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ABSTRACT: Offshore photovoltaic (PV) systems encounter challenges due to high humidity and salt spray environments. The 
PV connectors on the DC input side of inverters are particularly susceptible to increased contact resistance and local overheating 
caused by environmental corrosion. This paper introduces a novel thermal fault location method utilizing a multiple model estimator 
(MME). The approach develops a lumped thermal model and an abnormal overheating disturbance model for the PV connectors. 
By combining a Kalman filter with a probability fusion algorithm, the method effectively detects thermal faults. Simulation and 
experimental results demonstrate that this approach can accurately locate faults while requiring only a minimal number of thermal 
sensors, thereby enhancing the reliability of offshore PV systems. 

Keywords: Photovoltaic (PV) connectors; Thermal fault location; Multiple model estimator (MME); Kalman filter; Probability 
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1. Introduction 

In recent years, as the global energy structure undergoes rapid transformation, renewable energy has developed at 
an accelerated pace. In the 2024 edition of “Renewable Energy Report”, the International Energy Agency (IEA) pointed 
out that with the rapid promotion of solar energy, nearly half of the world’s electricity demand will be met with 
renewable energy sources by 2030 [1]. Offshore photovoltaic (PV) power station holds significant development 
potential due to its minimal reliance on land resources, excellent lighting conditions, and close proximity to power load 
centers. As a new form of PV power generation, offshore PV has become an important solution to combat the energy 
transition and climate change. China has built a number of offshore PV demonstration projects in Zhejiang, Jiangsu, 
Guangdong, Shandong, and other places, and has clearly put forward the strategic goal of vigorously developing 
offshore PV in the next Five-Year Plan. For example, in July 2022, Shandong Province announced plans to install 42.6 
million kilowatts of offshore PV during the 14th Five-Year Plan period [2]. 

Compared to land-based PV systems, the design of offshore PV systems is more complex. The design of offshore 
PV systems encompasses not only the PV arrays, float structures, and anchoring systems, but also power transmission 
and conversion systems, as well as monitoring and maintenance systems. Due to the unique marine environment, the 
system must cope with a range of factors, including high temperatures, high humidity, high salinity, lightning strikes, 
and heavy rainfall. These environmental factors interact and pose significant challenges to the system’s stability and 
reliability (Figure 1). 
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Figure 1. Offshore PV system. 

Within this system, the PV inverter serves as a crucial power conversion device in the system, directly determining 
the stability and reliability of the entire PV system. Specifically, the DC input side of the PV inverter utilizes a multitude 
of PV connectors to aggregate the output currents from individual PV modules and integrate them into the electrical 
system, thereby ensuring efficient conversion and transmission of electrical energy. 

However, long-term exposure of PV connectors to the harsh marine environment, characterized by high humidity, 
salt spray, and strong corrosion, can significantly increase the contact resistance. This is primarily due to the corrosion 
and oxidation of the internal metal conductor contact surfaces. Such degradation can lead to thermal effects and even 
arc fault (Figure 2), which pose significant risks to the safety of electrical systems. Therefore, effectively detecting and 
locating thermal failures in PV connectors has emerged as a key focus and challenge in contemporary research [3]. 

 

Figure 2. Arc fault of PV connectors. 

Currently, most thermal fault detection methods for connectors rely primarily on identifying abnormal changes in 
the temperature field. Common technical means include infrared imaging, thermoelectric sensors, and optical fiber 
sensing, etc. [4]. Among the above-mentioned technical means, infrared temperature measurement is a non-contact 
measurement. However, due to the complex internal structure of PV inverters, there is a lot of obstruction to the infrared 
radiation optical path. When used in marine environments, it is highly susceptible to factors such as the temperature, 
humidity, and solar radiation of the detection environment [5,6], which cannot ensure accurate temperature 
measurement. Moreover, its high cost also limits its application [7,8]. Fiber Bragg grating sensors can provide high-
precision and high-stability measurements of contacts in environments with high voltage, large currents, and strong 
magnetic fields, such as those inside switch cabinets. They can easily form a distributed temperature measurement 
system to conduct real-time online monitoring of all contacts. However, due to the fact that the DC input side of high-
power PV inverters is connected to tens or even dozens of PV connectors, this results in a large number of internal 
measurement parts of the entire PV inverter and high costs [9,10]. In contrast, thermoelectric sensing technology, with 
its advantages of miniaturization, low cost, and high integration, can be well embedded into complex electrical 
equipment for long-term monitoring. It is the most commonly used means of thermal fault monitoring. 

Compared with the research on mature detection technology systems, the studies on the construction of connector 
thermal models, temperature estimation, and abnormal overheating location are relatively limited, but many scholars 
have still carried out active explorations. For instance, Li [11] proposed a thermal fault detection system based on a BP 
neural network. By establishing a connector temperature field model, the method effectively addresses the issue of 
excessive temperatures caused by aging or poor contact of busbars and moving/static contacts in high-voltage switch 
cabinets. K. Zhao et al. [12] proposed an infrared image recognition algorithm integrating deep learning. This algorithm, 
through electromagnetic-fluid-thermal coupled numerical calculation and the application of the MASK R-CNN model, 
can reliably mark and identify each component from the infrared images of gas-insulated switchgear (GIS), accurately 
calculate their surface temperatures, and further invert the temperature rise of internal connectors, achieving effective 
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detection and location of connector thermal faults in high-voltage and high-current environments. In addition, Wu et al. 
[13] constructed a GIS busbar joint temperature prediction model based on the least squares method parameter 
optimization. They introduced the artificial bee colony algorithm, improved by chaos theory, to optimize the parameters, 
accurately estimate the busbar joint temperature, and provide reliable support for thermal fault detection and location. 
However, the above-mentioned studies have all focused on the abnormal overheating detection of a single connector 
and are not applicable to the scenarios of connector thermal fault detection and location where the number of 
thermoelectric sensors is limited. Therefore, a key research challenge has long been to establish a thermal model that 
captures the coupling relationships among connectors and enables precise fault localization with fewer sensors. 

To address this issue, this paper refers to the research ideas and technical principles in the field of overheating of 
lithium-ion batteries [14,15] and It proposes a thermal fault location method for connectors of PV inverters based on 
multiple model estimator (MME). This method combines the lumped thermal model and the abnormal overheating 
disturbance model, generates state estimation through the parallel Kalman filter, and utilizes the residual probability 
weighted fusion strategy, significantly improving the accuracy and robustness of thermal fault location in complex environments. 
At the same time, this paper proposes a deployment scheme for a minimal number of temperature sensors, achieving high-
precision thermal fault detection and localization while reducing hardware costs and wiring complexity. 

2. Theoretical Basis and Model Design 

2.1. Theoretical Basis of MME 

MME [16,17] is a widely used technique for fault detection and location. Under the condition that the mathematical 
model of the object or disturbance is not completely determined, this technique makes the specified performance index 
as close to and as optimal as possible by designing the control sequence. The nonlinear problem of estimation control 
is solved by N linear stochastic control systems. Among them, the multiple model adaptive Kalman filter is an important 
technical means for dealing with complex control systems. 

