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ABSTRACT: Single ventricle disease is a serious and deadly illness, and advances in clinical management of individuals with 
Fontan circulation over the past two decades have yet to yield acceptable survival. Patients remain at risk of developing a diverse 
assortment of Fontan-associated comorbidities that ultimately require a heart transplant. Our goal in this observational cohort study 
was to determine if application of principal component analysis (PCA) to heterogeneous data collected from a sizable Fontan cohort 
(n = 140) would predict functional decline. The data, broadly comprised of blood biomarkers, lymphatic biomarkers, measures of 
cardiac and vascular function, and exercise (VO2max), were collected at a single site over 11 years; 16 events occurred over that 
time that we consider here as a single composite outcome measure. The standardized data was transformed via PCA, and principal 
components (PCs) characterizing >5% of total variance were thematically labeled based on their constituents and tested for 
association with the composite outcome. We found that the 6th PC (PC6), which represents 7.1% of the total variance, is superior 
to ejection fraction (EF) as a measure of proportional hazard, is greatly influenced by blood serum biomarkers and superior vena 
cava flow, and displays the greatest accuracy (according to area under the curve analysis) for classifying Fontan patients. In bivariate 
hazard analysis, we determined that models combining lymphatic dysfunction (PC6) and systolic function (EF or PC5) were most 
accurate, with the former having the highest c-statistic, and the latter having the greatest AIC. Our findings support our hypothesis 
that improved prognostication in a Fontan population should utilize a multifactorial model. 
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1. Introduction 

Patients born with single ventricle heart disease (SVD), a severe and rare congenital heart defect (CHD), are 
subjected to three palliative surgeries that culminate in the Fontan circulation [1]. While staged palliation addresses the 
primary concerns of obstructed systemic blood flow and cyanosis in a condition like hypoplastic left heart syndrome, a 
range of Fontan-associated comorbidities are often apparent in adolescence [2]. Morbidity and mortality after Fontan 
surgery remain unacceptably high [2], and new approaches to predict patient decline are sorely needed. Our goal is to 
develop a new prognostic model for SVD patients and explore machine learning (ML) methods as a tool of risk 
stratification in the Fontan population. 
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Principal component analysis (PCA) is a data reduction technique that is often applied to large data sets in research 
[3–7], although it has not yet been applied to the Fontan population outside of waveform analysis [8,9]. Scientists have 
used PCA to identify patterns of inflammatory and adhesion molecules that contribute to muscle weakness acquired in 
the intensive care unit [4], or to identify inflammatory markers of major adverse cardiovascular events following heart 
attack at one year compared to univariate cytokine measures [6]. These studies support our hypothesis that a PCA 
approach may enhance outcomes prediction in heterogenous disease states like the Fontan population, where a large 
number of potential predictor variables exist that stem from many testing domains. 

We have previously applied PCA to characterize cavopulmonary flow waveforms [8,9]; here we expand that 
approach to include heterogenous biomarkers. Our primary objective in this study was to assess our previously defined 
novel waveform measures and other clinical parameters in a heterogenous PCA approach, all in support of the overall 
hypothesis that machine-learning extracted PCs will delineate patients with Fontan-associated comorbidities and reveal 
parameters that indicate circulatory failure in patients with a Fontan circulation. More specifically, a machine-learning 
extracted PC, which will consist of a pattern of abnormalities in multiple cardiac and non-cardiac test results, previously 
unrecognized as an important predictor of outcomes, will be associated with a composite outcome of Fontan failure. 

2. Materials and Methods 

One-hundred and forty SVD patients who underwent cardiac MRI (cMRI) at Children’s Hospital Colorado 
between July 2011 and August 2022 were included in this retrospective cohort study, permitted by the Colorado 
Multiple Institutional Review Board (COMIRB) as a portion of Fontan at Altitude Registry for Outcomes under waiver 
of consent. All research was guided by the principles of respect for persons, beneficence, and justice set forth in the 
Ethical Principles and Guidelines for the Protection of Human Subjects of Research (often referred to as the Belmont 
Report). All patients cared for in the Fontan Multidisciplinary Clinic at the Children’s Hospital Colorado have 
undergone surveillance testing for end-organ damage and Fontan-associated comorbidities by way of a clinical practice 
guideline since 2016 and were included. The registry was queried, and abstracted data (Table 1) were used as a 
foundation for a study database, in addition to our single site venous flow patterns [10]. For the purposes of survival analysis, 
study subject status was evaluated as of 1 December 2022, and a composite outcome was defined as the development of 
plastic bronchitis (PB, n = 1), protein-losing enteropathy (PLE, n = 2), referral to transplant (RTT, n = 9), received a transplant 
(n = 4), or death (n = 0) from the time of cMRI to time to follow up. Imaging and biomarkers were collected concurrently, 
and catheterization values were collected within one month of time of the other measurements. 

