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ABSTRACT: Bicopter UAVs can find use in several civilian and defence applications. In the present article a solution of the

nonlinear optimal control problem of 6-DOF bicopters is first attempted using a novel nonlinear optimal control method. This

method is characterized by computational simplicity, clear implementation stages and proven global stability properties. At a

first stage, approximate linearization is performed on the dynamic model of the 6-DOF bicopter with the use of first-order Taylor

series expansion and through the computation of the system’s Jacobian matrices. This linearization process is carried out at each

sampling instance, around a temporary operating point. At a second stage, an H-infinity stabilizing controller is designed for the

approximately linearized model of the 6-DOF bicopter. To find the feedback gains of the controller an algebraic Riccati equation

is repetitively solved, at each time-step of the control method. Lyapunov stability analysis is used to prove the global stability

properties of the control scheme. Next, the article examines a multi-loop flatness-based control method for the dynamic model of

the 6-DOF bicopter. The drone’s dynamics is written in the form of two chained subsystems which are shown to be differentially

flat. The state vector of the second subsystem becomes virtual control input to the first subsystem, while the control inputs of the

first subsystem become setpoints for the second subsystem. Local controllers for the individual subsystems invert their dynamics.

The global stability properties of the multi-loop flatness-based control scheme are also proven though Lyapunov analysis.

Keywords: 6-DOF bicopter; Differential flatness properties; Nonlinear H-infinity control; Taylor series expansion; Jacobian

matrices; Riccati equation; Global stability; Multi-loop flatness-based control
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1. Introduction

The 6-DOF bicopter is a type of aerial drone that is widely used in civilian and defence applications [1–3]. The

dynamic model of the 6-DOF bicopter is characterized by complex nonlinearities and underactuation [4–6]. Such UAVs

combine the advantages of vertically take-off and landing drones with the high speed of fixed-wing rotorcrafts. To describe

the position and the velocity of the 6-DOF bicopter an inertial and a body-fixed reference frame is defined [7–9]. These

frames are connected with rotation matrices. Typically, the state-space description of this aerial drone comprises 12

state variables out of which the first six are the cartesian coordinates of the drone and its orientation (Euler) angles for

rotation around the axis of the inertial reference frame [10–12]. The rest of the state variables of this UAV are the linear

velocities that describe the translational motion of the drone in the inertial reference frame and the angular velocities

which describe the turn speed of the drone around the axes of the inertial reference frame [13–15]. So far, several nonlinear

control methods have been proposed for the stabilization and autonomous navigation problem of the 6-DOF bicopter

[16–18]. Some of these methods consider simplified linear models of the bicopter while others attempt the inversion

of this drone’s dynamics [19–21]. Adaptive and robust control schemes have been also proposed [22–24]. Due to the

https://doi.org/10.70322/dav.2025.10010
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complexity of the nonlinear dynamic model of the 6-DOF bicopter and because of underactuation the nonlinear optimal

control problem for the 6-DOF bicopter has been little dealt with up to now. The autonomous navigation problem of

tandem rotor helicopters is also a relevant topic where control methods for bicopters can be applied [25–29].

In this article nonlinear optimal (H-infinity) control is proposed for the dynamic model of the 6-DOF bicopter [30–32].

By proving first differential flatness properties for this UAV, the nonlinear controllability of the dynamics of the 6-DOF

bicopter is confirmed [33,34]. To apply the nonlinear optimal control method, the dynamic model of the bicopter is

linearized sequentially (at each sampling instance) around a time-varying operating point that is also updated at each

sampling interval. This linearization point (x∗, u∗) is defined by the present value of the system’s state vector u∗ and

by the last sampled value of the control inputs vector u∗. The linearization is based on Taylor series expansion and

on the computation of Jacobian matrices [35–38]. For the linearized state-space description of the drone an H-infinity

feedback controller is designed. To compute the stabilizing feedback gains of the H-infinity controller an algebraic Riccati

equation is repetitively solved at each time step of the control algorithm [39,40]. The global stability properties of this

control scheme are proven through Lyapunov analysis. First, it is demonstrated that the control loop of the bicopter

satisfies the H-infinity tracking performance criterion, while under moderate conditions global asymptotic stability is also

proven. The nonlinear optimal control method achieves fast and accurate tracking of setpoints by the state variables of

the bicopter while also keeping moderate the variations of the control inputs.