The principle of the multiple model adaptive Kalman filter is shown in Figure 3. Each filter model independently 
calculates the current state estimation of the system 𝑋෠௜  based on its built-in model and input vector u. Then, by 
calculating the difference from the actual observed vector Z, the residual 𝑟௜ is obtained, which is used as an indicator 
of the degree of similarity between each filter model and the actual system model. Further, the hypothesis testing 
algorithm uses the residual to calculate the conditional probability 𝑝௜ of each Kalman filter model. Finally, it forms the 
mixed state estimation of the actual system through the probability-weighted average of each state estimate, so as to 
ensure the accuracy and robustness of the final state estimation 𝑋෠ெெ஺ா. 

 

Figure 3. Structure diagram of multiple model adaptive Kalman filter. 

2.1.1. Multiple Model Adaptive Kalman Filter 

The multiple model adaptive Kalman filter is developed on the basis of the basic Kalman filter equation, which 
mainly includes the filter model, prediction equation, residual equation, and state update equation. 

The Kalman filter model of the system can be expressed as: 

൜
𝑋௜ሺ𝑡௞ሻ ൌ 𝛷௜𝑋௜ሺ𝑡௞ିଵሻ ൅ 𝐵௜𝑢ሺ𝑡௞ିଵሻ ൅ Γ௜𝑤௜ሺ𝑡௞ିଵሻ
𝑍௜ሺ𝑡௞ሻ ൌ 𝐻௜𝑋௜ሺ𝑡௞ሻ ൅ 𝑣௜ሺ𝑡௞ሻ

 (1)

where, 𝑋௜ and 𝑍௜ are respectively the state vector and measurement vector of the i-th Kalman filter model, i = 1, 2, ..., 
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N; 𝛷௜, 𝐵௜, 𝛤௜ and 𝐻௜ denote the state transition matrix, control input matrix, noise input matrix, and output matrix of 
the i-th Kalman filter model, respectively; u is the system control input vector; 𝑤௜ is the discrete dynamic interference 
white noise input of the i-th Kalman filter model and 𝑣௜ is the discrete dynamic measurement of white noise for the i-
th Kalman filter model. Where, 𝑤௜  and 𝑣𝑖 are unrelated. 

The Kalman filter prediction equation of the system can be expressed as: 

ቊ
𝑋෠௜ሺ𝑡௞

ିሻ ൌ 𝛷௜𝑋෠௜ሺ𝑡௞ିଵ
ା ሻ ൅ 𝐵௜𝑢ሺ𝑡௞ିଵሻ

𝑍መ௜ሺ𝑡௞
ିሻ ൌ 𝐻௜𝑋෠௜ሺ𝑡௞

ିሻ
 (2)

where, 𝑋෠௜ is the state estimation vector of the i-th Kalman filter; 𝑍መ௜ሺ𝑡௞ሻ is the prediction of the measured vector by the 
i-th Kalman filter before the arrival of time 𝑡௞, 𝑡௞

ି is the moment before the k-th measurement update; 𝑡௞ିଵ
ା  is the 

moment after the (k − 1)-th measurement update. 
The prediction equation of state estimation error covariance matrix can be expressed as: 

𝑃௜ሺ𝑡௞
ିሻ ൌ 𝛷௜𝑃௜ሺ𝑡௞ିଵ

ା ሻ𝛷௜
் ൅ Γ௜𝑄Γ௜

் (3)

The state estimation of the Kalman filter is updated by Equation (4). Here, the gain of the Kalman filter is expressed 
by Equation (5), and the residual variance matrix calculated by the Kalman filter is expressed by Equation (6). 

𝑋෠௜ሺ𝑡௞
ାሻ ൌ 𝛷௜𝑋෠௜ሺ𝑡௞

ିሻ ൅ 𝐾௜ሺ𝑡௞ሻ𝑟௜ሺ𝑡௞ሻ (4)

𝐾௜ሺ𝑡௞ሻ ൌ 𝑃௜ሺ𝑡௞
ିሻ𝐻௜

்𝐴௜ሺ𝑡௞ሻିଵ (5)

𝐴௜ሺ𝑡௞ሻ ൌ 𝐻௜𝑃௜ሺ𝑡௞
ିሻ𝐻௜

் ൅ 𝑅௜ (6)

The residual vector of the Kalman filter is the difference between the measured value Z and the Kalman filter 
estimate 𝐻௜𝑋෠௜ሺ𝑡௞

ିሻ based on previous measurements, i.e., 

𝑟௜ሺ𝑡௞ሻ ൌ 𝑍ሺ𝑡௞ሻ െ 𝐻௜𝑋෠௜ሺ𝑡௞
ିሻ (7)

The time update equation of the state estimation variance matrix is: 

𝑃௜ሺ𝑡௞
ାሻ ൌ 𝑃௜ሺ𝑡௞

ିሻ െ 𝐾௜ሺ𝑡௞ሻ𝐻௜𝑃௜ሺ𝑡௞
ିሻ (8)

The detailed flow of the Kalman filter algorithm is shown in Figure 4. 

 

Figure 4. Flowchart of Kalman filter algorithm. 
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2.1.2. Probabilistic Fusion 

The hypothesis testing algorithm is used to evaluate and confirm various hypotheses. It checks the residuals of all 
Kalman filters in the model estimator. If the model of a filter matches the real model of the system, then the residual 
will be presented as a Gaussian random noise sequence with zero mean, whose variance is: 

𝐴௜ ൌ 𝐻௜𝑃௜
ି
𝐻௜
் ൅ 𝑅௜ (9)

Under the condition of the measured value 𝑍௧ೖషభ ൌ ሾ𝑍்ሺ𝑡ଵሻ,⋯ ,𝑍்ሺ𝑡௞ିଵሻሿ் and the model parameter vector 𝑎 ∈
ሼ𝑎ଵ,𝑎ଶ,⋯ ,𝑎௞ሽ, the conditional probability density function of the measured value 𝑍ሺ𝑡௞ሻ of the i-th Kalman filter model 
at time 𝑡௞ is: 

𝑓௭ሺ௧ೖሻ|௔,௭೙షభሺ𝑍ሺ𝑡௞ሻ|𝑎௜ ,𝑍
௧ೖషభሻ ൌ 𝛽௜𝑒𝑥𝑝ሼ•ሽ (10)

In the equation: 
ሼ•ሽ ൌ ቄെ

ଵ

ଶ
𝑟௜
்ሺ𝑡௞ሻ𝐴௜

ିଵ𝑟௜ሺ𝑡௞ሻቅ ,𝛽௜ ൌ
ଵ

ሺଶగሻ೘/మ|஺೔|భ/మ, m is the measurement vector dimension. 