Table 1. Measures used in heterogenous PCA, including novel single vessel waveform data, hemodynamic, global cardiovascular, 
blood, kidney, liver, and respiratory biomarkers, and their mean or median and corresponding standard deviation or interquartile range. 

Measure Mean or Median St. Dev or IQR 
SVC Single PC1 Scores −0.522 −2.87–3.12 
SVC Single PC2 Scores −0.478 −0.870–0.0638 
IVC Single PC1 Scores −0.172 −3.21–3.69 
IVC Single PC2 Scores 0.21 −1.53–1.35 
LPA Single PC1 Score 0.397 −3.01–2.07 
LPA Single PC2 Score 0.181 −0.656–1.24 

EF 47.9 8.11 
EDVi 93.3 27 
ESVi 49.8 20.5 
SVi 43.5 10.4 
CO 4.43 1.43 
CI 3.41 1.04 

BSA 1.32 0.415 
BNP max 30 15–61.8 

AST 45 38–57 
VVCR 0.963 0.3 

Lowest SaO2 86.4 5.56 
SVC Mean 13 11–14 

mPAP 12 10–13 
Alb 4.54 0.685 

Platelets 197 65.2 
Alk Phos 158 80.3 

Total Protein 7.53 1.1 
Creatinine 0.61 0.49–0.763 

BUN 14 12–17 
Cystatin C 0.86 0.755–0.96 
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2.1. cMRI Acquisition 

Phase images and corresponding magnitude images of the superior vena cava (SVC), inferior vena cava (IVC), 
and left pulmonary artery (LPA) were obtained using a previously described ECG gated PC-MRI sequence [11,12] and 
a phased-array body surface coil within 1.5 or 3.0 Tesla Ingenia (Philips Medical System, Best, The Netherlands) or 
Magnetom Avanto (Siemens Medical Solutions, Erlangen, Germany) systems. The PC-MRI sequence was free 
breathing as described in our previous works [8,9]. 

Flow Profile Analysis 

Flow profile characteristics were assessed as described previously with slight modifications [9]. Individual patient 
flow waveforms were captured at the SVC, IVC, and LPA from 2D phase-contrast image series using precise parallel 
segmentation in Circle CVi42 (Calgary, AB, Canada). The resulting text data files were imported into MATLAB 
(Natick, MA, USA) for further analysis. Waveforms were normalized by dividing all flow points by patient BSA to 
reduce the size effect on the flow magnitude, and were then interpolated to 40 points with cubic splines to ensure equal-
sized array lengths. Three data matrices were created containing single-site flow data; the size of each such matrix depended 
on the number of acquired image series and is as follows: SVC (124 × 40), IVC (132 × 40), and LPA (125 × 40). 

2.2. Clinical Biomarkers 

Global cardiovascular and ventricular indicators (EF, CO, CI, EDVi, ESVi, SVi) have long been established as the 
benchmark for Fontan patient status [8,13–15] and therefore were included in the analysis for validation purposes. 
VVCR, mean catheterization pressures (mPAP and SVC mean pressure), VO2max, BNPmax and O2 saturations were 
also included in the outcomes analysis, all of which have been independently linked to Fontan circulation health and 
outcomes [16–19]. We have previously determined that biomarkers indicative of lymphatic function and PLE, 
specifically aspartate aminotransferase, alkaline phosphatase, cystatin-c and creatinine, were associated with caval flow 
patterns [9], strongly indicating that these parameters may identify, or be predictive of, which Fontan patients will 
experience circulatory failure. Similarly, biomarkers such as albumin, total protein, blood urea nitrogen and platelet 
count were included due to previous reports relating these to Fontan patient cyanosis and pulmonary blood flow [20,21]. 

