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ABSTRACT: With global broiler production reaching 103 million tons in 2024—a 1.5% increase over 2023—the poultry industry 
continues to grow rapidly. However, traditional broiler segmentation methods struggle to meet modern demands for speed, precision, 
and adaptability. First, this study proposes an improved lightweight image segmentation algorithm based on YOLOv8-seg and 
integrates the Segment Anything Model (SAM) for semi-automatic annotation, achieving precise mask segmentation of broiler 
parts. Subsequently, Key geometric features (e.g., area, perimeter, axes) were extracted using image processing techniques, with 
enhancements from HSV color transformation, convex hull optimization, and ellipse fitting. Furthermore, Image calibration was 
applied to convert pixel data to physical dimensions, enabling real-sample validation. Using these features, multiple regression 
models—including CNNs—were developed for carcass quality prediction. Finally, by analyzing the broiler segmentation process, 
machine vision techniques were effectively integrated with quality grading algorithms and applied to intelligent broiler 
segmentation production lines, providing technical support for the intelligent and efficient processing of poultry products. The 
improved YOLOv8-seg model achieved mAP@0.5:box scores of 99.2% and 99.4%, and the CNN model achieved R2 values of 
0.974 (training) and 0.953 (validation). Compared to traditional systems, the intelligent broiler cutting line reduced failure rates by 
11.38% and improved operational efficiency by over 3%, offering a reliable solution for automated poultry processing. 

Keywords: Broiler carcass; Machine vision; YOLOv8-seg; Feature extraction; Quality grading; Intelligent production line 
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1. Introduction 

The global meat industry has been dominated by poultry production, with both the output and consumption of 
poultry products exhibiting significant growth [1,2]. In recent years, the demand for chicken in consumer markets has 
steadily increased, and global chicken consumption is projected to exceed 104.9 million tonnes by 2025. Compared to 
other types of meat, chicken offers advantages such as a short production cycle, cost-efficiency, and balanced nutrition, 
making it an increasingly preferred protein source for households. The growing consumer preference for high-protein, 
low-fat foods has further accelerated the expansion of the poultry consumption market. 

Machine vision technology has been widely applied in the quality inspection and grading of broiler carcasses. 
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Particularly during the slaughtering stage, carcass grading using machine vision is crucial for ensuring product quality 
consistency and maintaining market competitiveness. Traditional manual weighing methods are not only inefficient but 
also pose a risk of secondary contamination. In response, the team led by Chen Kunjie [3,4] at Nanjing Agricultural 
University proposed a broiler carcass quality grading method based on machine vision technology. This method captures 
carcass feature information using digital and depth cameras, extracts key parameters such as projected area, contour 
length, and breast width through image preprocessing, and constructs nonlinear mathematical models to achieve non-
contact automatic grading of broiler carcasses (as shown in Figure 1). Additionally, the team employed CT scanning 
technology to capture the physical features of Sanhuang broiler carcasses and accurately calibrate the locations of major 
internal organs, providing essential data support for the development of robotic retrieval and automated evisceration 
devices. The research team led by Professor Ding Xiaoling [5] at Shandong Agricultural University focused on 
predicting the quality of chicken wings and proposed a rapid, non-destructive external quality detection model. This 
approach involved acquiring top and side-view images of 140 chicken wings, processing them through grayscale 
transformation and morphological operations, and extracting key features such as area, contour perimeter, major axis, 
and minor axis. Actual dimensions were calculated through camera calibration, and univariate linear, exponential, and 
multivariate hybrid prediction models were developed to enable the automatic grading of chicken wing quality. Building 
on these findings, the team further developed a chicken wing grading and packaging device, advancing automation in 
processing and significantly improving production efficiency. Zhuang Chao [6] proposed a body weight prediction 
method combining neural networks with machine vision, using depth cameras to capture infrared and depth images of 
white-feather broilers. Target identification was performed using the YOLOv3 algorithm, and convolutional neural 
networks were employed for image segmentation to construct a model for extracting broiler regions. Innocent Nyalala 
[7] designed a carcass weight prediction system based on depth images, segmenting the carcass into five parts—
drumsticks, breast, wings, head, and neck—using the Active Shape Model (ASM). Key point detection was used to 
determine cutting lines, refining the segmentation precision of each part and enhancing processing efficiency. 

During broiler carcass processing, issues such as damage, broken wings, hemorrhages, and inflammation 
frequently occur. The team led by Professor Wang Huhu [8–10] at Nanjing Agricultural University developed a three-
station visual acquisition device capable of rapidly capturing broiler carcass images from multiple angles. Features such 
as skin color arrays and area distribution were extracted, and defects were intelligently identified and predicted through 
traditional linear analysis combined with machine learning, forming a machine vision-based detection framework. Tran 
M [11] proposed a more advanced end-to-end architecture called the Carcass Former, leveraging powerful 
computational resources to locate, analyze, and classify poultry carcass defects while also detecting minor imperfections 
such as residual feathers, thereby significantly improving overall recognition accuracy. The Intelligent Equipment team 
at Wuhan Polytechnic University [12,13] focused on the research of automated evisceration, leveraging machine vision-
captured data to explore body part recognition, optimization of bionic motions during the evisceration process, and 
mechanical posture prediction. They successfully achieved design goals for cavity opening determination, inference of 
organ distribution, and touch-signal-driven fine adjustment of hand shapes, completing the integration and assembly of 
the corresponding hardware systems. By integrating deep learning with mechanical theories and through a series of 
experiments, they achieved precise recognition and cutting of key parts such as chicken wings and drumsticks, providing 
technical support for precision poultry processing. Cai Lu explored the application of 3D point cloud and machine 
vision technologies in poultry carcass cutting, predicted abdominal curves, organ locations, and sizes, and applied 
industrial robotic precision cutting technologies to enhance segmentation accuracy. 

Although previous studies have explored image segmentation and quality prediction for broiler carcasses, they still 
face several limitations. Existing segmentation models often lack robustness under complex backgrounds, and many 
prediction methods rely on limited handcrafted features with poor generalization. Moreover, few studies consider the 
mapping between image features and physical measurements, limiting their practical applicability. 

This study aims to address these gaps by proposing an integrated machine vision system for broiler carcass 
evaluation. We formulate the following scientific hypotheses: (1) morphological features (e.g., breast area, axis length) 
is significantly correlated with carcass weight; (2) the improved YOLOv8n-seg model with an ADown module enhances 
segmentation accuracy in practical settings; (3) CNN-based regression models outperform traditional methods in 
predictive performance; (4) This research not only verifies the performance of the model, but also proposes the design 
scheme of the actual production line. 

The main contributions of this work include: (a) a lightweight and high-accuracy segmentation model optimized 
with the ADown module; (b) a calibrated feature extraction method combining HSV color space, convex hull, and 
dynamic ellipse fitting; (c) an end-to-end prediction framework integrating deep learning and traditional regression to 
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improve quality estimation accuracy. 

 

Figure 1. Quality and quality detection of broilers based on machine vision. 

The development of poultry carcass segmentation technology has entered a fully automated stage (As shown in 
Figure 2). Leading companies such as Meyn (The Netherlands) and Baader (Denmark) have integrated machine vision, 
real-time dynamic weighing components, and AI recognition systems to create closed-loop, highly adaptive 
segmentation production lines. For instance, Meyn’s Flex Plus employs a vision-based system capable of dynamically 
recognizing anatomical parts based on color and structure, enabling seamless integration between precise grading and 
deboning operations. The system stands out not only for its operational efficiency but also for its versatility in handling 
various product specifications, reflecting the maturity of its design philosophy and breadth of application. Baader has 
adopted a continuous learning approach that fuses artificial intelligence with a visual inspection, steadily improving 
segmentation accuracy and ensuring consistent, high-quality inspection across diverse poultry types. The integration of 
robotics and machine vision has become a primary direction in advancing intelligent poultry processing, effectively 
addressing challenges posed by morphological variability and inconsistent soft tissue elasticity—issues that have 
garnered significant attention in both domestic and international research. 

Addressing the practical needs of poultry carcass segmentation, Hu [14] et al. combined statistical analysis with 
image processing techniques to propose a concept for poultry shoulder joint cutting and developed an initial system 
architecture. Early results indicated significant potential in reducing labor costs and enhancing processing speed. In the 
field of chicken tender harvesting, Misimi [15] et al. developed the GRIBBOT robotic system, which integrates 3D 
vision-guided technology for automated tender harvesting. The system uses vision algorithms to determine optimal 
grasping points and employs customized grippers to detach tenders from the skeleton, enabling full automation. 
Experimental results demonstrated that the system can accurately perform chicken tender harvesting tasks. Konrad 
Ahlin [16] et al. proposed the application of robotic technologies in poultry processing lines, enabling functions such 
as automated hanging, robotic deboning, and adaptive gripping. This solution overcomes the rigidity of traditional 
production lines. Robotic workstations can perform all necessary operations without relying on fixed cutting equipment, 
allowing for more efficient intelligent decision-making and dynamic adjustment of production strategies based on real-
time product feedback to achieve optimal yield for each individual item. 
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Figure 2. Poultry intelligent segmentation equipment. 