The conditional probability of a Kalman filter model can be defined as: 

𝑝௜ሺ𝑡௞ሻ ൌ 𝑃𝑟ሼ𝑎 ൌ 𝑎௜ ∣ 𝑍௧ೖሽ (11)

Then the conditional probability of the Kalman filter model can be expressed as: 

𝑝௜ሺ𝑡௞ሻ ൌ
𝑓௭ሺ௧ೖሻ|௔,௭ೖషభሺ𝑍ሺ𝑡௞ሻ|𝑎௜ ,𝑍

௧ೖషభሻ ൉௉೔ ሺ𝑡௞ିଵሻ

∑ 𝑓௭ሺ௧ೖሻ|௔,௭ೖషభ
௄
௝ୀଵ ሺ𝑍ሺ𝑡௞ሻ|𝑎௜ ,𝑍௧ೖషభሻ ൉௉೔ ሺ𝑡௞ିଵሻ

 (12)

By assuming the conditional probability of the model, the weighted fusion of state estimates of different Kalman 
filter models is realized, and the mixed state estimate 𝑋෠ெெ஺ா of the real system is obtained: 

𝑋෠ெெ஺ாሺ𝑡௞ሻ ൌ෍𝑝௜

ே

௜ୀଵ

ሺ𝑡௞ሻ𝑋෠௜ሺ𝑡௞ሻ (13)

If the correct model is included in the estimator, then the model probability of the correct model converges to 1. 
Otherwise, the probability value of the model closest to the real model converges to 1. 

2.2. PV Connector Lumped Thermal Model 

2.2.1. Single PV Connector Thermal Model 

In order to study the heating characteristics of PV connectors, the thermal model of a single connector is established 
here, and its structure is shown in Figure 5. In order to facilitate analysis and calculation, the geometric characteristics 
of the actual connector are reasonably simplified, and the shape of the model is assumed to be an ideal cylinder. The 
temperature state of the cylindrical PV connector is modeled at two levels, one is the shell temperature Ts, and the other 
is the temperature Tc of the internal metal core. 

 

Figure 5. Lumped heat model of a single PV connector. 
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The thermal model of the above single PV connector can be expressed as follows: 

𝐶௖
𝑑𝑇௖
𝑑𝑡

ൌ 𝐼ଶ𝑅௘ െ
𝑇௖ െ 𝑇௦
𝑅௖

 (14)

𝐶௦
𝑑𝑇௦
𝑑𝑡

ൌ
𝑇௖ െ 𝑇௦
𝑅௖

െ
𝑇௦ െ 𝑇௙
𝑅௨

 (15)

In this model, based on the simplified structure, the heat generation is approximately the joule loss caused by 
heating the metal core inside the connector, calculated as the product of the square of the current I and the internal 
resistance Re. Generally, Re depends on both temperature and material properties, and other factors, in order to facilitate 
the study, the Re of the normal working PV connector is set as a constant, and the default does not change with 
temperature or material properties. At the same time, the temperature distribution of the inner metal core and shell is 
assumed to be uniform. 

In order to accurately reflect the internal heat transfer mechanism, the modeling of the heat exchange process is 
simplified in this study. In it, the heat exchange between the metal core and the surface is simulated by heat conduction 
over the thermal resistance Rc, which is a lumped parameter that includes both conduction and contact thermal resistance. 
Ru represents the resistance of heat convection between the surface and the surrounding air, and is used to consider air 
convection. The air temperature is denoted as Tf. Cc represents the heat capacity of the metal core inside the PV connector, 
and Cs is the heat capacity of the connector shell. 

2.2.2. Multi-Connector Lumped Thermal Model 

The lumped thermal model of several adjacent PV connectors arranged equidistantly is shown in Figure 6. The 
model consists of N single connectors. 

 

Figure 6. Lumped thermal model of N connectors. 

Based on the lumped thermal model of a single connector, a general law applicable to the thermal model of N 
connectors can be summarized, that is, considering a system composed of N PV connectors, the heat equation of the j-
th PV connector can be expressed as: 

𝐶௖
𝑑𝑇௖ೕ
𝑑𝑡

ൌ 𝐼ଶ𝑅 െ
𝑇௖ೕ െ 𝑇௦ೕ

𝑅௖
 (16)

𝐶ௌ
𝑑𝑇௦ೕ
𝑑𝑡

ൌ
𝑇௖ೕ െ 𝑇௦ೕ

𝑅௖
െ
𝑇௦ೕ െ 𝑇௙ೕ
𝑅௨

െ
𝑇௦ೕ െ 𝑇௦ೕషభ

𝑅௖௖
െ
𝑇௦ೕ െ 𝑇௦ೕశభ

𝑅௖௖
 (17)

𝑇௙ೕ ൌ 𝑇௙ೕషభ ൅
𝑇௦ೕషభ െ 𝑇௙ೕషభ

𝑅௨𝐶௙
 (18)

In the equation, Tsj is the temperature of the connector shell, Tcj is the temperature of the metal core inside the PV 
connector, Rc is the equivalent thermal resistance of the internal metal core to the surface of the shell, and Ru is the 
thermal resistance of the surface of the shell to the air. Cc is the heat capacity of the metal core inside the connector, and 



Marine Energy Research 2025, 2, 10007 7 of 21 

 

Cs is the heat capacity of the connector housing. Tf is the ambient air temperature. Rcc is a lumped parameter that includes 
the conduction and contact thermal resistance of adjacent PV connectors connected by a metal substrate. Cf is the heat 
capacity of air. 

2.2.3. System State Equation 

Although the number of PV connectors is not limited by a specific limit, in order to simplify the analysis, this paper 
takes six PV connectors (that is, N = 6) arranged at equal distances as the research object. 

By rewriting Equations (16) and (17), a set of state observation equations in the form of a matrix of PV connectors 
thermal model system can be obtained: 

𝐱ሶ ൌ 𝐀𝐜𝐱 ൅ 𝐁𝐜𝐮
𝐳 ൌ 𝐂𝐱

 (19)

For a thermal model system with N = 6: 

𝐱 ൌ ൣ𝑇஼భ 𝑇ௌభ 𝑇஼మ 𝑇ௌమ … 𝑇஼ల൧
்

 (20)

𝐮 ൌ ൣ𝐼ଶ 𝑇௙൧
்

 (21)

𝐁 ൌ

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝑅
𝐶௖

0

0
1

𝑅௨𝐶௦

𝑅
𝐶௖

0

0
1

𝐶௦𝑅௨
ቆ1 െ

1
𝑅௨𝐶௙

ቇ

⋮ ⋮
𝑅
𝐶௖

0

0
1

𝐶௦𝑅௨
ቆ1 െ

1
𝑅௨𝐶௙

ቇ
ହ

⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (22)

𝐀 ൌ

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡െ

1
𝑅௖𝐶௖

1
𝑅௖𝐶௖

0 0 ⋯ 0 0

1
𝑅௖𝐶௖

െ ൬
1

𝑅௖𝐶௦
൅

1
𝑅௨𝐶௦

൅
1

𝑅௖𝐶௦
൰ 0

1
𝑅௖௖𝐶௦

⋯ ⋯ 0

0 0 െ
1

𝑅௖𝐶௖

1
𝑅௖𝐶௖

⋯ ⋯ 0

0
1

𝑅௨ଶ𝐶௙𝐶௦
൅

1
𝑅௖௖𝐶௦

1
𝑅௖𝐶௦

െ ൬
1

𝑅௖𝐶௦
൅

1
𝑅௨𝐶௦

൅
2

𝑅௖𝐶௦
൰ ⋯ ⋯ 0

⋮ ⋯ ⋯ ⋯ ⋯ ⋱ ⋮

0 0 0 0 ⋯ െ
1

𝑅௖𝐶௖

1
𝑅௖𝐶௖

0
1

𝑅௨ଶ𝐶௙𝐶௦
ቆ1 െ

1
𝑅௨𝐶௙

ቇ
ସ

0
1

𝑅௨ଶ𝐶௙𝐶௦
ቆ1 െ

1
𝑅௨𝐶௙

ቇ
ଷ

⋯
1

𝑅௖𝐶௖
െ ൬

1
𝑅௖𝐶௦

൅
1

𝑅௨𝐶௦
൅

1
𝑅௖𝐶௦

൰
⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (23)