2.3. Principal Component Analysis 

PCA requires that the input data matrix has a value assigned to each position. Therefore, after the exported registry 
was read into MATLAB, patients with more than five measures missing were removed from the analysis. This was 
done in an effort to maintain a missing data rate of less than 5% [22], and the resulting clinical parameters and 
demographic information can be found in Table 1. Patients that had missing values less than or equal to five were 
replaced with the column median, as a value is required for each position in the input matrix. Columns were normalized, 
and the resulting matrix was the input for PCA. Scree plots were created to determine PCs representing greater than 5% 
of total variance. Interpretation of which clinical parameters had the greatest influence on each PC was graphically 
determined by visualizing PC eigenvectors. 

2.4. Statistics 

GraphPad Prism 9.5.1 (Boston, MA, USA) was used for all statistical analyses. Analysis began with computing 
the univariate Cox hazard ratio (HR) for PCs 1–10 and EF, a measure of systolic function that serves as a benchmark 
diagnostic for patients with a Fontan circulation [23]. Akaike’s information criterion (AIC) and the c-statistic were also 
gathered, and receiver operating characteristic (ROC) curves, area under the curve (AUC), as well as Youden’s index, 
defined as (sensitivity(x) − specificity(x)) − 1, were computed for measures with the greatest c-statistic. The optimum 
sensitivity, specificity and clinical threshold for grouping was found and used to define groups for Kaplan-Meier 
survival analysis. Significant differences between Kaplan-Meier curves were determined with the Mantel-Cox log-rank 
test. Parameters were selected (up to two parameters at a time) for multivariate (bivariate) regression analysis from 
univariate analyses of said parameters with the greatest c-statistics, and univariate and multivariate predictive models 
were compared using AIC. 
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3. Results 

3.1. Principal Component Analysis 

The original data matrix was 140 × 31 and was reduced to 115 × 31 after the removal of patients missing more 
than five measures. The remaining matrix had a 4.15% rate of missing data, and therefore fell within the 5% acceptable 
rate [22]. Columns of the matrix included scores for single site SVC, IVC, and LPA flow patterns, each representing a 
patient’s contribution to that PC’s waveform pattern, EF, EDVi, ESVi, SVi, CO, CI, BSA, BNP max, AST, VVCR, 
lowest SaO2, SVC mean pressure, mPAP, albumin, platelets, alkaline phosphatase, total protein, creatinine, BUN, and 
cystatin-C (Table 1). 

Following PCA, a scree plot was used to identify the percentage each PC contributed to the overall variance in the 
original data set and can be seen in Figure 1. The first PC accounted for about 17.5% of the original data matrix variance, 
followed by approximately 11.5% for PC2, 8.5% for PC3, and subsequently decreased as the PC number increased 
(Figure 1). Each of the first 7 PCs accounted for more than 5% of the total variance and together explained 70.3% of 
that variance; PCs up to PC10 (3.6% of total variance, 77.7% cumulative variance) were considered for survival analysis. 

 

Figure 1. The scree plot displays each PC (x-axis) and the percent variance it represents in the original data set (y-axis). 

Interpretation of the first two PCs was aided by the biplot displayed in Figure 2, where the blue lines represent the 
eigenvectors, or PC coefficients, and the length and direction represent that parameter’s influence on each PC. For 
example, further distance from the origin on the x-axis means greater contribution to PC1, therefore EDVi, ESVi, EF, 
and VVCR contributed the most to PC1 (Figure 2). PC2 variance is explained by deviance from zero along the y-axis, 
and major influencing parameters include CO, SVi, LPA PC1 and IVC PC1 (Figure 2). The red data points represent 
the scores, or how each patient sample contributes to the PCs. 
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Figure 2. Principal component biplot that displays the scores returned from PCA, or each sample, in the original dimension and are 
represented by the red data points. The eigenvectors, or the coefficients, for each clinical parameter are displayed as the blue lines, 
and the direction and length represent the influence each parameter has on PC1 (x-axis) and PC2 (y-axis). 