Besides, the article proposes a multi-loop flatness-based control approach for the dynamic model of the 6-DOF

bicopter. The drone’s dynamic model is decomposed into two cascading subsystems. It is proven that each one of these

subsystems is differentially flat. The state vector of the second subsystem is a virtual control inputs vector for the

first subsystem. The control inputs vector of the first subsystem becomes a setpoints vector for the second subsystem.

The differential flatness properties for the chained subsystem signify also that each one of them can be controlled by

inverting its dynamics as it is commonly done for input-output linearized flat systems. The global stability properties of

the multi-loop flatness-based control method are proven through Lyapunov analysis. The method achieves stabilization

and autonomous navigation for the 6-DOF bicopter without the need for changes of state variables and complicated

state-space model transformations. Under this control scheme the stabilization of the drone’s dynamics is achieved

by simply selecting a diagonal feedback gain matrix with positive elements for each one of the above-noted chained

subsystems [39,40].

Outlining the above, the article gives two major research findings, which have direct use in drones’ technology: (i)

a nonlinear optimal control method, (ii) a multi-loop flatness-based control method. The structure of the article is as

follows: In Section 2 the dynamic model of the 6-DOF bicopter is formulated and the associated state-space description is

given. In Section 3 differential flatness properties are proven for the state-space model of the 6-DOF bicopter. In Section

4 the dynamic model of the bicopter undergoes approximate linearization through first-order Taylor series expansion and

the computation of Jacobian matrices. In Section 5 an H-infinity controller is formulated for the dynamics of the 6-DOF

bicopter. In Section 6 the global stability properties of the nonlinear optimal controller are proven through Lyapunov

analysis. In Section 7 a multi-loop flatness-based controller is proposed for the autonomous bicopter. In Section 8 global

stability is proven for the multi-loop flatness-based controller of the 6-DOF bicopter. In Section 9 simulation tests are

presented about the performance of the nonlinear optimal controller and the multi-loop flatness-based controller for the

dynamic model of the 6-DOF bicopter. Finally, In Section 10 concluding remarks are stated.

2. Dynamic Model of the 6-DOF Autonomous Bicopter

The diagram of the 6-DOF autonomous bicopter is given in Figure 1. The inertial reference frame is denoted as

OEXEYEZE . The body-fixed reference frame is denoted as OBXBYBZB . The rotation (Euler) angles around the axes

of the inertial reference frame are denoted as φ (roll angle), θ (pitch angle) and ψ (yaw angle).

The transformation matrix connecting the linear velocities of the bicopter in the inertial reference frame with the

ones in the body-fixed reference frame is given by [30]

R =

cos(ψ)sin(θ) cos(ψ)sin(θ)sin(φ)− sin(ψ)cos(φ) cos(φ)sin(θ)cos(φ) + sin(ψ)sin(φ)

sin(ψ)cos(θ) sin(ψ)sin(θ)sin(φ) + cos(ψ)cos(φ) sin(φ)sin(θ)cos(φ)− cos(ψ)sin(φ)

−sin(θ) cos(θ)sin(φ) cos(θ)cos(φ)

 (1)

The linear velocities vector of the bicopter in the inertial frame vE is connected to the velocities vector in the



Drones and Autonomous Vehicles 2025 , 2, 10010 3 of 35

body-fixed frame through the relation

vE = RvB (2)

Figure 1. Diagram of the 6-DOF autonomous bicopter.

It holds that vE = RvB , where vE = [ẋ, ẏ, ẋ]T is the linear velocities vector of the UAV in the inertial reference frame

and vB = [u, v, w]T is the linear velocities vector of the UAV expressed in the body-fixed reference frame.