In the above equation, A and B are the system matrices, and C is the output matrix. The measurement of the state 
is expressed as 1 in the output matrix C. For example, a thermal model with two PV connectors has four temperature 
states, namely Tc1, Ts1, Tc2 and Ts2. Measuring the metal core temperature of PV connector 1 can be expressed as a C 
matrix with a value of [1 0 0 0]. From the A and C matrices of the system, the observability of the system can be checked 
and further become the basis for determining the minimum number of temperature sensors in a set of PV connectors 
thermal model [14,18]. 



Marine Energy Research 2025, 2, 10007 8 of 21 

 

2.3. Modeling of Abnormal Overheating Disturbance 

Considering the Joule heat increment caused by increasing contact resistance as an unknown input disturbance, 
state and interference estimation based on Kalman filter is established. 

2.3.1. Unknown Disturbance Hypothesis 

According to Equation (16), the heat generated inside the PV connector and the heat released jointly determine the 
thermal balance state of the metal core. During abnormal overheating caused by increased contact resistance, the energy 
balance of the PV connector metal core can be described by the following equation: 

𝐶௖
𝑑𝑇௖
𝑑𝑡

ൌ 𝑄௥ െ 𝑄௥௘௟௘௔௦௘ (24)

In the equation, Qr is the Joule heat in the abnormally overheating state (i.e., I2R term), and Qrelease is the heat 
released to the outside of the metal core (i.e., ೎்ି ೞ்

ோ೎
 term in Equation (16)). 

For a PV connector model that causes abnormal overheating due to increased contact resistance, the Joule heating 
term represents the additional energy released by the increased contact resistance. At this time, the resistance R of the 
I2R term in Equation (16) changes. Since the original thermal model did not account for this additional Joule term, this 
“additional” term can be regarded as an unknown disturbance in the system. 

2.3.2. Unknown Disturbance Modeling 

In a control system, the system is usually augmented by introducing an integrator driven by white noise to 
effectively deal with unknown disturbances that cause steady-state migration [19,20]. 

Let a linear, time-invariant discrete-time system have the form shown in Equation (25), which is augmented by 
Equation (26). 

𝐱ሺ𝑘 ൅ 1ሻ ൌ 𝐀𝐱ሺ𝑘ሻ ൅ 𝐁𝐮ሺ𝑘ሻ
𝐳ሺ𝑘ሻ ൌ 𝐂𝐱ሺ𝑘ሻ

 (25)

൤
𝐱ሺ𝑘 ൅ 1ሻ
𝐝ሺ𝑘 ൅ 1ሻ

൨ ൌ ቂ𝐀 𝐁ௗ
𝟎 𝐈

ቃ ൤
𝐱ሺ𝑘ሻ
𝐝ሺ𝑘ሻ

൨ ൅ ቂ𝐁
𝟎
ቃ 𝐮ሺ𝑘ሻ

 𝐳ሺ𝑘ሻ ൌ ሾ𝐂 𝐂ௗሿ ൤
𝐱ሺ𝑘ሻ
𝐝ሺ𝑘ሻ

൨
 (26)

In Equations (25) and (26), 𝐱ሺ𝑘ሻ ∈ 𝑅௡ is the state vector of the system at time k, 𝐮ሺ𝑘ሻ ∈ 𝑅௠ is the input vector, 
𝐳ሺ𝑘ሻ ∈ 𝑅௣  is the measurement vector, and 𝐝ሺ𝑘ሻ ∈ 𝑅௡ௗ  is the interference vector. The perturbation acts on the state 
through the matrix 𝐁ௗ ∈ 𝑅௡ൈ௡ௗ and on the measurement through the matrix 𝐂ௗ ∈ 𝑅௣ൈ௡ௗ. By setting 𝐂ௗ to zero, a pure 
input perturbation model can be obtained. By setting 𝐁ௗ to zero, a pure output perturbation model can be obtained. 

Next, you need to verify the detectability of the augmentation system. This step is critical because augmentation 
systems must be detectable. According to [19,20], the detectability of augmentation systems can be verified by the 
following conditions: 

rank ൤
𝐈 െ 𝐀 െ𝐁ௗ
𝐂 𝐂ௗ

൨ ൌ 𝑛 ൅ 𝑛𝑑 (27)

2.3.3. State and Interference Estimation Based on Kalman Filter 

After adding additional unknown interference vectors to the original system, a steady-state Kalman filter is 
designed to estimate the state and interference of the system. Suppose that the model in Equation (26) is expanded to include 
a zero-mean white noise process term 𝐰ሺ𝑘ሻ and a zero-mean white noise measure term 𝐯ሺ𝑘ሻ, in the following form: 

൤
𝐱ሺ𝑘 ൅ 1ሻ
𝐝ሺ𝑘 ൅ 1ሻ

൨ ൌ ቂ𝐀 𝐁ௗ
𝟎 𝐈

ቃ ൤
𝐱ሺ𝑘ሻ
𝐝ሺ𝑘ሻ

൨ ൅ ቂ𝐁
𝟎
ቃ 𝐮ሺ𝑘ሻ ൅ ቂ𝐆 𝟎

𝟎 𝐈
ቃ ൤
𝐰ሺ𝑘ሻ
𝜉ሺ𝑘ሻ

൨ (28)

𝐳ሺ𝑘ሻ ൌ ሾ𝐂 𝐂ௗሿ ൤
𝐱ሺ𝑘ሻ
𝐝ሺ𝑘ሻ

൨ ൅ 𝐯ሺ𝑘ሻ (29)

Let the covariances of 𝐰ሺ𝑘ሻ  and 𝐯ሺ𝑘ሻ  be 𝑸𝒘  and R, respectively, and 𝐰ሺ𝑘ሻ  and 𝐯ሺ𝑘ሻ  are not correlated. 𝐆  
is the noise gain matrix, the process noise is associated with the state variable, and 𝐆 ൌ 𝐈 is selected. The interference 
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is driven by white noise 𝜉ሺ𝑘ሻ and its covariance is 𝑸క. 
The state and disturbance of the system are first predicted by the Kalman filter, and then the output 𝐳ሺ𝑘ሻ is used 

to update the state and disturbance of the system, in the following form: 

൤
𝐱ොሺ𝑘 ൅ 1|𝑘ሻ

𝐝መሺ𝑘 ൅ 1|𝑘ሻ
൨ ൌ ቂ𝐀 𝐁ௗ

𝟎 𝐈
ቃ ൤
𝐱ොሺ𝑘ሻ
𝐝መሺ𝑘ሻ

൨ ൅ ቂ𝐁
𝟎
ቃ 𝒖𝒌 (30)

൤
𝐱ොሺ𝑘 ൅ 1|𝑘 ൅ 1ሻ

𝐝መሺ𝑘 ൅ 1|𝑘 ൅ 1ሻ
൨ ൌ ൤

𝐱ොሺ𝑘 ൅ 1|𝑘ሻ

𝐝መሺ𝑘 ൅ 1|𝑘ሻ
൨ ൅ ൤

𝑴௫
𝑴ௗ

൨ ൬𝐳ሺ𝑘ሻ െ ሾ𝑪 𝑪ௗሿ ൤
𝐱ොሺ𝑘 ൅ 1|𝑘ሻ

𝐝መሺ𝑘 ൅ 1|𝑘ሻ
൨൰ (31)

2.4. Design of MME 

2.4.1. Parallel Estimator Design 

In the case described in Section 2.3, the augmented system and estimator are designed to handle interference that 
affects only one particular PV connector. However, if the interference affects other PV connectors, new augmentation 
systems and estimators need to be designed accordingly. 