The clinical implications of each PC were examined using bar graphs of the PC eigenvectors, where the clinical 
parameters (x-axis) and their relative contributions to each PC (y-axis) are displayed in Figure 3. The first PC was highly 
influenced by cardiac parameters, including EF, EDVi, ESVi, CI, VVCR, AST, SVC PC1 Scores, and IVC PC1 scores, 
which primarily describe cardiac function and the downstream effects in the Fontan circulation. The fourth PC was 
highly influenced by IVC and LPA waveform patterns in addition to cavopulmonary pressures and cystatin-C. PC5 was 
influenced by cardiac parameters representative of systolic function, such as EF, SVi, CI, and VVCR, and waveform 
patterns IVC PC2, SVC PC1 scores, and BUN. Albumin, alkaline phosphatase, total protein, BUN, BNP max, and SVC 
waveforms scores influenced PC 6. 
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Figure 3. Bar graphs for (A) PC1, (B) PC4, (C) PC5 and (D) PC6 display each clinical parameter considered in PCA, or the column 
headers, and the amount (y-axis, 0 up to 1) that parameter influences each PC. 

3.2. Survival Analysis 

Univariate Cox proportional hazard ratio was determined for each PC and can be found in Table 2. The single best 
predictor of which patient is at a greater hazard is PC6 (AIC = 109), followed by the standard measure used for 
prediction in this population, EF (AIC = 111) (Table 2). PC1 and PC5 also performed well, with AICs of 113 and 115. 
The hazard ratio for EF and each PC is displayed in a forest plot in Figure 3, and the bars represent the 95% confidence 
intervals. If a parameter’s confidence interval crossed one, it was not statistically significant (Figure 4). 

Table 2. Univariate cox regression hazard ratio for each PC and EF. 

Variable HR 95% CI p-Value c Stat Variable 
PC1 1.40 1.12 to 1.75 0.00280 0.705 PC1 
PC2 0.836 0.607 to 1.13 0.254 0.555 PC2 
PC3 0.941 0.649 to 1.38 0.753 0.453 PC3 
PC4 1.43 1.00 to 1.99 0.0404 0.619 PC4 
PC5 0.502 0.315 to 0.773 0.00250 0.718 PC5 
PC6 0.449 0.280 to 0.691 0.000500 0.759 PC6 
PC7 1.50 0.894 to 2.60 0.140 0.617 PC7 
PC8 0.931 0.558 to 1.59 0.793 0.587 PC8 
PC9 0.741 0.469 to 1.27 0.242 0.539 PC9 

PC10 0.929 0.574 to 1.58 0.777 0.519 PC10 
EF 0.873 0.803 to 0.944 0.000900 0.726 EF 

The gold standard for systolic function and patient decline in the Fontan population, and the accompanying 95% confidence 
intervals, their p-value, c-statistic and AIC. 

Parameters with the greatest c-statistics were tested as classifiers of patients with Fontan decline using ROC curves, 
and PC6 returned the greatest AUC at 0.767, followed by PC5 (AUC = 0.740), and EF (AUC = 0.696) (Figure 5). The 
accompanying optimum sensitivity and specificity, determined using the greatest distance from the null hypothesis line 
or Youden’s index, was also found and shows that, while EF is highly specific (0.771) and therefore able to designate 
patients with Fontan failure correctly (low EF is almost always accompanied by SVD circulatory failure), its sensitivity 
is lacking at 0.643 (Figure 5). Sensitivity determines a classifier’s ability to label patients without Fontan decline 
correctly, and all PCs had the same, if not superior, sensitivity compared to EF (Figure 5). PC6 had the greatest 
sensitivity (0.786) with a reasonably balanced specificity at 0.686, suggesting it can rule healthy Fontan patients out as 
having circulatory failure, and PC1 had both optimum sensitivity and specificity at 0.714 (Figure 4). PC6 also displayed 
the greatest maximum effective biomarker, represented by Youden’s index of 0.471 (Figure 5). 
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Figure 4. The forest plot displays the hazard ratio for each PC and EF and the corresponding 95% confidence intervals. Bars that cross 1, 
or the null hypothesis, represents no difference in hazards between patients that experienced an event versus those that did not. 