Figure 3 illustrates the development trajectory of poultry processing equipment and machine vision technologies, 
clearly depicting the transition from traditional processing methods to modern intelligent production. In poultry 
processing, cutting is a core operation, and its efficiency is closely tied to overall product quality. Many large enterprises 
have established comprehensive automated production lines, significantly reducing contamination and error risks 
associated with manual operations and steadily improving product quality consistency. 

 

Figure 3. Machine Vision in Broiler Inspection and Automated Processing. 
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Additionally, a keyword analysis based on a search in the Web of Science database reveals the research hotspots 
in poultry processing equipment and machine vision, as shown in Figure 4. The search was conducted using the terms 
“poultry processing equipment” and “machine vision”. The size of each dot indicates the frequency of keyword 
occurrence in the literature—the larger the dot, the greater the research interest. Machine vision has been widely applied 
in poultry processing, food quality control, and livestock health monitoring, with research hotspots becoming 
increasingly focused in recent years. 

 

Figure 4. Distribution of hot spots in poultry processing and detection. 

2. YOLOv8-Seg Image Segmentation Algorithm for Broiler Carcasses 

2.1. YOLOv8-Seg Network 

As an extended model of the YOLOv8 series, YOLOv8-seg introduces structural improvements and optimizations, 
specifically for instance, segmentation tasks. It demonstrates strong performance in various applications, including 
traffic sign segmentation in autonomous driving, tissue region identification in medical imaging, and object 
classification and segmentation in industrial environments. Compared to the standard YOLOv8 [17,18], YOLOv8-seg 
integrates a mask segmentation mechanism, enabling the system to perform beyond basic object detection. In particular, 
it can generate fine-grained object contour information, making it better suited for applications that demand high 
precision in local detail representation. 

2.2. ADown 

The ADown downsampling process consists of two branches: a 1 × 1 branch and a 3 × 3 branch. The input feature 
map is first processed by a 2 × 2 average pooling layer and then split along the channel dimension into two sub-feature 
maps, X1 and X2. X1 is processed through the 3 × 3 branch, where the number of channels is adjusted to Cout/2 (where 
Cout represents the number of output feature channels [19]. The X2 feature map is processed through the 1 × 1 branch, 
where it first undergoes a max pooling layer to extract local maxima, followed by a convolutional layer to perform 
downsampling. This design not only achieves lightweight downsampling but also better preserves critical feature 
information. Finally, the output feature maps from both branches are merged through a concatenation (concat) operation 
to form the final output. 
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In this study, the convolutional downsampling modules in both the backbone and neck of the network were replaced 
with lightweight ADown modules (as shown in Figure 5). This design, utilizing a branched structure, provides richer 
feature information, reduces the loss of fine details, and maximally preserves key features while maintaining a low 
parameter count and computational burden. 

 

Figure 5. ADown downsampling structure. 

The output feature map of global average pooling is computed according to the following formula: 

1 1

, ,2
0 0

1
,

k k

i j s i m s j n
m n

X X i j
k

 


   
 

   (1)

Here, k  represents the size of the pooling kernel and s  represents the pooling stride (usually k = s ), which 
defines the coordinates of the pooled feature map. Global average pooling performs average pooling on the feature map, 
averaging the values within each k × k  region to generate a lower-frequency feature map. Average pooling smooths 
the feature map, reduces high-frequency noise, and is beneficial for extracting global information from the entire image. 
The computation formula for max pooling is as follows: 

1 1
, 0 0 ,max maxk k

i j m n s i m s j nX X  
     

 (2)

The operation preserves significant information in the feature map, especially the edge or texture features. 

Maximum pooling is applied to the split 2X  feature map, where the maximum value is taken from each k × k  region. 

After embedding the ADown technique into the backbone and neck networks of YOLOv8, the model shows a 
significant improvement in feature extraction and fusion capabilities, especially in multi-scale object detection. The 
ADown method introduces a learnable attention mechanism, allowing the network to dynamically adjust the 
downsampling method based on input features, selectively retaining core features while minimizing the risk of 
information loss, resulting in more precise and effective detection. The improved lightweight YOLOv8n-seg network 
structure is shown in Figure 6. 
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Figure 6. YOLOv8n-seg-Adown network structure diagram. 

2.3. Dataset Construction and Image Annotation 

The chicken carcass images utilized in this study were acquired at a poultry slaughterhouse located in the Huangdao 
District of Qingdao City between 24 and 26 October 2024. The imaging equipment consisted of a Nikon D90 single-
lens reflex camera with a resolution of 4288 × 2848 pixels, equipped with a 35 mm prime lens. The lighting conditions 
featured an 8 W power source and a color temperature of 6800 K. To minimize interference from the complex 
background, a black backdrop was employed during image capture. The camera was positioned 1.5 m away from the 
chicken carcasses, with the lens set to a focal length of 35 mm, the aperture adjusted to F6, and the optical axis height 
maintained at 1.6 m. During data collection, three distinct breeds of chicken carcasses (a total of 165 samples) were 
selected from the slaughterhouse. Following image acquisition, the weight of each chicken carcass was measured using 
an electronic scale with an accuracy of ±0.01 kg, and each sample was assigned a unique identifier. 

This study focuses on the collection and analysis of chicken carcass images. To simulate the hanging conveyance 
in actual production, the experimental platform was designed to collect images with a double-leg hanging posture (as shown 
in Figure 7). To build a training dataset for chicken carcass image segmentation and detection, an image collection system 
was established, consisting of a digital camera, camera mount, supplemental lighting, and a hanging apparatus. 
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Figure 7. The image acquisition setting and site environment. 

To simulate the state of the chicken carcasses on a hanging conveyor line, the carcasses were suspended on a rack. 
Under the influence of gravity, the carcasses naturally droop, with the chest positioned perpendicular to the camera’s 
optical axis. The digital camera was mounted on a tripod 1.6 m away from the chicken carcasses to ensure the complete 
capture of the carcass images. A black background cloth was set to minimize image noise (as shown in Figure 8). 

 

Figure 8. Shooting effect. 

This study introduced the open-source tool ISAT for performing image annotation tasks (as shown in Figure 9). 
This tool integrates the latest predictive capabilities of the SAM model to assist the annotation process, significantly 
reducing labor costs and improving annotation efficiency [20–22]. Compared to traditional methods, ISAT demonstrated 
superior segmentation accuracy and adaptability across multiple datasets, improving annotation levels. The processing 
time for a single image was reduced from 45 s to 12 s, achieving a speedup of 3.7 times. 
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Figure 9. ISAT annotation tool interface. 

After filtering out blurred and incomplete images, 1000 chicken carcass images were obtained for annotation and 
detection. These images were randomly collected from a slaughterhouse and then divided into training, validation, and 
test sets. The specific annotation interface is shown in Figure 9, covering six categories: background (cls0, black), 
chicken chest (cls1, green), chicken wings (cls2, yellow), chicken legs (cls3, purple), chicken neck (cls4, red), and 
chicken back (cls5, blue). The original images are in 24-bit RGB format, with annotations made based on body parts, 
but due to unclear boundaries, the annotations were manually adjusted by dragging blocks to ensure accuracy. 

2.4. Experimental Analysis 

To verify the practical effects of introducing the ADown module and conducting an ablation experiment, the 
structure is shown in Table 1. 
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Table 1. Ablation experiment comparison. 

Index DWconv ADown 
mAP@0.5/% 

Parameters (M) FLOPs (G) Model Size (M) 
Box Mask 

1   0.993 0.991 3.3 12.0 12.90 
2 √  0.985 0.989 3.1 11.5 5.70 
3  √ 0.992 0.994 2.8 11.1 5.39 

Where ADown and DWconv represent the two improved modules. After incorporating the ADown module, the 
model’s accuracy remained stable (the mAP@0.5 box indicators were 99.2% and 99.4%, with similar mask values). 
The lightweight performance was remarkable: parameters were compressed to 2.8 M, a reduction of 0.5 M; floating 
point operations decreased to 11.1 G, reducing by 0.9 G, and weight capacity was reduced to 5.39 M, a reduction of 
7.51 M from the original scale. 

To further evaluate the practical performance of the improved YOLOv8s algorithm in broiler carcass segmentation 
tasks, this study compared it with other YOLO series algorithms, including YOLOv5s-seg, YOLOv8n-seg, and 
YOLOv9c-seg, under identical experimental conditions. 