Figure 7 shows the operation of N parallel estimators, each based on the same system model and assuming that 
interference affects only one of the cells at a time. Each estimator model is represented by the parameter ai, where i = 
1, 2, ..., N. Based on the input u and output z, these estimators generate state estimates, such as Equations (31) and (32). 

 

Figure 7. Working principle diagram of N parallel estimators. 

2.4.2. Probability Calculation and Estimation Fusion 

In order to determine which unit is affected by the interference, the conditional probability 𝑝௜ሺ𝑘ሻ is defined, that 
is, the probability that a is ai (i.e., assuming that the i-th model is the real model) after observing the measurement 
history to the time step k. This means that by calculating the conditional probability for each model, the system can 
determine which unit is most likely to be disturbed and give an estimate accordingly. 

The conditional probability is shown as follows: 

𝑝௜ሺ𝑘ሻ ൌ Prሾ𝑎 ൌ 𝑎௜|𝐙ሺ𝑘ሻ ൌ 𝐙௞ሿ (32)

In the equation, 𝐙ሺ𝑘 െ 1ሻ ൌ ሾ𝐳Tሺ1ሻ… 𝐳Tሺ𝑘 െ 1ሻሿT. 
At the same time, 𝑝௜ሺ𝑘ሻ can be iteratively updated by recursively evaluating all i to: 

𝑝௜ሺ𝑘ሻ ൌ
𝑓𝐳ሺ௞ሻ|௔,𝐙ሺ௞ିଵሻሺ𝐳௞|𝑎௜ ,𝐙௞ିଵሻ𝑝௜ሺ𝑘 െ 1ሻ

∑ 𝑓𝐳ሺ௞ሻ|௔,𝐙ሺ௞ିଵሻ
ூ
௝ୀଵ ሺ𝐳௞|𝑎௜ ,𝐙௞ିଵሻ𝑝௜ሺ𝑘 െ 1ሻ

 (33)

where 𝑓𝐳ሺ௞ሻ|௔,𝐙ሺ௞ିଵሻሺ𝐳௞|𝑎௜,𝐙௞ିଵሻ is the conditional density function of measuring z with time step k given a certain Kalman 
filter model 𝑎 ∈ ሼ𝑎ଵ,,𝑎ଶ, . . . ,𝑎ேሽ and measurement history 𝐙௞ିଵ. The conditional density function is defined as: 
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𝑓𝐳ሺ௞ሻ|௔,𝐙ሺ௞ିଵሻሺ𝐳௞|𝑎௜ ,𝐙௞ିଵሻ ൌ 𝛽expሼ⋅ሽ (34)

𝛽 ൌ
1

ሺ2𝜋ሻ
௠
ଶ |𝐒௜ሺ𝑘ሻ|

ଵ
ଶ

 (35)

ሼ⋅ሽ ൌ ൜െ
1
2
𝐫௜
்ሺ𝑘ሻ𝐒௜

ିଵሺ𝑘ሻ𝐫௜ሺ𝑘ሻൠ (36)

From Equations (33) to (34), it can be seen that if the interference affects a specific state quantity (i.e., a PV 
connector unit), then the corresponding estimator model ai will produce a smaller residual than the other models. 
Therefore, the model is more likely to be the one that best matches the actual system. 

Similar to the method in [21], the estimated fusion/decision module selects the model index 𝑖௛ሺ𝑘ሻ with the highest 
probability at each time step k through decision logic, and its calculation method is as follows: 

𝑖௛ሺ𝑘ሻ ൌ 𝑎𝑟𝑔𝑚𝑎𝑥𝑝௜ሺ𝑘ሻ (37)

The final determination of the real model index 𝑖௧ሺ𝑘ሻ is done by using the probability threshold 𝑝௧௛௥௘௦௛, which is 

expressed as: 

𝑖௧ሺ𝑘ሻ ൌ 𝑎𝑟𝑔ሺ𝑝௜ሺ𝑘ሻ ൐ 𝑝௧௛௥௘௦௛ሻ (38)

Therefore, the real model index 𝑖௧ሺ𝑘ሻ identifies abnormally overheating PV connectors. 
In this paper, the probability threshold 𝑝௧௛௥௘௦௛ ൌ 0.75  is selected as the criterion to determine the real model 

according to the results of multiple simulations. Because once the probability predicted by the model reaches this 
threshold, the model can be judged as the final true model. 

3. Simulation and Experiment 

Based on the design of PV connector thermal model and MME constructed in Section 2, this chapter further 
researches the thermal fault location of PV connectors. Based on the clustering model, the observability of the system 
is analyzed, and the precise location of abnormally overheating PV connectors is discussed under the condition of 
minimum sensor configuration. 

3.1. Sensor Deployment Based on the Observability of Clustering Models 

An effective closed-loop observer is based on the observability of the model. In this section, observability 
conditions are analyzed to guide the placement of sensors in a particular cell in a set of PV connector units, enabling 
effective temperature detection. 

Observability of the thermal model of the PV connector described above can be tested by Equation (39): 

𝐐 ൌ ൦

𝐂
𝐂𝐀
⋯

𝐂𝐀୬ିଵ
൪ (39)

where, A is the system matrix, C is the output matrix in Equation (27), and n is the system order. The model is fully 
observable if and only if the rank of Q is equal to n [14]. 

For a thermal model that contains two PV connector units, the system matrix A is expressed as Equation (40). 
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𝐀_ଶୡୣ୪୪ ൌ

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡െ

1
𝑅௖𝐶௖

1
𝑅௖𝐶௖

0 0

1
𝑅௖𝐶௦

െ ൬
1

𝑅௖𝐶௦
൅

1
𝑅௨𝐶௦

൅
1

𝑅௖௖𝐶௦
൰ 0

1
𝑅௖௖𝐶௦

0 0 െ
1

𝑅௖𝐶௖

1
𝑅௖𝐶௖

0 ቆ
1

𝑅௨
ଶ𝐶௙𝐶௦

൅
1

𝑅௖௖𝐶௦
ቇ

1
𝑅௖𝐶௦

െ ൬
1

𝑅௨𝐶௦
൅

1
𝑅௖𝐶௦

൅
1

𝑅௖௖𝐶௦
൰
⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (40)

The matrix C will be determined by the position of the temperature sensor. If the temperature sensor measures the 
temperature of the metal core of PV connector #1, C1 = [1 0 0 0]; If the sensor is measuring the metal core temperature 
of PV connector #2, then C2 = [0 0 1 0]. 

