid-solid interface 
contact has not been overcome; the third one is that sulfides are hygroscopic, and big-scale preparation process urgently 
requires breaking through. The future research can be done along the following directions: (1) Research new sulfide 
system containing high ionic conductivity and wide voltage window; (2) Integration of multi-scale simulations and 
experiment to devise composite interface layer that are chemically and mechanically stable; (3) Study the atmospheric 
synthesis process of sulfide electrolyte to achieve the low cost effect. Moreover, material reverse design driven by 
artificial intelligence should also breach the traditional empirical trial and error model and open up new concepts for 
all-solid-state battery practical application. 
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