As shown in Table 2, compared with YOLOv5s-seg and YOLOv9c-seg, the improved YOLOv8n-seg model shows 
little difference in mAP@0.5 (box) and mAP@0.5 (mask) performance, but achieves significant reductions: the number 
of parameters decreased by 4.6 M and 24.8 M, the floating-point operations (FLOPs) reduced by 14.6 G and 146.6 G, 
and the model weights shrank by 9.01 M and 48.21 M, respectively. As shown in Table 2, compared with YOLOv5s-
seg and YOLOv9c-seg, the improved YOLOv8n-seg model shows little difference in mAP@0.5 (box) and mAP@0.5 
(mask) performance, but achieves significant reductions: the number of parameters decreased by 4.6 M and 24.8 M, the 
floating-point operations (FLOPs) reduced by 14.6 G and 146.6 G, and the model weights shrank by 9.01 M and 48.21 
M, respectively. The lightweight design significantly reduces resource consumption, making the model better suited for 
embedded devices with limited computational power. It achieves a favorable balance between recognition accuracy and 
response speed, aptly meeting practical application requirements and becoming the preferred choice for broiler carcass 
segmentation tasks. 

Table 2. Model performance comparison. 

Index 
mAP50 Map50-95 

Parameters (M) FLOPs (G) Model Size (M) 
Box Mask BOX Mask 

Yolov5s-seg 0.991 0.994 0.884 0.907 7.4 25.7 14.4 
Yolov8n-seg 0.993 0.991 0.882 0.903 3.3 12.0 12.9 
Yolov9c-seg 0.985 0.993 0.906 0.912 27.6 157.7 53.6 

Yolov8n- 
ADown-seg 

0.992 0.994 0.875 0.896 2.8 11.1 5.4 

To compare the performance of the improved YOLOv8n-seg model with the original YOLOv8n-seg in practical 
segmentation tasks, a subset of images from the validation set was selected for comparison. The segmentation results 
are presented in Figure 10. 

 

Figure 10. Visualization of segmentation results. 
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Although both models showed some differences in mask overlap when handling different regions, neither exhibited 
missing detections or misclassifications. For frontal images of broiler carcasses, both models could accurately segment 
the target areas from the background. However, under side-view conditions, when the wings overlapped with the breast 
area, the original model demonstrated certain weaknesses, such as incomplete object segmentation and cluttered masks 
in occluded areas. In contrast, the improved model exhibited finer discrimination in such cases, with better handling of 
overlapping regions and overall more optimized results. 

3. Methods for Processing Chicken Carcass Characteristics 

In the field of digital image processing, extracting meaningful features from raw images has always been a 
challenging task. Taking broiler carcass feature analysis as an example, separating the carcass from the background 
environment and accurately locating the breast region poses significant challenges. Traditional methods often encounter 
instability when dealing with complex backgrounds and irregular targets. In this study, HSV color space-based image 
segmentation was employed to extract overall features such as the area and perimeter of broiler carcasses. Subsequent 
optimization of the segmentation results further improved the accuracy of feature extraction. For breast region analysis, 
contour detection using ellipse fitting and convex hull algorithms enabled precise measurement of the breast area as 
well as the major and minor axes. By comparing the results obtained from different methods against benchmark data, 
the most optimal feature extraction approach was selected to ensure both the reliability and accuracy of the findings. 

3.1. Mechanism of Feature Processing Methods 

3.1.1. HSV 

The HSV color space has been widely adopted in digital image processing due to its intuitive representation [23,24]. 
This model maps the RGB color space into an inverted cone (as shown in Figure 11), where H represents hue, S denotes 
saturation, and V corresponds to value (brightness). Such a decomposition separates color information independently, 
facilitating color analysis and processing, and is particularly effective for image segmentation. During the broiler carcass 
image processing, distinct color differences between various parts of the mask were observed. Utilizing the HSV color 
space enabled more precise color segmentation, laying a solid foundation for subsequent feature extraction. In this study, 
the segmented RGB images were first converted into HSV format, and each color component was thoroughly analyzed 
to enhance the accuracy of both mask segmentation and feature extraction. 

The conversion formula for the HSV color space is as follows: 
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Figure 11. HSV color space model. 

3.1.2. Convex Hull 

In machine vision, color extraction techniques can generate an initial mask for the chicken breast region, which 
can be directly utilized [25,26]. However, issues such as rough or broken edges often arise, posing challenges for the 
subsequent extraction of geometric features like major and minor axes. To address this, the convex hull algorithm was 
employed to optimize the mask region acquisition. The detailed procedure is illustrated in Figure 12. According to the 
definition of convex combinations: 

1 1

| , 1, 0
n n

i i i i i
i i

S t x x X t t
 

     
 
   (6)

the convex hull is the smallest convex boundary formed by the convex combination of all points in a given set. 
Subsequently, taking a reference point, the other points are sorted in ascending order based on their polar angles. 

The method for calculating the polar angle is as follows: 

arctan j i

j i

y y

x x


 
    

 (7)

After sorting, the convexity of the point set is checked point by point, starting from the second point. The vector cross-
product is used to determine whether the current point forms a “left turn”, and the cross-product formula is as follows: 

1 1 1 1 1 1Cross( , , ) ( )( ) ( )( )i i i i i i i i i i iP P P x x y y y y x x          
 (8)

If the cross product Cross > 0, the current point forms a left turn and satisfies the convex hull condition, and thus 
is added to the convex hull; if Cross ≤ 0, the point does not meet the convex hull condition (right turn or collinearity), 
and the last point in the hull is removed. 

After traversing all points, the algorithm outputs the minimum convex hull encompassing all points. Its area can 
be calculated using the following formula: 

 Convex 1 1
1

1
Area

2

k

i i i i
i

x y y x 


   (9)
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Figure 12. Convex hull detection process. 

3.1.3. Ellipse Fitting 

The chicken breast region is critical in broiler carcasses, accounting for approximately 58% to 75% of the total 
mass [27,28]. Its economic value is significant, and it also directly reflects the overall geometric properties of the carcass. 
When extracting geometric features of the chicken breast, the focus is on dimensional measurements along the vertical 
and horizontal directions, which are crucial for processing precision and quality prediction. The initial estimation 
formula for the ellipse center is as follows: 

1 1,

N N

i ii i
c c

x y
x y

N N
   

 

(10)

Here, ,i ix y  represent the coordinates of the i  boundary point, and N  is the total number of boundary points. 

By calculating the mean values of all boundary points along the horizontal and vertical directions, the estimated 

geometric center ,c cx y（ ） can be obtained. 

This study introduces a weighted point density optimization strategy, where boundary points near the major axis 
are assigned higher weights while the influence of distant points is diminished [29]. The specific optimization formula 
is as follows: 

dist( , long _ axis)
exp i

i

x
w


   
 

 (11)

Here, iw  denotes the weight of the i -th point; dist( ,long_axis)ix  represents the distance from that point to the 

ellipse’s major axis; and   is the Gaussian control parameter that determines the rate at which the weight decays with 
distance. A larger   implies a slower decay of point weights. 

After determining the center point, the most appropriate ellipse needs to be fitted based on the center. In the polar 
coordinate system, the ellipse equation can be expressed as: 

( ) cos( ) cos( ) sin( )sin( )

( ) sin( ) cos( ) cos( )sin( )
c

c

x t x a t b t

y t y a t b t

 
 

  
   

 (12)

Here, ( ), ( )x t y t  represents the coordinates of a point on the ellipse; ,a b  denotes the lengths of the ellipse’s 

major and minor axes;   is the rotation angle of the ellipse (the angle with the horizontal axis); and t  is the ellipse 

parameter (with a value range of  0, 2t  ). 

The initial estimation method has limitations in accuracy and the complex distribution of boundary points. To 
improve this situation, this paper introduces dynamic parameter adjustment to enhance the ellipse fitting effect. 
Specifically, the gradient descent method is used to update parameters related to the ellipse’s center, major axis, minor 
axis, and rotation angle. During this process, the objective function is constructed using a weighted least squares method 
to serve the subsequent optimization process, defined as: 
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Here, ( )od e  represents the weighted average distance of all boundary points to the ellipse, and ,i ix y  are the 

coordinates of the boundary points. In this process, by continuously adjusting the learning rate and gradient direction, 
the parameter updates are made both rapidly and stably, achieving more accurate ellipse fitting. The parameter 
adjustment is based on the gradient descent method, which updates the parameters by calculating the gradient of the 
objective function. The iterative update formula is: 

1 ( )t t od e     
 (14)

Here, 𝜃௧ାଵ,𝜃௧ represents the set of ellipse parameters after and before iteration, including , , , , )( c cy a bx  ,   

represents the learning rate, which controls the step size of the iteration, ( )od e   represents the gradient of the 

objective function, and indicates the direction and magnitude of parameter adjustment. During the iteration process, a 

geometric constraint 
24 0AC B   is added to ensure that the fitting result conforms to the mathematical properties 

of an ellipse rather than a hyperbola or parabola. 
Finally, the optimization scheme evaluates the fitting result through coverage validation, and the calculation 

formula for coverage is as follows: 

   

    

Number of boundary points
Coverage

Total number of boundary points
  (15)

3.2. Extraction of Broiler Carcass Features 

This study uses image segmentation to extract the red region of the whole chicken carcass and then performs 
detailed measurements of its area and contour features (as shown in Figure 13). The specific process is as follows: the 
original RGB image is first converted to the HSV color model. Using hue, saturation, and brightness, the red region of 
the chicken carcass is distinguished. In the HSV space, red is primarily scattered in two specific intervals: one is the 
low-value range from [0,120,70] to [10,255,255], and the other is the high-value range from [170,120,70] to 
[180,255,255]. After generating binary masks for these two intervals, the masks are combined using the “OR” logical 
operation to obtain the complete red region mask. 