About the orientation (attitude) angles of the bicopter and the associated angular velocities it holds thatφ̇θ̇
ψ̇

 =

1 sin(φ)tan(θ) cos(φ)tan(θ)

0 cos(φ) −sin(φ)

0 sin(φ)sec(θ) cos(φ)sec(θ)


pq
r

 (3)

The angular velocities vector of the bicopter in the inertial frame η̇ = [φ̇, θ̇, φ̇]T is connected to the angular velocities

vector in the body-fixed frame ω = [p, q, r]T through the relation

η̇ = W−1ω (4)

The dynamic model of the bicopter comprises the following state vector: X = [xE , ẋE , η, η̇]T , where xE = [x, y, z]T

are the cartesian coordinates of the center of gravity of the bicopter in the inertial reference frame, ẋE = [ẋ, ẏ, ż]T are

the linear velocities of the center of gravity of the bicopter in the inertial reference frame, η = [φ, θ, ψ]T are the rotation

angles of the bicopter around the axes of the inertial reference frame, and η̇ = [φ̇, θ̇, ψ̇]T are the angular velocities of the

bicopter around the axes of the inertial reference frame [4–6].

Thus, the state vector of the bicopter comprises state variables expressed exclusively in the inertial reference frame

and is given by [4]

X = [x, y, z, ẋ, ẏ, ż, φ, θ, ψ, φ̇, θ̇, ψ̇]T (5)

The rotation speed of the right rotor is defined as ωR and the tilting angle of this rotor is denoted as γR, The rotation

speed of the left rotor is defined as ωL and the tilting angle of this rotor is denoted as γL. The state equations which

describe the dynamics of the bicopter are [4]:

ẍ = − 1
m [sin(φ)sin(ψ) + cos(φ)sin(θ)cos(ψ)]KT [ω2

Rcos(γR) + ω2
Lcos(γL)]

− 1
m [cos(θ)cos(ψ)]KT [ω2

Rsin(γR) + ω2
Lsin(γL)]

(6)
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ÿ = 1
m [sin(φ)cos(ψ)− cos(φ)sin(θ)sin(ψ)]KT [ω2

Rcos(γR) + ω2
Lcos(γL)]

+ 1
m [cos(θ)sin(ψ)]KT [ω2

Rsin(γR) + ω2
Lsin(γL)]

(7)

z̈ = − 1
m [cos(φ)cos(θ)]KT [ω2

Rcos(γR) + ω2
Lcos(γL)]

− 1
m [sin(θ)]KT [ω2

Rsin(γR) + ω2
Lsin(γL)] + g

(8)

φ̈ = L
Ixx

KT [ω2
Rcos(γR)− ω2

Lcos(γL)] (9)

θ̈ = L
Iyy
KT [ω2

Rsin(γR) + ω2
Lsin(γL)] (10)

ψ̈ = L
Izz
KT [ω2

Rsin(γR)− ω2
Lsin(γL)] (11)

The control inputs vector of the bicopter is defined as u = [u1, u2, u3, u4]T where

u1 = KT [ω2
Rcos(γR) + ω2

Lcos(γL)]

u2 = KT [ω2
Rcos(γR)− ω2

Lcos(γL)]

u3 = KT [ω2
Rsin(γR) + ω2

Lsin(γL)]

u4 = KT [ω2
Rsin(γR)− ω2

Lsin(γL)]

(12)

The parameters of the dynamic model of the bicopter are outlined in the following: m is the mass of the bicopter, h

is the vertical distance between the center of gravity of the bicopter and the rotors’ plane, L is the horizontal distance

between the two rotors, KT is the thrust coefficient, Ixx is the moment of inertia for rotation around the x -axis of the

inertial reference frame, Iyy is the moment of inertia for rotation around the y-axis of the inertial reference frame, Izz is

the moment of inertia for rotation around the z-axis of the inertial reference frame, ωR is the turn speed of the right rotor,

ωL is the turn speed of the left rotor, γR is the tilting angle of the right rotor, γL is the tilting angle of the left rotor.