If we assign all the elements of the set A to the values in this article and compute Q by substituting them into the 
Equation (39), we find that the rank of the matrix Q is 4 when either C1 or C2 is used. This means that full observability can 
be achieved for a set of PV connectors consisting of two units, regardless of whether the first or second unit is measured. 

Similarly, for A thermal model of any number of PV connector units, after establishing the system matrix A, an 
observability analysis can be performed to determine the minimum number of sensors to achieve full observability. The 
observability test of system matrix A can be specifically referred to [14], and the relevant results are summarized as 
shown in Table 1. 

Table 1. Minimum number of sensors for different connector units to achieve full observability conditions. 

Number of Units Minimum Number of Sensors 
1,2,3 1 
4,5,6 2 
7,8,9 3 

10,11,12 4 

3.2. Thermal Fault Location Simulation and Analysis 

In this paper, MATLAB is used to locate the abnormal overheating fault of 6 PV connector models arranged in 
adjacent equidistant. 

3.2.1. Conditional Input 

Assume that one of the six PV connector units has an overheating disturbance. As described in Section 2.3, to 
account for heat generation in real systems, an unknown input 𝐩 is introduced into the continuous time state-space 
model with the following expression: 

𝐱ሶ ൌ 𝐀௖𝐱 ൅ 𝐁௖𝐮 ൅ 𝐁௣௖𝐩
𝐳 ൌ 𝐂𝐱

 (41)

In Equation (41), the matrices 𝐁௣௖ and 𝐩 can be viewed as additional generated heat. For example, in Equation (42), 
the sixth connector is abnormally overheated (that is, an additional Qrc term is added to the original state quantity Tc6). 

𝐁௣௖ ൌ

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

1
𝐶௖

0 0 0 … 0 0

0 0 0 0 … 0 0

0 0
1
𝐶௖

0 … 0 0

⋮ ⋮ ⋮ ⋮ ⋱
1
𝐶௖

0

0 0 0 0 … 0 0⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (42)
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𝐩 ൌ

⎣
⎢
⎢
⎢
⎡

0
0
⋮
𝑄௥௖

0 ⎦
⎥
⎥
⎥
⎤

 (43)

In the previous section, it was explained that when the number of PV connector units in a set is 6, the minimum 
number of sensors required to meet the condition of full observability is 2. Now, assume that the temperature sensor is 
configured on the third and sixth PV connectors. The system equation C can be expressed as: 

𝐂 ൌ ቂ0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0

ቃ (44)

In this paper, it is assumed that the initial temperature of the 6-unit PV connector is the same as the ambient 
temperature, which is 25 ℃. Considering the influence of air convection, the airflow direction is from left to right, and 
the Ru value corresponding to the gas flow is 0.6 × 10⁻³ m³/s. In addition, the rated channel current of the PV connector 
is set to 20 A, and the contact impedance is maintained at a constant value Re = 0.25 mΩ. 

It is assumed that due to the corrosion of the metal core contact surface, the contact impedance of the connector is 
abnormally increased, which causes abnormal overheating behavior of a connector unit (denoted as Qr). Specifically, 
the heat input Qr of abnormal overheating behavior is set to 5 W and 3 W, respectively, and the selection of relevant 
parameters is based on the study on abnormal overheating resistance of PV connectors in [22,23]. The heat input is 
applied from t = 0 s until the PV connectors reach the steady-state operating temperature, aiming to simulate the 
abnormal overheating behavior under different heating power, and to compare and analyze the temperature change 
characteristics under the two working conditions. 

The specific parameters of the thermal model are shown in Table 2. The materials and parameters in the table are 
determined according to [24,25] and the PV connector test methods and requirements in the international standard IEC 
62852:2020. 

Table 2. Specific materials and working parameters of the thermal model. 

Argument Numerical Value Argument Numerical Value 
Irated 20 A Re 0.25 mΩ 
Cc 1.16 JK−1 Cs 19.8 JK−1 
Rc 5.42 KW−1 Rcc 2.81 KW−1 

3.2.2. Comparison of Simulation Results 

Considering a 6-unit connector thermal model with only two temperature sensors, the following two scenarios are 
analyzed. In the first case, the abnormally overheated connector is a connector with a temperature sensor, and in the 
second case, the abnormally overheated connector is a connector without a temperature sensor. The results show how 
the probabilities of each augmentation model evolve over time, as well as the resulting state estimates for the dominant 
(highest) probability model. 

(1) Abnormally overheated PV connectors containing temperature sensors 

① Abnormal overheating is detected in the PV connector #6. 

Figure 8 shows the probability 𝑝௜ሺ𝑘ሻ of each of the six augmentation models used by the estimated decision block 
to identify Equation (37). It can be seen that when the PV connector #6 introduces interference at t = 0 s, the probability 
of the real model corresponding to the augmented model 6 gradually increases to 1 over time, while the probability of 
the other models gradually approaches 0. 

Each augmentation model has the same probability before the perturbation enters. The temperature is estimated 
according to the dominant (highest) probability model. When the heating power of the PV connector #6 is 5 W, the system 
determines the real model at t = 78 s. When the abnormal heating power is 3 W, the time for the system to judge the real 
model is extended to t = 140 s. In addition, Figure 9 shows the MME estimated temperature of the PV connector #6 
abnormally overheated PV connector model compared to the true temperature. 
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(a) (b) 

Figure 8. Probability of the six augmented models when the PV connector #6 is abnormally overheated, (a) 5 W heating power; (b) 
3 W heating power. 

(a) (b) 

Figure 9. Comparison between the actual temperature of PV connector # 6 and the estimated temperature of MME, (a) 5 W heating 
power; (b) 3 W heating power. 

② Abnormal overheating is detected in PV connector #3. 

Figure 10 shows the probability 𝑝௜ሺ𝑘ሻ used to estimate the decision block for each of the six augmenting models of the 
identification Equation (37) when the PV connector #3 is abnormally overheated. 

  
(a) (b) 

Figure 10. Probability of the six augmented models when the PV connector #3 is abnormally overheated, (a) 5 W heating power; 
(b) 3 W heating power. 

(2) Abnormally overheated PV connector without temperature sensor 

As can be predicted from the previous discussion, if abnormal overheating occurs in any of the PV connectors 
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where the temperature is not measured, it may take longer, since each increase in interference affects only one of the 
PV connector units until the nearest sensor senses the temperature anomaly. The following shows the results of the 
overheating of PV connector #4. In Figure 11, the p4 value exceeds the probability threshold of 0.75 at t = 302 s (5 W) 
and at t = 470 s (3 W), respectively. In Figure 12, the red solid line represents the measured temperature, and the red 
dashed line represents the MME estimated temperature.The evolution of the probability of other abnormal overheating 
conditions is shown in Figure 13 (PV Connector #2), Figure 14 (PV connector #5), and Figure 15 (PV connector #1). It 
can be noted that the MME takes quite a long time to determine the model of abnormal overheating. 