 

Figure 13. Process for feature extraction of broiler carcass based on HSV color space. 

In the actual shooting process, the background layout was not ideal, and external scenes accidentally entered the 
frame, affecting the image preprocessing. In the original image, the external background area in the lower-left corner, 
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marked by the red box in Figure 14, was misjudged as the target area. The calculated area reached 334,393 pixels, and 
the perimeter was 8024.26 pixels. Additionally, the neck wound and the uneven height of the chicken wings and breast 
caused shadowing issues, increasing the uncertainty in the region’s resolution. 

To reduce background interference, the image was cropped to eliminate excess external background, making the 
target area more focused and clear. In the cropped image, the recognizability of the target area was significantly 
improved, with the area and perimeter adjusted to 270,312 pixels and 7776.39 pixels, respectively. Although cropping 
effectively reduced background noise, the shadowing issues caused by the neck wound and height differences still 
existed, resulting in some errors in the calculated results. Therefore, further improvements to the algorithm are needed 
in the future to enhance the accuracy of image segmentation and feature extraction. 

 

Figure 14. Comparison of area and perimeter pixel points of broiler carcass. 

Figure 15 shows the comparison data of area and perimeter obtained under different processing methods. After the 
segmentation, the image was processed in the HSV color space. The study successfully extracted the red mask area of 
the whole chicken with precise region localization. The method eliminates the influence of the external environment 
from the original image. In the cropped image, the same technique calculated the area as 319,377 pixels and the 
perimeter as 5439.61 pixels, with both data matching the original image, demonstrating the stability of the HSV color 
space under different shooting conditions. 

 

Figure 15. Comparison of area and perimeter pixel points of broiler carcass. 
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3.3. Extraction of Chicken Breast Features 

This study uses image processing and ellipse fitting to conduct a quantitative analysis of the area and geometric 
properties of the chicken’s breast. First, image preprocessing, morphological operations, and image segmentation were 
used to extract the chicken breast region. Then, ellipse fitting was applied to the target area, obtaining the values of the 
ellipse’s major and minor axes, which were used as parameters for the geometric characteristics of the chicken’s breast. 

In this paper, an external rectangle operation was applied to the chicken breast mask area in the annotated image 
(as shown in Figure 16), and its length and width were calculated. Since the chicken images in this study are in a 
vertically hanging state, the obtained length and width values can be used as reference parameters for consideration. 

 

Figure 16. Bounding rectangle of broiler breast mask. 

In the evaluation stage, the green mask area shown in the image marked in Figure 6 was used as the standard value 
for the chicken breast area, while the length and width of the green mask external rectangle in Figure 17 were used as 
the reference for the major and minor axes. By comparing the results extracted by different methods, their accuracy and 
reliability in calculating the chicken breast area and geometric features can be evaluated. 

This study researched the image segmentation mask. First, the manually labeled chicken breast mask was converted 
into the HSV color space. The extracted area was 106,997 pixels, and ellipse fitting showed that the corresponding 
covered area was 110,484 pixels. The axial data were 561.34 and 250.60 pixels, respectively. After convex hull operation, 
the area was updated to 110,609 pixels. After further ellipse fitting, the area expanded to 126,302 pixels, with the major 
and minor axes being 575.96 pixels and 279.20 pixels, respectively. 

Based on the new algorithm designed in Section 1, inference images were generated and converted to the HSV 
color space. The initial chicken breast mask area was 102,611 pixels. After ellipse fitting, the area increased to 111,650 
pixels, with major and minor axes corresponding to 559.15 pixels and 253.05 pixels. After introducing the convex hull 
operation, the extracted area was adjusted to 111,308 pixels. After further ellipse fitting, the area increased to 121,689 
pixels, with the major and minor axes adjusted to 583.19 pixels and 264.59 pixels, respectively. As shown in Figure 16, 
both the annotated mask and the inference image mask, after ellipse fitting and convex hull optimization, can accurately 
extract the features of the chicken breast. 
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Figure 17. Comparison of segmented region image and inference image. 

3.4. Comparison of Image Processing Methods 

By summarizing and comparing the parameters extracted by each processing method, Table 3 was created to 
present the numerical extraction results under different methods visually. 

Table 3. Feature parameters of different image processing methods. 

Method 
Area 

(Pixels) 

Ellipse Fitting (Pixels) Convex Hull Processing (Pixels) 

Area 
Major 
Axis 

Minor 
Axis 

Area 
Ellipse 
Area 

Major 
Axis 

Minor 
Axis 

Original Image — 1,249,857 1544.77 1030.16 — — — — 
Cropped Image — 824,234 1208.85 868.14 — — — — 
Chicken Mask — 552,100 1202.61 584.53 — — — — 

Morphological Processing 116,528 127,668 601.24 263.68 128,927 152,728 583.48 333.27 
Image Segmentation 

Mask 
106,997 110,484 561.34 250.60 110,609 126,302 575.96 279.20 

Inferred Mask 102,611 111,650 559.15 253.05 111,308 121,689 583.19 264.59 

The chicken breast mask area obtained through image annotation fits the actual chicken breast area most closely, 
so the extracted chicken breast mask area is set as the baseline value (106,997 pixels). The comparison with other image 
processing methods is then performed by calculating the relative error, with the formula for relative error as: 

 -  
  = 100%

 

Remaining Area Reference Value
Relative Error Value

Reference Value


 
(16)

Based on the data analysis results in Table 4 and Figure 18, the different image processing methods are arranged 
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in order (Including: 1. morphological processing; 2. morphological ellipse; 3. morphological convex hull; 4. 
Morphological convex hull ellipse; 5. Image segmentation; 6. Image segmentation ellipse; 7. Image segmentation 
convex hull; 8. Image segmentation convex hull ellipse; 9. Inference; 10. Inference ellipse; 11. Inference convex hull; 
12. Inference convex hull ellipse). It is clear that these methods show significant differences in extracting the chicken 
breast area. 

Table 4. Comparison of area error for different image processing methods. 

Method 
Error Value (%) 

Area Ellipse Fitting Area Convex Hull Area Convex Hull Ellipse Area 
Morphological Processing 8.90 19.30 20.50 42.70 
Image Segmentation Mask 0.00 3.30 3.40 18.00 

Inference Mask 4.10 4.30 4.00 13.70 

The morphological method shows a significant difference when extracting the chicken breast region from the true 
area. The error of the result obtained by directly applying morphological processing is 8.9%, which is relatively small 
within this method. Image segmentation technology demonstrates better adaptability, especially when ellipse fitting and 
convex hull processing are applied to the extracted chicken breast mask. The corresponding deviations reduce to 3.3% 
and 3.4%, showing a significant improvement in accuracy. 

In the inference image processing process, the generated chicken breast mask showed a 4.1% deviation from the 
true mask area. After applying ellipse fitting and convex hull operations to the inference mask, the errors changed to 
4.3% and 4.0%, respectively. This indicates that the accuracy of this method in capturing the chicken breast 
characteristics is within an acceptable range and provides reliable data support for future research. 

 

Figure 18. Comparison of area pixels for different image processing methods. 

In this study, an external rectangle analysis was performed on the chicken breast mask obtained from image 
segmentation (Figure 16). The measured width was 256 pixels, and the length was 556 pixels, used as the evaluation 
baseline. By comparing this standard value with the major and minor axis lengths obtained from various image processing 
methods and calculating the relative errors of each method, the visual results in Table 5 and Figure 19 were generated. 