 

Measure AUC p-Value Sens Spec Youden Cut Off 

EF 0.696 0.0177 0.643 0.771 0.414 <42.5 

PC1 0.674 0.0347 0.714 0.714 0.429 >0.454 

PC4 0.622 0.138 0.643 0.705 0.348 >0.496 

PC5 0.740 0.0037 0.643 0.791 0.433 <−0.888 

PC6 0.767 0.0012 0.786 0.686 0.471 <−0.325 
 

Figure 5. ROC curves for each PC that returned the greatest c-statistics and EF and the accompanying AUC, p-value, optimum 
sensitivity and specificity and the corresponding clinical cut off. 
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Grouping patients based on Youden’s index allows for Kaplan-Meier curve generation, displayed in Figure 6. 
Though EF was determined to have statistically significant differences in survival using the Mantel Cox log rank test 
(p = 0.0006), PC1 and PC5 performed better with p-values of 0.0003 and 0.0005 (Figure 6). PC6 also had highly 
significant differences in survival (p = 0.0008), though it was not as significant as EF, and PC4 also displayed a 
significant difference in survival (p = 0.007) (Figure 6). 

 

Figure 6. Kaplan-Meier curves for each PC that returned the greatest c-statistics and EF, and the p-value returned from the log-
rank Mantel Cox p-value. Groups were created using the Youden’s index defined cut-off values. ** p < 0.01, *** p < 0.001. 

The inputs for multivariate Cox hazard regression analysis were EF, ESVi, and PC1 and PCs 4–6 and were chosen 
based on their univariate c-statistics. The models developed and each covariate’s HR estimate, 95% CI, p-value, c-
statistic, and AIC are listed in Table 3. The greatest AIC, and therefore predictive model, was model B (0.807, AIC = 
97) and included EF and PC6. However, model F, consisting of PC5 and PC6, has a greater c-statistic (0.845, AIC = 
103) and therefore is more probable to randomly identify a patient who experienced an event as having a greater risk 
score than a patient who did not experience an event. 

Table 3. Multivariate models were developed, up to two measures at a time, for each PC and systolic measures EF and ESVi, the 
corresponding HR estimates, 95% CIs, p-values, c-statistic and AIC (used for model selection). 

 Covariates HR Estimate 95% CI p-Value c Stat. AIC 

A 
EF 0.906 0.804 to 1.02 0.101 

0.726 112 
ESVi 1.02 0.979 to 1.06 0.413 

B 
PC6 0.455 0.287 to 0.682 0.0003 

0.807 97 
EF 0.875 0.811 to 0.939 0.0003 

C 
PC5 0.667 0.402 to 1.04 0.0931 

0.738 110 
EF 0.901 0.822 to 0.988 0.0247 

D 
PC4 1.37 0.960 to 1.93 0.0765 

0.756 110 
EF 0.884 0.814 to 0.952 0.0019 

E 
PC1 1.11 0.802 to 1.52 0.505 

0.734 112 
EF 0.895 0.802 to 0.994 0.0413 

F 
PC5 0.574 0.372 to 0.841 0.0071 

0.845 103 
PC6 0.461 0.279 to 0.721 0.0012 

G 
PC4 1.395 0.982 to 1.95 0.0558 

0.803 108 
PC6 0.445 0.271 to 0.695 0.0007 

H 
PC4 1.448 1.01 to 2.06 0.0426 

0.764 111 
PC5 0.501 0.313 to 0.771 0.0024 
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PC6 0.516 0.327 to 0.766 0.0022 

J 
PC1 1.595 1.22 to 2.11 0.0006 

0.784 103 
PC5 0.482 0.313 to 0.717 0.0005 

K 
PC1 1.404 1.12 to 1.75 0.0028 

0.781 113 
PC4 1.462 1.01 to 2.10 0.0425 

4. Discussion 

Herein, we explored univariate and multivariate associations between standard and/or ML-derived parameters and 
composite outcomes in a large, single-center Fontan cohort through use of heterogeneous feature reduction (PCA). We 
determined PCs that appear to relate to specific features of Fontan decline, and that these features were significant 
univariate and multivariate predictors of a composite event. The incorporation of novel biomarkers representing 
combined lymphatic, blood, exercise, and cardiovascular measurements significantly improved the mathematical 
prediction of decline in the Fontan population. These biomarkers have the potential to improve Fontan patient outcomes 
by providing early indicators of cardiovascular decline, allowing for improved patient specific care strategies and 
preemptive intervention. 