Using the previously given definition about the state variables of the bicopter xi, i = 1, 2, c · · · , 12 and the control

inputs of this UAV ui, i = 1, · · · , 4, the state-space description of the 6-DOF bicopter becomes:

ẋ1 = x2 (13)

ẋ2 = − 1
m [sin(x7)sin(x11) + cos(x7)sin(x9)cos(x11)]u1 − 1

m [cos(x9)cos(x11)]u3 (14)

ẋ3 = x4 (15)

ẋ4 = 1
m [sin(x7)cos(x11)− cos(x7)sin(x9)sin(x11)]u1 + 1

m [cos(x9)sin(x11)]u3 (16)

ẋ5 = x6 (17)

z̈ = − 1
m [cos(x7)cos(x9)]u1 − 1

m [sin(x9)]u3 + g (18)

ẋ7 = x8 (19)

ẋ8 = L
Ixx

u2 (20)

ẋ9 = x10 (21)

ẋ10 = L
Iyy
u3 (22)
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ẋ11 = x12 (23)

ẋ12 = L
Izz
u4 (24)

Next, the control inputs of the bicopter are redefined as follows:

v1 = − 1
m [sin(x7)sin(x11) + cos(x7)sin(x9)cos(x11)]u1

v2 = 1
m [sin(x7)cos(x11)− cos(x7)sin(x9)sin(x11)]u1

v3 = − 1
m [cos(x7)cos(x9)]u1 + g

v4 = u2

v5 = u3

v6 = u4

(25)

Through numerical operations one can confirm that the following relation holds

v21 + v22 + (v3 − g)2 = 1
m2u

2
1⇒u1 = m

√
v21 + v22 + (v3 − g)2 (26)

Thus, the state-space model of the bicopter is written in the following matrix form:



ẋ1

ẋ2

ẋ3

ẋ4

ẋ5

ẋ6

ẋ7

ẋ8

ẋ10

ẋ11

ẋ12



=



x2

0

x4

0

x6

0

x8

0

x10

0

x12

0



+



0 0 0 0 0 0

1 0 0 0 − cos(x9)cos(x11)
m 0

0 0 0 0 0 0

0 1 0 0 cos(x9)sin(x11)
m 0

0 0 0 0 0 0

0 0 1 0 − sin(x11)
m 0

0 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1





v1

v2

v3

v4

v5

v6


(27)

Concisely, the dynamic model of the bicopter can be written in the following nonlinear affine-in-the-input state-space

form:

ẋ = f(x) + g(x)v (28)

x∈R12×1,f(x)∈R12×1, g(x)∈R12×6 and v∈R6×1.

3. Differential Flatness Properties of the 6-DOF Bicopter

The dynamic model of the bicopter of Equation (27) is differentially flat with flat outputs vector Y = [x1, x3, x5, x7, x9,

x11]T or Y = [x, y, z, φ, θ, ψ]T . A system is differentially flat if the following two conditions hold: (i) all its state variables

and its control inputs can be written as differential functions of a selected subset its state vector elements which constitutes

the flat outputs vector, (ii) the flat outputs and their time-derivatives are “differentially independent” which means that

they are not connected through a relation in the form of an homogeneous differential equation.

From the odd-numbered state equations of the system one has:

x2 = ẋ1 x4 = ẋ3 x6 = ẋ5 x8 = ẋ7 x10 = ẋ9 x12 = ẋ11 (29)

Thus one can infer that the even-numbered state variables of the bicopter are differential functions of the system’s

flat outputs, or

x2 = h2(Y, Ẏ ) x4 = h4(Y, Ẏ ) x6 = h6(Y, Ẏ )

x8 = h8(Y, Ẏ ) x10 = h10(Y, Ẏ ) x12 = h12(Y, Ẏ )
(30)
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Besides, from the even-numbered state equations one has:


ẍ2

ẍ4

ẍ6

ẍ8

ẍ12

 =



1 0 0 0 − cos(x9)cos(x11)
m 0

0 1 0 0 cos(x9)sin(x11)
m 0

0 0 1 0 − sin(x11)
m 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1





v1

v2

v3

v4

v5

v6


(31)

which equivalently gives



v1

v2

v3

v4

v5

v6


=



1 0 0 0 − cos(x9)cos(x11)
m 0

0 1 0 0 cos(x9)sin(x11)
m 0

0 0 1 0 − sin(x11)
m 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1



−1 
ẍ2

ẍ4

ẍ6

ẍ8

ẍ12

 (32)

Thus, one infers that the control input variables of the bicopter are differential functions of the flat outputs vector

of the system or

v1 = hv1(Y, Ẏ ) v2 = hv2(Y, Ẏ ) v3 = hv3(Y, Ẏ )

v4 = hv4(Y, Ẏ ) v5 = hv5(Y, Ẏ ) v6 = hv6(Y, Ẏ )
(33)

The differential flatness property is an implicit proof of the bicopter’s controllability. It also signifies that the

bicopter’s dynamics can be transformed to the input-output linearized form through successive differentiations of its flat

outputs. Moreover, it allows for solving the setpoints defition problem. First, one defines setpoints in an unconstraint

manner for those state variables which coincide with the flat outputs of the system. These are the odd-numbered state

variables xi, i = 1, 3, 5, 7, 9, 11. For the rest of the state variables, that is for the even-numbered state vector elements,

setpoints are chosen using the differential relations which connect them with the flat outputs.

4. Approximate Linearization of the Bicopter Dynamics

The dynamic model of the bicopter, being in the nonlinear state-space form ẋ = f(x, u), undergoes approximate

linearization through first-order Taylor series expansion and through the computation of the associated Jacobian matrices.

The linearization takes place at each sampling instance around the temporary operating point (x∗, v∗), where x∗ is the

present value of the system’s state vector and v∗ is the last sampled value of the control inputs vector. The modelling error

which is due to the truncation of higher-order terms from the Taylor series expansion is considered to be a perturbation

which is asymptotically compensated by the robustness of the control algorithm.

Thus, the system is brought to the equivalent linearized form

ẋ = Ax+Bv + d̃ (34)

where A, B are the Jacobian matrices of the bicopter which are given by

A = ∇x[f(x) + g(x)v] |(x∗,v∗) ⇒A = ∇xf(x) |(x∗,v∗) +∇xg5(x)v5 |(x∗,v∗) (35)

B = ∇u[f(x) + g(x)v] |(x∗,v∗) ⇒B = g(x) |(x∗,v∗) (36)

The control inputs gain matrix is g(x) = [g1, g2, g3, g4, g5, g6]T and the Jacobian matrices of vectors gi(x), i =

1, 2, 3, 4, 6 are equal to the zero matrix 012×12. It is only Jacobian matrix ∇xg5(x) that has non-zero elements. The

cumulative disturbance term d̃ may comprise: (i) the modelling error due to the truncation of higher-order terms from

the Taylor series, (ii) model uncertainty and external perturbations, (iii) sensor measurement noise of any distribution.

The Jacobian matrices ∇xf(x) |(x∗,v∗) and ∇xg5(x) |(x∗,v∗) are computed as follows:
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∇xf(x) |(x∗,v∗)=



0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0



(37)

∇xg5(x) |(x∗,v∗)=



0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 sin(x9)cos(x11)
m 0 cos(x9)sin(x11)

m 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 sin(x9)sin(x11)
m 0 − cos(x9)cos(x11)

m 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 − cos(x9)
m 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0



(38)

5. Design of an H-Infinity Nonlinear Feedback Controller

5.1. Equivalent Linearized Kinematic-Dynamic Model of the Bicopter

After linearization around its current operating point, the dynamic model of the 6-DOF bicopter is written as

ẋ = Ax+Bu+ d1 (39)

Parameter d1 stands for the linearization error in the bicopter’s model that was given previously in Equation (39).

The reference setpoints for the state vector of the aforementioned dynamic model are denoted by xd = [xd1, · · · , xd12].