From the overall error perspective, the major and minor axis errors obtained after morphological processing and 
ellipse fitting are 8.1% and 3.0%, respectively. When convex hull processing is applied, the errors increase to 4.9% and 
30.2%, with the minor axis error significantly larger. In contrast, when processing the mask directly based on image 
segmentation, the errors are more controllable. Using ellipse fitting, the errors for the major and minor axes are only 
0.9% and 2.1%, respectively. When using convex hull processing, the errors are also relatively low, 3.6% and 9.1%, 
respectively. Additionally, the accuracy of the inference-generated image mask also performed well. After ellipse fitting, 
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the errors for the major and minor axes were only 0.6% and 1.2%, respectively. The results from convex hull processing 
showed errors of 4.8% and 3.3%. From multiple processing perspectives, both the inference mask and segmentation 
mask show high geometric accuracy. 

 

Figure 19. Comparison of axis pixels for different image processing methods. 

Table 5. Comparison of axis errors for different image processing methods. 

Method 
Error Value (%) 

Area Ellipse Fitting Area Convex Hull Area Convex Hull Ellipse Area 
Morphological Processing 8.10 3.00 4.90 30.20 
Image Segmentation Mask 0.90 2.10 3.60 9.10 

Inference Mask 0.60 1.20 4.80 3.30 

4. Broiler Carcass Quality Prediction Model 

In broiler carcass quality prediction research, the accuracy of converting image pixels into actual physical 
quantities is always one of the critical factors affecting the model’s reliability. If the scaling factor is not set accurately, 
it may not only cause the prediction results to deviate from the reference but also introduce systematic errors. This paper 
aims to address these technical bottlenecks. Image calibration technology can convert visual information into actual 
physical quantities, thereby ensuring the consistency and reliability of data input. By designing experiments to compare 
the error differences between the predicted values of various models and actual body weights, the precision and stability 
of the models are comprehensively evaluated. 

4.1. Broiler Carcass Quality Acquisition 

In the sample collection phase, this study selected multiple different breeds of broiler chickens for image capturing 
and weighing to ensure that the sample weights were distributed across a wider range, thereby avoiding data 
concentration and reducing the risk of model underfitting. A total of 165 broiler chicken samples were collected for 
weight data, and preliminary statistical analysis was conducted, as shown in Table 6. According to the statistical results, 
the sample weights ranged from 1.55 kg to 3.35 kg, with an average weight of 2.29 kg and a median of 2.25 kg, 
exhibiting a relatively symmetric distribution pattern. The standard deviation is 0.44 kg, and the variance is 0.19 kg2, 
indicating that the data has a moderate level of dispersion and no significant skewness. 

Table 6. Statistical Feature Analysis of Broiler Carcass Data. 

Count Max Min Median Average Standard  Variance 
165 3.35 kg 1.55 kg 2.25 kg 2.29 kg 0.44 kg 0.19 kg 
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A histogram of broiler chicken carcass weight distribution was plotted based on weight, with the introduction of a 
kernel density estimation (KDE) curve to reflect the overall data trend (Figure 20). KDE [30,31] is a non-parametric 
method used to estimate the probability density function of a random variable. In the computational process, a smoothed 
kernel function, such as the commonly used Gaussian kernel, is applied around existing samples at each weight node 
[32]. The integration of these local kernel functions ultimately forms a smooth and continuous probability density curve. 

The calculation formula is as follows: 

1

1ˆ( )
n

i

i

x x
f x K

nh h

   
 

  (17)

where, 
ˆ( )f x  represents the density estimate at position x ; n  is the sample size; h  is the bandwidth parameter; 

and K  is the kernel function. 

 

Figure 20. Broiler carcass weight distribution. 

This study utilized the weighted histogram and KDE to conduct a visual analysis of the collected broiler chicken 
sample weight data. The results exhibit a clear bimodal distribution with peaks around 2.0 kg and 2.8 kg, which account 
for more than 65% of the samples. This aligns closely with the typical weight specifications of broiler chickens in the 
current market, further validating the market representativeness and reasonableness of the collected data. 

After preliminarily extracting and classifying the broiler chicken carcass image features in Section 1, these features 
were further correlated with the actual weight data, followed by a detailed statistical sorting and selection process. 
Ultimately, five core features were identified, as shown in Table 7. Among them, parameters such as the overall area 
(Sp) and perimeter (Hp) of the broiler chicken carcass are calculated from the whole chicken mask image, which can 
accurately depict the scale and boundary shape of the chicken carcass. The chicken breast area (Ep) is derived from the 
manually labeled green mask region, reflecting the actual projected area of the chicken breast in the image. 
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Table 7. Statistical analysis of broiler carcass pixel features and weight. 

No. 
Sp 

(Pixels) 
Hp 

(Pixels) 
Ep (Pixels) Cp (Pixels) Ap (Pixels) Wight 

(kg) AnnImg InfImg AnnImg InfImg AnnImg InfImg 
1 264,965 4367 133,698 124,016 483 445 236 233 3 
2 255,727 4681 141,228 117,173 505 460 242 213 2.6 
3 283,481 4254 182,643 232,868 611 627 258 310 2.45 
4 243,050 3876 168,483 227,491 558 592 269 321 2.85 
5 306,111 4040 200,099 237,275 848 658 394 301 3.1 
6 282,094 3693 182,547 222,394 481 572 312 324 2.25 
7 295,303 3650 201,014 159,459 652 501 281 266 2.75 
8 331,866 4299 206,652 252,826 580 622 323 339 2.8 
9 355,566 4377 246,388 212,404 689 639 317 277 2.9 

10 256,370 3628 146,186 191,352 525 536 248 298 2.85 
11 294,658 4268 180,890 143,691 606 528 275 227 2.25 
12 298,186 4411 209,398 225,658 642 644 288 292 2.85 
13 261,654 3900 176,208 239,078 564 601 295 332 2.95 
14 345,002 4977 189,330 171,545 619 590 260 243 3 
15 484,301 4968 327,403 297,030 753 754 367 329 2.85 
16 367,469 4668 224,627 207,386 643 578 310 299 2.15 
17 393,423 4447 255,372 198,608 917 631 426 263 3.35 
18 289,799 4361 195,810 310,916 608 670 285 387 2.8 
19 294,382 4035 180,843 244,669 598 687 265 297 2.7 
20 192,055 3713 90892 168,035 440 251 189 140 2.05 

4.2. Image Calibration 

Image calibration maps three-dimensional physical coordinates to two-dimensional pixel coordinates through 
camera calibration and uses coordinate system transformation methods to establish the conversion relationship from the 
world coordinate system to the pixel coordinate system, typically represented by a matrix, as shown Figure 21. 
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where cZ   represents depth,  1 T
u v

  denotes pixel coordinates; xd   indicates the horizontal pixel size; yd  
represents the vertical pixel size is the lens focal length. The right side of the equation represents the camera’s intrinsic 

and extrinsic parameter matrices;  Tw w wx y z
  which represent the world coordinates. Camera calibration 

primarily involves solving the relevant parameters in the intrinsic and extrinsic matrices. 

The internal parameter matrix obtained from camera calibration is denoted as 

3301.2 0 1537.9

0 3305.7 2037.0

0 0 1

K

 
   
    ; the 

distortion coefficients are 1k
 = 0.0391 and 2k

 = −0.3397. 
Among them, Figure 21a presents the error distribution in the form of a bar chart, with each bar reflecting the 

average error value corresponding to one calibrated image. From the perspective of the overall distribution, the errors 
of most images are concentrated around approximately 0.7 pixels, which reflects that the selected calibration method 
has strong controllability in terms of accuracy. In Figure 21b, the 3D reconstruction results are presented with the help 
of internal and external parameters. After correcting the distortion phenomenon, the average error obtained is 0.72 pixels, 
and there is no situation where the error of a single image exceeds 1 pixel. This further indicates that this calibration 
has high accuracy and can meet the accuracy requirements of subsequent image measurement and 3D modeling. 
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Figure 21. Camera calibration. (a) presents the error distribution in the form of a bar chart, with each bar reflecting the average 
error value corresponding to one calibrated image. (b), the 3D reconstruction results are presented with the help of internal and 
external parameters. 

4.3. Physical Feature Quantities of Broiler Carcass 

Through the aforementioned image calibration, the five feature quantities are converted from pixel units to physical 
units, with the ratio between the physical size and pixel size of the image remaining constant. That is: 

r

p

L
Q

L


 (19)

where Q  is the scale factor, rL
 is the physical size (cm), and pL

 is the pixel size. The calculated value of Q  is 
0.03838; thus, the physical calculation formula for this feature quantity is: 

2 0.001473r p pS K S S   (20)

2 0.001473r p pE K E E   (21)

0.03838r p pH KH H 
 (22)

0.03838r p pC KC C 
 (23)

0.03838r p pA KA A 
 (24)

Sr, Hr, Er, Cr, and Ar represent the pixel unit values of the feature quantities corresponding to the overall area, 
perimeter, chest area, long axis, and short axis of the image, as obtained through image calibration. These pixel unit 
values of the feature quantities are obtained through the calibration process and are then converted into actual physical units. 
Table 8 presents the calculated results of the five data points in physical units obtained through the image feature conversion. 
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Table 8. Statistical analysis of physical features and weight of broiler carcass. 