① Abnormal overheating is detected in PV connector #4. 

Figure 11 shows the probability 𝑝௜ሺ𝑘ሻ used to estimate the decision block for each of the six augmentation models 
of the identification Equation (37) when the PV connector #4 is abnormally overheated. Figure 12 shows the comparison 
between the actual temperature of the PV connector #4 model and the estimated temperature of the MME. 

(a) (b) 

Figure 11. Probability of six augmented models when the PV connector # 4 is abnormally overheated, (a) 5 W heating power; (b) 
3 W heating power. 

  
(a) (b) 

Figure 12. Comparison between the actual temperature of PV connector # 4 and the estimated temperature of MME, (a) 5 W heating 
power; (b) 3 W heating power. 

② Abnormal overheating is detected in the PV connector #2.  

Figure 13 shows the probability 𝑝௜ሺ𝑘ሻ used to estimate the decision block for each of the six augmented models of the 
identification Equation (37) when the PV connector #2 is abnormally overheated. 
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(a) (b) 

Figure 13. Probability of the six augmented models when the PV connector # 2 is abnormally overheated, (a) 5 W heating power; 
(b) 3 W heating power. 

③ When the PV connector #5 is abnormally overheated.  

Figure 14 shows the probability 𝑝௜ሺ𝑘ሻ used to estimate the decision block for each of the six augmented models of the 
identification Equation (37) when the PV connector # 5 is abnormally overheated. 

  
(a) (b) 

Figure 14. Probability of the six augmented models when the PV connector #5 is abnormally overheated, (a) 5 W heating power; 
(b) 3 W heating power. 

④ Abnormal overheating is detected in PV connector #1. 

When the PV connector #1 is abnormally overheated, Figure 15 shows the probability 𝑝௜ሺ𝑘ሻ used to estimate the 
decision block for each of the six augmented models of the identification Equation (37). 
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(a) (b) 

Figure 15. Probability of the six augmented models when the PV connector #1 is abnormally overheated, (a) 5 W heating power; 
(b) 3 W heating power. 

3.2.3. Determine the Actual Model Timing 

Table 3 summarizes the time taken to locate the real model (i.e., abnormally overheated model) based on 
temperature sensors in the PV connector #3 and #6. It can be seen that the higher the heating power, the shorter the fault 
location time, and vice versa. 

Table 3. Time to locate an abnormally overheated PV connector. 

Abnormally Overheated PV Connector 
Time to Locate the Overheating PV Connector 

Heating Power 5 W Heating Power 3 W 
PV Connector #1 243 s 549 s 
PV Connector #2 287 s 504 s 
PV Connector #3 127 s 211 s 
PV Connector #4 302 s 470 s 
PV Connector #5 212 s 425 s 
PV Connector #6 78 s 140 s 

3.3. Experimental Validation 

3.3.1. Experimental System 

The experimental system consists of a DC power supply, a temperature monitor, and six PV connectors arranged 
at equal distances. Ceramic heating rods are used to simulate abnormal heating. 

The experiment was carried out at a constant ambient temperature of 25 ℃. The heating power of the analog 
abnormal heating connector is set to 5 W, and the heating power of the other PV connectors is 0.1 W. The temperature sensor 
is arranged at the connection gap of the PV connector #6, and the metal core of the abnormally overheated PV connector. 

Before the experiment, the resistance value of the ceramic heating rod is measured, and the output voltage of the 
DC voltage regulator is calculated and adjusted according to the resistance value, so that the voltage at both ends reaches 
the set value. The temperature data was then recorded at a rate of once per second with a duration of 3600 s using a 
temperature monitor. A total of three experiments were conducted, and the average value was taken as the final 
experimental data. Figure 16 is the experimental measurement site, and the relevant experimental parameters are set as 
shown in Table 4. 
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Figure 16. Experimental platform. 

Table 4. Settings of relevant experimental parameters. 

Ambient Temperature Normal PV Connectors Abnormal PV Connectors Data Recording Duration 

25 ℃ 0.1 W 5 W 3600 s 

3.3.2. Experimental Result 

The comparison between MME estimated temperature and measured sensor data is shown in Figure 17. In addition, 
the specific values after reaching the steady state are shown in Table 5. 

  
(a) (b) 

  
(c) (d) 



Marine Energy Research 2025, 2, 10007 18 of 21 

 

  
(e) (f) 

Figure 17. MME estimated temperature and actual measured temperature in the case of abnormal overheating of each PV connector. 
(a) PV connector #1; (b) PV connector #2; (c) PV connector #3; (d) PV connector #4; (e) PV connector #5; (f) PV connector #6. 

Table 5. Comparison of the specific values after steady state. 

Abnormally Overheated PV Connector Simulation Temperature Measured Temperature 
PV Connector #1 107.4 ℃ 104.9 ℃ 
PV Connector #2 99.3 ℃ 97.1 ℃ 
PV Connector #3 94.7 ℃ 94.7 ℃ 
PV Connector #4 92.0 ℃ 95.3 ℃ 
PV Connector #5 93.8 ℃ 97.2 ℃ 
PV Connector #6 104.7 ℃ 104.7 ℃ 

The probability evolution of the obtained models is shown in Figure 18. 

  
(a) (b) 

  
(c) (d) 
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(e) (f) 

Figure 18. Augmentation probabilities of the six models in the case of abnormal overheating of each connector. (a) PV connector 
#1; (b) PV connector #2; (c) PV connector #3; (d) PV connector #4; (e) PV connector #5; (f) PV connector #6. 

Combined with the analysis of simulation results, the measured temperature data of #3 and #6 temperature sensors 
show a high trend. This bias may result from idealized assumptions of the model, such as the assumption that the 
temperature distribution of the shell and metal core is uniform during model definition, or some non-ideal factors in the 
experimental setup are not fully taken into account. 

However, analyzing the model probability of each connector in the case of abnormal overheating is a good fit with 
the simulation results. This proves that the proposed MME algorithm can accurately identify and locate abnormally 
overheated PV connectors. 

4. Conclusions 

This paper presents a novel thermal fault detection and location methodology utilizing MME to address the issue 
of abnormal overheating in PV connectors on the DC input side of PV inverters in offshore PV systems. By constructing 
the lumped thermal model and abnormal overheating disturbance model of PV connectors, combined with the multiple 
model adaptive Kalman filter algorithm, the thermal fault detection and accurate location are realized by using the 
minimum temperature sensor. Simulation results demonstrate that the proposed method effectively identifies faults 
under varying heating power levels, significantly reducing localization time as power increases (e.g., the fastest 78 s at 
5 W). The experimental validation further confirms the algorithm’s proficiency in accurately identifying abnormally 
elevated PV connectors, with the experimental data exhibiting a strong alignment with the simulation results. 

Acknowledgments 

We extend our sincere gratitude to all members of Tianjin Key Laboratory of New Energy Power Conversion, 
Transmission and Intelligent Control for their support of this research. 