Tracking of this trajectory is achieved after applying the control input u∗. At every time instant the control input u∗ is

assumed to differ from the control input u appearing in Equation (39) by an amount equal to ∆u, that is u∗ = u+ ∆u

ẋd = Axd +Bu∗ + d2 (40)

The dynamics of the controlled system described in Equation (39) can be also written as

ẋ = Ax+Bu+Bu∗ −Bu∗ + d1 (41)

and by denoting d3 = −Bu∗ + d1 as an aggregate disturbance term one obtains

ẋ = Ax+Bu+Bu∗ + d3 (42)

By subtracting Equation (40) from Equation (42) one has

ẋ− ẋd = A(x− xd) +Bu+ d3 − d2 (43)

By denoting the tracking error as e = x− xd and the aggregate disturbance term as Ld̃ = d3− d2, the tracking error

dynamics becomes
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ė = Ae+Bu+ Ld̃ (44)

where L is a disturbance inputs gain matrix. The above linearized form of the bicopter’s model can be efficiently con-

trolled after applying an H-infinity feedback control scheme.

5.2. The Nonlinear H-Infinity Control

The initial nonlinear model of the bicopter is in the form

ẋ = f(x, u) x∈Rn, u∈Rm (45)

Linearization of the model of the bicopter is performed at each iteration of the control algorithm around its present

operating point (x∗, u∗) = (x(t), u(t− Ts)). The linearized equivalent of the system is described by

ẋ = Ax+Bu+ Ld̃ x∈Rn, u∈Rm, d̃∈Rq (46)

where matrices A and B are obtained from the computation of the previously defined Jacobians and vector d̃ denotes

disturbance terms due to linearization errors, while L is a disturbance inputs gain matrix. The problem of disturbance

rejection for the linearized model that is described by

ẋ = Ax+Bu+ Ld̃

y = Cx
(47)

where x∈Rn, u∈Rm, d̃∈Rq and y∈Rp, cannot be handled efficiently if the classical LQR control scheme is applied.

This is because of the existence of the perturbation term d̃. The disturbance term d̃ apart from modeling (parametric)

uncertainty and external perturbations can also represent noise terms of any distribution.

In the H∞ control approach, a feedback control scheme is designed for trajectory tracking by the system’s state

vector and simultaneous disturbance rejection, considering that the disturbance affects the system in the worst possible

manner. The disturbances’ effects are incorporated in the following quadratic cost function:

J(t) = 1
2

∫ T
0

[yT (t)y(t) + ruT (t)u(t)− ρ2d̃T (t)d̃(t)]dt, r, ρ > 0 (48)

The significance of the negative sign in the cost function’s term that is associated with the perturbation variable d̃(t)

is that the disturbance tries to maximize the cost function J(t) while the control signal u(t) tries to minimize it. The

physical meaning of the relation given above is that the control signal and the disturbances compete to each other within

a min-max differential game. This problem of min-max optimization can be written as minumaxd̃J(u, d̃).

The objective of the optimization procedure is to compute a control signal u(t) which can compensate for the worst

possible disturbance, that is externally imposed to the bicopter. The solution to the min-max optimization problem is

directly related to the value of parameter ρ, while there is an upper bound in the disturbances magnitude that can be

annihilated by the control signal.

5.3. Computation of the Feedback Control Gains

For the linearized system given by Equation (47) the cost function of Equation (48) is defined, where coefficient

r determines the penalization of the control input and weight coefficient ρ determines the reward of the disturbances’

effects. It is assumed that (i) The energy that is transferred from the disturbances signal d̃(t) is bounded, that is∫∞
0
d̃T (t)d̃(t)dt < ∞, (ii) matrices [A,B] and [A,L] are stabilizable, (iii) matrix [A,C] is detectable. In the case of a

tracking problem the optimal feedback control law is given by

u(t) = −Ke(t) (49)

with e = x− xd to be the tracking error, and K = 1
rB

TP where P is a positive definite symmetric matrix. As it will be

proven in Section 6, matrix P is obtained from the solution of the Riccati equation