No. Sr (cm2) Hr (cm) 
Er (cm2) Cr (cm) Ar (cm) Weight 

(kg) AnnImg InfImg AnnImg InfImg AnnImg InfImg 
1 390.29 167.60 196.94 182.67 9.27 8.53 4.53 4.46 3 
2 376.69 179.66 208.03 172.60 9.68 8.82 4.63 4.08 2.6 
3 417.57 163.28 269.03 343.01 11.72 12.03 4.95 5.94 2.45 
4 358.01 148.77 248.17 335.09 10.71 11.35 5.15 6.15 2.85 
5 450.90 155.04 294.75 349.51 11.43 12.63 5.61 5.77 3.1 
6 415.52 141.73 268.89 327.59 9.22 10.98 5.98 6.22 2.25 
7 434.98 140.07 296.09 234.88 12.51 9.60 5.38 5.09 2.75 
8 488.84 164.98 304.40 372.41 11.13 11.93 6.19 6.51 2.8 
9 523.75 167.98 362.93 312.87 13.21 12.26 6.07 5.32 2.9 

10 377.63 139.25 215.33 281.86 10.07 10.29 4.75 5.71 2.85 
11 434.03 163.82 266.45 211.66 11.62 10.12 5.28 4.36 2.25 
12 439.23 169.29 308.44 332.39 12.31 12.36 5.52 5.60 2.85 
13 385.42 149.70 259.55 352.16 10.82 11.53 5.65 6.36 2.95 
14 508.19 191.02 278.88 252.69 11.88 11.31 4.98 4.65 3 
15 713.38 190.65 482.26 437.52 14.44 14.46 7.04 6.30 2.85 
16 541.28 179.17 330.87 305.48 12.34 11.09 5.94 5.74 2.15 
17 579.51 170.69 376.16 292.55 13.31 12.10 6.04 5.04 3.35 
18 426.87 167.36 288.43 457.98 11.66 12.85 5.46 7.43 2.8 
19 433.62 154.86 266.38 360.40 11.48 13.17 5.09 5.70 2.7 
20 282.90 142.49 133.88 247.52 8.44 9.61 3.62 5.36 2.05 

Based on existing research, the body length of broiler chickens typically ranges from 35 to 45 cm, with the typical 
length of the chest area being 12 to 18 cm and the width ranging from 8 to 15 cm [33,34]. The main sources of 
uncertainty affecting the accuracy of the prediction results in this study include: image edge segmentation error 
(approximately 2.3% pixel deviation), camera calibration error (±0.13 cm), and weighing equipment error (±0.01kg). 
The total prediction uncertainty introduced by the combination of the three is approximately ±3.5%, which is within a 
reasonable range in non-contact detection tasks. By comparing the prediction results of the YOLO algorithm with the 
above typical values and reasoning data analysis, it is found that the output provided by this algorithm is highly 
consistent with the normal range. 

4.4. Regression Prediction Model 

Although traditional regression methods show some adaptability on the training set, their prediction performance 
is unstable when faced with unknown samples or validation data, which weakens their applicability in real-world 
scenarios. This paper aims to address these technical bottlenecks. Univariate linear regression can identify 
characteristics significantly correlated with chicken body weight, thereby reducing the interference of irrelevant 
information during the modeling process. Subsequently, multiple machine learning regression algorithms and 
convolutional neural network models are introduced to optimize predictive performance further. Finally, experiments 
are designed to compare the error differences between the predicted values of each model and the actual body weight, 
providing a comprehensive evaluation of the models’ accuracy and stability. 

This chapter utilizes SPSS (Statistical Package for the Social Sciences) software to perform linear regression 
analysis and train traditional machine learning models, while using the MATLAB platform for the modeling and training 
of convolutional neural networks, thereby enabling further processing and predictive modeling of image features [35]. 
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 (25)

To comprehensively evaluate the performance of the models, this study selects the coefficient of determination (R2) 
and root mean square error (RMSE) as evaluation metrics. 

Where y  represents the actual observed value; ŷ  represents the model’s predicted value; and y  represents 
the mean of the actual values. The closer the R2 value is to 1, the stronger the model’s predictive ability. 

RMSE is used to measure the magnitude of the error between the model’s predicted results and the actual observed 
values. The formula for its calculation is as follows: 
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where obs,iX
  represents the i-th actual observed value, model,iX

  represents the i-th model predicted value, and n 
represents the sample size. A smaller RMSE value indicates smaller prediction errors and higher accuracy of the model. 

4.5. Linear Regression 

Simple linear regression predicts by establishing a linear relationship between the dependent variable and one 
independent variable [36]. The regression equation for the sample is assumed to be: 

W b aX   (27)

where W  is the predicted body weight, X  is the actual value of the feature, and b, a are the coefficients to be 
determined. The least squares method was used to establish the simple linear regression model, resulting in 5 regression 
models. In this study, regression analyses were performed on the overall area Sr, chicken chest area Hr, perimeter Er, 
long axis Cr, and short axis Ar, resulting in the corresponding regression equations and fitting results. 

The results of the simple linear regression analysis are shown in Table 9. Some features, such as the R2 values of 
the perimeter and the short axis, are relatively low (e.g., 0.2277 and 0.6152, respectively). This can be attributed to their 
weak correlation with quality. These features are vulnerable to the influence of wing folding and background occlusion. 
Therefore, the model based on perimeter is not as reliable as the model based on area or axis. The discussion section 
explores these limitations and supports the selection of more stable features in model design. The whole body area and 
chest area of chickens have a strong linear correlation with the prediction of body weight, and the corresponding R2 
values are 0.7427 and 0.782, respectively. This indicates that these two characteristic variables have a high explanatory 
power for weight changes, and the regression model fits well. 

Table 9. Results of univariate linear regression analysis. 

Unit Regression Equation R2 

Whole Chicken Area 0.0055 -0.1151= rSW  0.7427 

Whole Chicken Perimeter 0.015 -0.1142= rEW  0.2277 

Breast Area 0.0061 0.5384= +rHW  0.7820 

Major Axis 0.139 0.996+ 6= rCW  0.6921 

Minor Axis 0.2512 0.4689= -rAW  0.6152 

Figure 22 shows the linear modeling process of chicken body characteristics. It can be seen from the figure that 
the evaluation model is sensitive to the fluctuations of input features. In the regression prediction models of the overall 
area and chicken breast area, the predicted values fluctuated slightly, indicating that these two characteristics can 
accurately predict the body weight of chickens. However, the confidence interval and prediction interval of the perimeter 
are relatively wide, indicating that the error of this feature in weight prediction is large and the reliability of the 
prediction is low. It further explains that feature selection plays a key role in the stability of the model. 
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Figure 22. Linear modeling based on broiler carcass feature values (a) Whole Chicken Area (b) Breast Area (c) Perimeter (d) Axis. 

4.6. Convolutional Neural Network 

Figure 23 shows the CNN architecture used in this study. The model consists of an input layer, an output layer, and 
multiple convolutional layers, pooling layers, and fully connected layers [37–39]. 

 

Figure 23. Convolutional neural network structure diagram. 

The extracted chicken body feature data was imported into the MATLAB environment. Prior to modeling, the data 
was randomly shuffled, and then the first 80 data points were selected as the training set, with the remaining samples 
used for testing and validating the model. The goal was to assess its generalization ability on unseen samples. The 
convolutional neural network was trained for a total of 2400 iterations. The CNN model training results are shown in 
the figure, where Figure 24a,b shows the comparison between the labeled and inferred images. For the training set data, 
the R2 for labeled images was 0.957, and the RMSE was 0.047; for inferred images, the R2 was 0.921, and the RMSE 
was 0.137. For the validation set data, the R2 for labeled images was 0.943, and the RMSE was 0.089; for inferred 
images, the R2 was 0.868, and the RMSE was 0.165. 
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Figure 24. CNN model training results. 

4.7. Experimental Validation 

To validate the accuracy of the convolutional neural network regression, this study compares it with four other 
methods: Support Vector Machine Regression (SVR), Random Forest Regression (RF), Adaptive Boosting Regression, 
and Gradient Boosting Regression, to evaluate their performance in weight prediction [40–44]. 

From the comparison of performance indicators in Table 10, it can be seen that the SVR and Random Forest models 
achieved high fitting results on the labeled images of the training set, with R2 values of 0.947 and 0.998, respectively, 
demonstrating strong modeling capabilities. However, when the models were applied to the inference images of the 
validation set, their performance significantly decreased, with R2 dropping to around 0.8, reflecting the limited 
generalization ability of these two models when dealing with unseen data. 