Author Contributions 

Conceptualization, C.W. and L.Z.; Methodology, L.Z.; Software, L.Z.; Validation, C.W., L.Z. and P.C.; Formal 
Analysis, L.Z.; Investigation, L.Z.; Resources, C.W. and P.C.; Data Curation, L.Z.; Writing—Original Draft Preparation, 
C.W. and L.Z.; Writing—Review & Editing, C.W., L.Z. and Q.X.; Visualization, C.W. and L.Z.; Supervision, C.W. 
and P.C.; Project Administration, C.W., L.Z., P.C. and Q.X.; Funding Acquisition, C.W. and P.C. 

Ethics Statement 

Not applicable. 

Informed Consent Statement 

Not applicable. 
  



Marine Energy Research 2025, 2, 10007 20 of 21 

 

Data Availability Statement 

The statement is required for all original articles which informs readers about the accessibility of research data 
linked to a paper and outlines the terms under which the data can be obtained. 

Funding 

This paper was partially supported by the National Key R&D Program of China (No. 2022YFB4200703). 

Declaration of Competing Interest 

The authors declare that they have no known competing financial interests or personal relationships that could have 
appeared to influence the work reported in this paper. 

References 

1. International Energy Agency. Renewables 2024: Analysis and Forecast to 2030. 2024. Available online: 
https://www.iea.org/reports/renewables-2024 (accessed on 20 January 2025). 

2. Wen Y, Lin P. Offshore solar photovoltaic potential in the seas around China. Appl. Energy 2024, 376, 124279. 
3. Li Z, Zhang H, Wu C, Wang F. Photovoltaic Connector Fault Detection based on SSTDR. High Volt. Technol. 2019, 50, 1508–

1517. (In Chinese) 
4. Xu G, Ma H, Li C, Li K, Xu H, Ding N. Design of Active Wireless Temperature Online Monitoring System for High Voltage 

Switchgear. Electr. Meas. Instrum. 2014, 51, 82–86. (In Chinese) 
5. Balgrid L, Lundin L. Monitoring of primary circuit temperatures and breaker condition in a substation. In Proceedings of the 

12th International Conference on Electricity Distribution, Birmingham, UK, 17–21 May 1993; Volume 1, pp. 1–5. 
6. Fisher DK, Kebede H. A low-cost microcontroller-based system to monitor crop temperature and water status. Comput. 

Electron. Agric. 2010, 74, 168–173. 
7. Li Z, Liu Q, Dong Y, Zhang Q. A New Digital Temperature On-line Monitoring System for High Voltage Switchgear. Electr. 

Meas. Instrum. 2013, 50, 71–82. (In Chinese) 
8. Zhou W, Zhu Q, Xu M, Xiong L, Yang Z. Development of Infrared Temperature Monitoring System for Internal Joints of High 

Voltage Switchgear. Electr. Meas. Instrum. 2013, 50, 96–99. (In Chinese) 
9. Qian X. Design of On-line Monitoring System for Joint Temperature in High Voltage Switchgear. Instrum. Tech. Sens. 2007, 

73–75. doi:10.3969/j.issn.1002-1841.2007.02.030. (In Chinese) 
10. Kuang S-L, Zhu X-B. Principle of distributed optical fiber temperature Sensor and its application in Substation Temperature 

monitoring. Autom. Equip. Electr. Power Syst. 2004, 24, 79–81. (In Chinese) 
11. Li X. Wireless Temperature Monitoring and Thermal Fault Warning Technology of High Voltage Switchgear. Coal Mine Mech. 

Electr. 2022, 43, 64–67. (In Chinese) 
12. Zhao K, Li H, Gao S, Li Y, Liu Y, Ma J. Deep learning based infrared image recognize and internal overheating fault diagnosis 

of gas insulated switchgear. In Proceedings of the 2021 International Conference on Sensing, Measurement & Data Analytics 
in the era of Artificial Intelligence (ICSMD), 2021; pp. 1–5. 

13. Wu Y, Shu N, Guan X. GIS bus joint temperature prediction based on LSSVM and Chaos Theory with improved artificial bee 
colony optimization algorithm. Electr. Meas. Instrum. 2018, 55, 8–14+59. (In Chinese) 

14. Lin X, Fu H, Perez HE, Siege JB, Stefanopoulou AG, Ding Y, et al. Parameterization and observability analysis of scalable 
battery clusters for onboard thermal management. Oil Gas Sci. Technol. –Rev. d’IFP Energ. Nouv. 2013, 68, 165–178. 

15. Lystianingrum V, Hredzak B, Agelidis VG. Multiple model estimator based detection of abnormal cell overheating in a Li-ion 
battery string with minimum number of temperature sensors. J. Power Source 2015, 273, 1171–1181. 

16. Xu J, Chen K, Ji C. Review of multiple model estimation algorithms in target tracking. Intell. Command. Control. Syst. Simul. 
Technol. 2002, 26–30. doi:10.3969/j.issn.1673-3819.2002.05.007. (In Chinese) 

17. Wang J, Han C, Li X. Multiple model estimation method. Fire Power Command. Control. 2001, 1–5. doi:10.3969/j.issn.1002-
0640.2001.04.001. (In Chinese) 

18. Deb S, Pattipati KR, Bar-Shalom Y. A multisensor-multitarget data association algorithm for heterogeneous sensors. IEEE 
Trans. Aerosp. Electron. Syst. 1993, 29, 560–568. 

19. Badgwell TA, Muske KR. Disturbance model design for linear model predictive control. In Proceedings of the 2002 American 
Control Conference (IEEE Cat. No. CH37301), Anchorage, AK, USA, 8–10 May 2002; Volume 2, pp. 1621–1626. 

20. Pannocchia G, Wright SJ, Rawlings JB. Existence and computation of infinite horizon model predictive control with active 
steady-state input constraints. IEEE Trans. Autom. Control. 2003, 48, 1002–1006. 

21. Meskin N, Naderi E, Khorasani K. A multiple model-based approach for fault diagnosis of jet engines. IEEE Trans. Control. 
Syst. Technol. 2011, 21, 254–262. 



Marine Energy Research 2025, 2, 10007 21 of 21 

 

22. Shi J, Tong H. Analysis of the impact of photovoltaic connectors on the return on investment of photovoltaic power plants. 
Sol. Energy 2016, 32–35. doi:10.3969/j.issn.1003-0417.2016.11.007. (In Chinese) 

23. Shen Q, Yuan W, Ma L. Analysis of Connector failure in photovoltaic system operation and maintenance risk. Sol. Energy 
2018, 52–54. doi:10.3969/j.issn.1003-0417.2018.07.011. (In Chinese) 

24. Israel T, Czajor JA, Kufner T, Schuerch M, Buergi D, Hirmke J, et al. Damage by Disconnection Under Low Current Load: A 
Study of Photovoltaic DC Connectors. In Proceedings of the 2024 IEEE 69th Holm Conference on Electrical Contacts 
(HOLM), Annapolis, MD, USA, 6–10 October 2024; pp. 1–8. 

25. Lahbib M, Boussaid M, Moungar H, Tahri A. Thermal modelling of connector with sand and connector without sand of the 
PV system connector under operating temperature in slar station of Kaberten-Adrar. In Proceedings of the 2023 Second 
International Conference on Energy Transition and Security (ICETS), Adrar, Algeria, 12–14 December 2023; pp. 1–4. 

 