PC6 was identified as a highly significant measure of hazard in our cohort and was the greatest univariate predictor 
of outcomes with an AIC of 109. The parameters that contributed most to this principal component—albumin, alkaline 
phosphatase, total protein, BUN, and BNP max—have also been linked to the development of lymphatic dysfunction, 
particularly protein-losing enteropathy (PLE), in the Fontan population [23–25]. Cavopulmonary flow patterns also 
influence PC6 and have previously been suspected as contributors to PLE [23]; thus, this supports our understanding of 
PLE development and poorer prognosis in the Fontan population, especially given that PC6 was also the most accurate 
classifier. It is also worth noting that only two patients (of 16) experienced a composite outcome of PLE. Additionally, 
with a sensitivity of 78.6% and specificity of 68.6%, this PC may be clinically useful in categorizing (or risk stratifying) 
patients. For example, after undergoing surveillance testing for end-organ damage and Fontan-related comorbidities, a 
patient could have their CMR-derived flow waveforms and other biomarkers examined here projected into a known 
feature set (heterogeneous PCs), after which these latter PCs would be used to classify the patient as either at-risk or 
not, based on the present analysis. Additional work, in terms of data collection and validation, as well as potentially 
longitudinal studies targeting causality, must be performed to identify the role parameters represented by PC6 plays in 
the development of PLE, though this study provides a promising foundation for further research. 

Survival was significantly predicted by all PCs identified as having a significant hazard ratio (1, 4, 5, 6), though 
two performed superior to EF, the standard measure of health and cardiac function in this population. PC1 performed 
better at prediction than EF alone and represented components of general cardiac function, including EF, EDVi, ESVi, 
VVCR, CI, and cavopulmonary flow measures. Our findings support that PCA is a useful method for the inclusion of 
colinear parameters [5], and inclusion of such measures does in fact improve prediction of outcomes better than a single 
measure of ventricular function or multivariate testing. PC5 also improved prediction of outcomes compared to EF and 
was influenced by EF, SVi, CI, BSA, VVCR, BUN, SVC and LPA waveform patterns, most of which are affected by 
systolic ventricular function. However, little improvement was noted in a multivariate model that included EF and PC1 
(AIC = 112) and EF and PC5 (AIC = 110) compared to the individual parameter’s AIC scores [EF (111), PC1 (115), 
and PC5 (109)] which may be due to redundant information (i.e., EF, and thus, systolic function, is now accounted for 
twice in the model). These results support the hypothesis that machine-learning extracted PCs clearly delineate SVD 
patients with Fontan-associated comorbidities from those without, in addition to our previously published hypothesis 
that a multivariable approach, in this case PCA, improves prediction of this heterogenous patient population with 
multiple organ systems in various stages of failure [9]. 

The best predictive model explored in this study, determined by AIC, is the multivariate Cox regression model B 
(Table 3), including covariates EF and PC6. If PC6 is in fact linked to PLE, our findings suggest a combination of 
systolic ventricular function and measures indicative of lymphatic dysfunction may be an avenue for improved 
prognostication. This model, however, did not have the greatest c-statistic, which suggests it may not be suitable for 
ranking patients according to risk. Model F, including covariates PC5 and PC6, had the greatest c-statistic and is most 
suitable in determining which patients are at a higher risk. 

The limitations of this study, as previously described [8], include those inherent to PCA. Linear data reduction 
does not consider non-linear data relationships and is accompanied by a loss of, ideally insignificant, original data 
variance. Additionally, several patients were removed from analysis because PCA requires that the input matrix have 
no missing data, and imputation was performed. The cohort may contain a selection bias, because not all of our Fontan 
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patients received a routine CMR examination in the past. Finally, ML thrives on large datasets, and while our final set 
(n = 115) is large for a pediatric population, the even numbers are low for PB and PLE, and clearly multicenter studies 
or learning networks will offer even greater insights into disease progression. Despite limitations, this work has 
established that a heterogenous approach to PCA is beneficial to outcomes prediction in Fontan patients, and that our 
novel single site venous waveform patterns contribute to PCs predictive of decline. 

5. Conclusions 

The goal of this study was to determine if a heterogenous PCA approach applied to the Fontan cohort can predict 
functional decline. Our main findings suggest that PC6, which is primarily influenced by blood serum biomarkers and 
SVC flow and represents roughly 7% of the overall variance, is superior to EF as a measure of proportional hazard in 
this population. We also found that Fontan patients were most accurately classified by PC6, as determined by AUC, 
and we identified two additional PCs that indeed predicted survival in this population better than EF. Our findings 
support our suspicions that improved prognostication in a Fontan population should utilize a multifactorial model. 
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