In contrast, the Adaptive Regression and Gradient Boosting Regression models showed more balanced prediction 
performance on both labeled and inference images. Especially on the validation set, their R2 values were 0.904 and 
0.856, respectively, indicating better stability and generalization performance. From the perspective of prediction error, 
the Gradient Boosting Regression model had a lower RMSE, indicating that it has an advantage over Adaptive 
Regression in terms of prediction accuracy. Whether on labeled images or inference images, the Gradient Boosting 
model consistently showed more reliable regression results. 
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Table 10. Prediction results of nonlinear models. 

Model 
Annotated Image Inferred Image 

Training Set Validation Set Training Set Validation Set 
R2 RMSE/kg R2 RMSE/kg R2 RMSE/kg R2 RMSE/kg 

SVR 0.947 0.066 0.811 0.142 0.955 0.094 0.806 0.103 
RF 0.998 0.019 0.856 0.16 0.999 0.013 0.8 0.184 

Adboost 0.935 0.114 0.904 0.116 0.881 0.154 0.824 0.171 
GBDT 0.956 0.087 0.844 0.192 0.952 0.097 0.816 0.172 
CNN 0.957 0.047 0.921 0.137 0.943 0.089 0.868 0.165 

This study randomly selected 50 samples from the complete dataset for sample-level analysis and layered chart 
comparison, with the corresponding visualization results shown in Figure 25. Among them, Figure 25a and Figure 25b 
show the prediction effects of labeled images and inference images under different regression models, respectively. 
According to the analysis results in Table 11, Figure 11a and Figure 11b respectively show the prediction effects of the 
labeled image and the inferred image under different regression models.CNN performed the best in the training set samples, 
with R2 of 0.974 and RMSE of 0.069, significantly outperforming other regression algorithms. In the validation set samples, 
CNN also maintained good performance, with R2 of 0.953 and RMSE of 0.093, indicating strong predictive ability and 
stability when dealing with unseen data. In contrast, the machine learning regression models showed relatively stable 
performance in the validation set, but their overall metrics were lower than CNN. Especially when facing complex features 
and unseen samples, CNN demonstrated stronger generalization ability and robustness through deep feature extraction. 

The CNN model proposed in this study has a stronger generalization ability, integrates physical quantity calibration 
and deep learning, makes up for the defect of “only focusing on pixels and ignoring size” in traditional methods, and 
has higher interpretability and practicability in actual engineering deployment. 

 

Figure 25. (a,b) show prediction results of annotated and inference images by regression models.  
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Table 11. Model prediction results. 

Model 
Annotated Image Inferred Image 

R2 RMSE R2 RMSE 
SVR 0.812 0.189 0.776 0.211 
RF 0.906 0.133 0.776 0.206 

Adboost 0.958 0.089 0.911 0.130 
GBDT 0.969 0.076 0.915 0.127 
CNN 0.974 0.069 0.953 0.093 

5. Intelligent Production Line for Broilers 

Market research and analysis indicate that current poultry segmentation lines remain inefficient, with several 
unresolved technical challenges persisting in the cutting stage [45–48]. To address these issues, this study proposes the 
design of an intelligent segmentation production line for broilers. First, the overall framework of the production line 
was gradually established, and the process flow was clarified through detailed analysis. Second, key functional modules 
of the intelligent broiler segmentation line were developed, including a weighing and re-hanging unit, a machine vision-
based wing extension detection unit, and an intelligent cutting system, each targeting specific technical bottlenecks. 
Finally, the practical application of the production line was evaluated, demonstrating its effectiveness in improving 
processing efficiency and optimizing workflow. 

5.1. Intelligent Production Line Design 

The intelligent broiler segmentation line is composed of a weighing and re-hanging unit, a vision-based wing-
extension detection module, and an intelligent cutting system (Figure 26). The production line incorporates a dual-
parallel conveyor hanging system, allowing broiler carcasses to remain stably suspended and smoothly transported 
along the line. The weighing and re-hanging unit is positioned at the beginning of the conveyor to ensure that each 
carcass enters the segmentation phase following standardized procedures. Downstream along the conveyor, the system 
is sequentially equipped with modules for wing-extension detection, followed by automated segmentation of the wing 
tip, mid-wing, wing root, neck, spine, breast cap, and leg portions, enabling a fully automated assembly-line operation. 

 

Figure 26. Layout of the intelligent poultry cutting production line. 1. Weighing and Re-Hanging 2. Machine Vision-Based Wing 
Extension Detection Module 3. Wing Tip Cutting 4. Mid-Wing Cutting 5. Wing Root Cutting 6. Breast Cap Segmentation Module 7. 
Poultry Neck Cutting 8. Spine Segmentation Module 9. Poultry Leg Cutting 10. Overhead Conveyor Rail 11. Production Line Frame. 
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The operational workflow of the intelligent broiler segmentation line begins with Step 1: manually hanging broiler 
carcasses onto the weighing and transfer unit. As the conveyor rail advances, the carcasses enter the weighing system 
for preliminary grading. Based on the weight and physical specifications, each carcass is automatically routed to an 
appropriate segmentation line. Step 2: The carcasses are conveyed to the machine vision-based wing extension 
inspection module, which evaluates anatomical features, skin integrity, and the presence of any pathological signs. 
Carcasses, meeting the quality criteria, proceed to the wing extension unit. Upon completion of this stage, a secondary 
machine vision inspection confirms compliance with wing extension standards. Step 3: Carcasses that pass the wing 
extension inspection are sequentially transferred to the wing tip, mid-wing, wing root, breast cap, neck, spine, and leg 
cutting units. Each device performs precise cuts based on pre-configured parameters, ensuring a fully standardized and 
automated segmentation process. The detailed operational workflow of the intelligent broiler segmentation line is 
illustrated in Figure 27. 

 

Figure 27. Specific workflow of the intelligent poultry cutting production line. 

5.2. Weighing and Transfer System 

The automatic grading and weighing transfer system in the intelligent broiler segmentation system (as shown in 
Figure 28) consists of the manual loading area, chain-based dynamic weighing structure, transfer unit, production line 
frame, conveyor track, and clamping devices. The dynamic weighing device is composed of the entry rotary wheel, exit 
rotary wheel, drive chain, guide rails, carriage, photoelectric switch, weighing sensors, bevel gears, support plate frame, 
carriage constraint plate, and weighing hooks. In the structural design, the top support plate frame is equipped with 
intermeshing bevel gear sets, while the bottom relies on the drive chain to connect the entry and exit rotary wheels. The 
carriage is firmly secured between the two rotary wheels by constraint plates. It is coordinated with the weighing hooks 
and the exit rotary device to ensure smooth transportation of the broiler carcasses after weighing. During the weighing 
process, the drive motor moves the entire mechanism via the chain. Integrated weighing sensors on the chain capture 
the carcass’s instantaneous weight. When the carriage approaches the photoelectric switch, the action is triggered, 
automatically completing data collection and recording tasks. 
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Figure 28. Automatic classification weighing and transfer suspension system. 1. Manual Loading Area 2. Dynamic Weighing 
Structure 3. Transfer Device 4. Conveyor Track 5. Production Line Frame 6. Clamping Device. 

5.3. Machine Vision Detection Wing-Spreading Device 

The machine vision detection wing-spreading device (Figure 29) consists of a visual recognition component, an 
adaptive, flexible wing-spreading component, a side lifting frame, and a production line frame [49]. 
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Figure 29. Adaptive flexible wing deployment mechanism 1. Pulling Plate 2. Guide Wheel Shaft 3. Motor Mounting Bracket 4. 
Motor 5. Bearing Mount 6. Lead Screw 7. Rubber Rod 8. Wing-Spreading Roller 9. Protective Cover 10. Gear Reduction Motor 
11. Rhombic Bearing 12. Wing-Spreading Roller Base. 
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Throughout the process, the chicken body is suspended on the conveyor line’s rack, moving steadily in a fixed 
direction, with its posture pre-adjusted so that the chest faces forward, facilitating smooth transitions for subsequent 
operations. As the body gradually approaches the adaptive, flexible wing-spreading component, the naturally folded 
wings enter the wing-spreading space. As the body continues to move forward, its wings gradually come into contact 
with the rotating rubber rods. After several flexible impacts from the rubber rods, which differ from the force needed to 
maintain the wings’ contraction, the perfect reactive force is generated, causing the folded wings to gradually unfold 
and take shape, providing the optimal condition for the subsequent precise cutting process. When the body first enters 
the adaptive, flexible wing-spreading component (as shown in Figure 30), the force analysis at the contact point between 
the rubber rod and the chicken wings in their contracted state is shown below: 
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where, WhellF  represents the twisting force of the wing-spreading roller, in N; RF  represents the resistance exerted on 

the wing-spreading roller by the bird’s wing, in N; the twisting force WhellF  generated by the rubber rod on the wing-

spreading roller makes an angle of 1 ,°; with the vertical direction; RF  also makes an angle of 2  with the vertical 

direction. 
Let the rotational speed provided by the motor be n, in rpm; the power transmitted by motor P, in kW; r is the 

distance between the rubber rod on the wing-spreading roller and the bird’s wing, in mm. The two motors drive the 
wing-spreading roller in opposite directions with the same rotational speed. Based on the relationship between torque 
T, rotational speed n, and power P, in W: 
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The twisting force WhellF  of the rubber rod is determined by the torque T calculated above. 
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Figure 30. Force analysis diagram of wing in contracted state. 1 Rubber rod 2 Winged roller. 

As shown in Figure 31, the forces acting on the broiler carcass wings in the fully extended state are illustrated. In 
the extended state, the torsional force acting on the wing forms an angle 3   with the vertical direction, and the 

resistance force on the wing also forms an angle 4  with the vertical. When the wings are fully extended, the length 

3  is reduced compared to 1  in Figure 30, while the offset 4  increases compared to 2  in Figure 8. Therefore, 
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the components of the torsional force WhellF  in both horizontal and vertical directions are greater than those of the 

resistance force RF  acting on the wings. The rubber rods disengage from the wings, and the wings remain in the 

extended state when the following condition is satisfied: 

3
4

3
4

9550Psin
sin

nr
9550Pcos

cos
nr

R

R

Horizontal

Vertica

F

F l

 

 

 

 


 ( ）

 ( )
 

(31)

 

Figure 31. Force analysis diagram of wing in deployed state. 1 Rubber rod 2 Winged roller. 

5.4. Intelligent Cutting System 

The cutting system precisely and sequentially cuts specific parts of broilers according to the pre-set cutting 
sequence, namely the wingtips, the middle of the wings, the neck, the wing roots, the spine and the legs. The equipment 
layout is strictly aligned with the cutting sequence. The horizontal support frame serves as the structural foundation to 
adjust the vertical position of the cutting unit. Once the position of the cutting module is relatively fixed, the system 
integrates the front-end machine vision recognition, the aforementioned automatic part discrimination and other 
functions. For instance, the system can identify whether chicken wings have spread out, adjust the cutting strategy based 
on the detection results, achieve cutting prediction and then precise cutting, truly realizing self-adaptation and 
automation. Figure 32 shows the intelligent broiler cutting system. 

 

Figure 32. Poultry intelligent cutting system. 3. Wing Tip Cutting 4. Mid-Wing Cutting 5. Wing Root Cutting 6. Breast Cap 
Segmentation Module 7. Poultry Neck Cutting 8. Spine Segmentation Module 9. Poultry Leg Cutting. 
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This intelligent broiler segmentation line was jointly developed through an industry-university-research collaboration 
between Qingdao University of Technology and Qingdao Ruizhi Intelligent Technology Co., Ltd., Qingdao, China. The 
system has been deployed in actual production (as shown in Figure 33) and is currently operating with stable performance.  

The intelligent broiler processing line features advanced automation, high reliability, and integrated information-
sharing capabilities. By leveraging machine vision technology to identify broiler features, the system ensures accurate 
segmentation across more than 40 processing steps. It achieves high-precision separation of wing tips, mid-wings, and 
wing roots, increasing the wing-cutting efficiency to 4 kg/min. The joint breakage rate during bone-in component 
separation has been reduced to 5%. Furthermore, the broiler component processing equipment has achieved 100% 
interconnectivity, including 100% real-time data acquisition for both power consumption and production processes. This 
enables full lifecycle information tracking and integration of key resources throughout the broiler processing workflow. 
The system also incorporates intelligent predictive maintenance, optimizing production parameters based on historical and 
real-time sensor data. This framework supports a production optimization and control platform. As a result, the equipment 
failure rate has decreased by 11.38%, and overall operational efficiency has improved by more than 3%. 

 

Figure 33. Poultry intelligent segmentation production line application. 

6. Conclusions 

1. For the demand for meat chicken carcass image segmentation accuracy and model running efficiency in assembly 
line scenarios, this study proposes a lightweight image segmentation model based on the improved YOLOv8n-seg, 
incorporating the latest SAM technology for high-quality semantic annotation of the meat chicken carcass dataset, 
thus improving the accuracy of training data from the source. In terms of network structure, the improved model 
integrates the ADown downsampling module, achieving a significant reduction in computational overhead while 
maintaining detection accuracy close to the baseline model (mAP@0.5 of 99.2% and 99.4%, respectively). This 
leads to a reduction in total parameters by 0.5 M (to 2.8 M), a decrease in floating-point operations by 0.9 G (to 
11.1 G), and a reduction in model weight volume by 7.51 M (to 5.39 M). The improvement effectively reduces the 
storage and computational burden of the model in actual deployment, providing a feasible technical solution for 
real-time segmentation applications on embedded terminals. 

2. After comparing the effects of various image processing techniques, it was found that the HSV color space 
conversion, convex hull contours, and improved ellipse fitting algorithm have advantages in extracting carcass 
geometric features. Without preprocessing steps, the area and perimeter data of the carcass region often show 
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significant deviations, affecting the accuracy of subsequent features. Introducing the HSV color space can 
significantly reduce the interference caused by background clutter, ensuring data stability (area of 319,377 pixels, 
perimeter of 5439.61 pixels). The chicken breast region extraction introduces the convex hull algorithm, optimizing 
the mask boundary and greatly reducing morphological deviation. The processed mask has the lowest relative error, 
nearly 4.0%, while the ellipse fitting calculation also shows very small deviations in the long and short axes, with 
approximately 0.6% deviation in the long axis and 1.2% deviation in the short axis, making the results closely fit 
the actual breast shape. 

3. Based on image calibration technology, the pixel features are converted to physical values, and the collected carcass 
feature data is used to construct linear and nonlinear regression models. Regression prediction is performed using 
univariate linear regression, SVR, random forest regression, adaptive boosting regression, gradient boosting 
regression, and CNN to construct models. Experimental results show that the gradient boosting regression model 
achieves R2 of 0.969 (RMSE = 0.076) on the training set and R2 of 0.915 (RMSE = 0.127) on the validation set. 
Meanwhile, the CNN model’s R2 increases to 0.974 and 0.953 on the training and validation sets, respectively, with 
RMSE decreasing to 0.069 and 0.093, fully demonstrating the clear advantage of deep learning in predicting the 
quality of meat chicken carcasses. 

4. An intelligent broiler segmentation production line integrating a weighing and transfer device, machine vision-
based wing extension detection module, and intelligent cutting system has been developed. In practical applications, 
the production line has achieved efficient execution of more than 40 standardized cutting procedures. The 
processing efficiency of wing parts has increased to 4 kg/min. The damage rate for bone-in joint cutting has been 
reduced to 5%. In addition, the system has achieved 100% data acquisition coverage. The equipment failure rate 
has decreased by 11.38%, and the overall operational efficiency has improved by more than 3% compared to the 
original system. 

7. Prospect 

1. On the basis of ensuring segmentation accuracy, future research can focus on optimizing the lightweight design of 
the network structure and moderately reducing the complexity of the model and the computational burden. 
Meanwhile, the online learning mechanism and adaptive segmentation method are introduced to enable the model 
to have the ability of real-time update and dynamic adjustment, which can respond more flexibly to the 
morphological changes and environmental disturbances of different batches of broilers in actual production. 
Integrating infrared, depth maps, and other multi-source sensing data together will significantly enhance the 
robustness of target recognition and the comprehensiveness of feature extraction. 

2. The current quality prediction models are mainly based on image feature extraction and have not fully considered 
spatial dimension information such as thickness and contour key points. In future research, more detailed 
parameters may be introduced, such as the thickness of broilers and three-dimensional contour data of certain parts, 
and actual variables, such as the actual width and length values of chicken wings and chicken legs, can be integrated, 
thereby generating a more refined quality assessment system. With the gradual deepening of the segmentation 
parameter prediction link, the automatic adjustment ability of the equipment can also be optimized and driven from 
it, and the dynamic adaptation of the entire system can be completed by continuously strengthening the feedback 
closed-loop performance. 

3. Although this study proposed a relatively reasonable production line layout scheme, during the cutting process, 
broiler carcasses inevitably come into frequent contact with equipment, tools, and environmental surfaces, and the 
hidden concern of cross-contamination is particularly difficult to ignore. In the future, it can be considered to deeply 
integrate new sterilization technologies (such as ozone sterilization, heat treatment, ultraviolet disinfection, etc.) 
with intelligent control systems, explore the linkage mechanism of multiple disinfection methods, optimize the 
sterilization process and parameter Settings, and thereby achieve a more efficient and environmentally friendly 
disinfection solution for production lines. 
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