ATP + PA+Q− P ( 2
rBB

T − 1
ρ2LL

T )P = 0 (50)

where Q is a positive semi-definite symmetric matrix. The worst case disturbance is given by
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d̃(t) = 1
ρ2L

TPe(t) (51)

The solution of the H-infinity feedback control problem for the dynamic model of the bicopter and the computation

of the worst case disturbance that the related controller can sustain, comes from superposition of Bellman’s optimality

principle when considering that the bicopter is affected by two separate inputs (i) the control input u (ii) the cumulative

disturbance input d̃(t). Solving the optimal control problem for u, that is for the minimum variation (optimal) control

input that achieves elimination of the state vector’s tracking error, gives u = − 1
rB

TPe. Equivalently, solving the optimal

control problem for d̃, that is for the worst case disturbance that the control loop can sustain gives d̃ = 1
ρ2L

TPe.

The diagram of the considered control loop for the 6-DOF bicopter is depicted in Figure 2.

Figure 2. Nonlinear optimal (H-infinity) control scheme and implementation stages for the bicopter.

6. Lyapunov Stability Analysis

Through Lyapunov stability analysis it will be shown that the proposed nonlinear control scheme assures H∞ tracking

performance for the 6-DOF bicopter, and that in case of bounded disturbance terms asymptotic convergence to the

reference setpoints is achieved. The tracking error dynamics for the bicopter is written in the form of Equation (44)

ė = Ae+ Bu+ Ld̃ where in the bicopter’s case L = ∈R12×12 is the disturbance inputs gain matrix. Variable d̃ denotes

model uncertainties and external disturbances of the bicopter’s dynamic model. The following Lyapunov function is

considered

V = 1
2e
TPe (52)

where e = x− xd is the tracking error. By differentiating with respect to time one obtains

V̇ = 1
2 ė
TPe+ 1

2e
TP ė⇒

V̇ = 1
2 [Ae+Bu+ Ld̃]TPe+ 1

2e
TP [Ae+Bu+ Ld̃]⇒

(53)

V̇ = 1
2 [eTAT + uTBT + d̃TLT ]Pe+
1
2e
TP [Ae+Bu+ Ld̃]⇒

(54)

V̇ = 1
2e
TATPe+ 1

2u
TBTPe+ 1

2 d̃
TLTPe+

1
2e
TPAe+ 1

2e
TPBu+ 1

2e
TPLd̃

(55)

The previous equation is rewritten as

V̇ = 1
2e
T (ATP + PA)e+ ( 1

2u
TBTPe+ 1

2e
TPBu)+

( 1
2 d̃
TLTPe+ 1

2e
TPLd̃)

(56)
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Assumption 1. For given positive definite matrix Q and coefficients r and ρ there exists a positive definite matrix P ,

which is the solution of the following matrix equation

ATP + PA = −Q+ P ( 2
rBB

T − 1
ρ2LL

T )P (57)

Moreover, the following feedback control law is applied to the system

u = − 1
rB

TPe (58)

By substituting Equation (57) and Equation (58) one obtains

V̇ = 1
2e
T [−Q+ P ( 2

rBB
T − 1

ρ2LL
T )P ]e+

eTPB(− 1
rB

TPe) + eTPLd̃⇒
(59)

V̇ = − 1
2e
TQe+ 1

r e
TPBBTPe− 1

2ρ2 e
TPLLTPe

− 1
r e
TPBBTPe+ eTPLd̃

(60)

which after intermediate operations gives

V̇ = − 1
2e
TQe− 1

2ρ2 e
TPLLTPe+ eTPLd̃ (61)

or, equivalently

V̇ = − 1
2e
TQe− 1

2ρ2 e
TPLLTPe

+ 1
2e
TPLd̃+ 1

2 d̃
TLTPe

(62)

Lemma 1. The following inequality holds

1
2e
TLd̃+ 1

2 d̃L
TPe− 1

2ρ2 e
TPLLTPe≤ 1

2ρ
2d̃T d̃ (63)

Proof. The binomial (ρα− 1
ρb)

2 is considered. Expanding the left part of the above inequality one gets

ρ2a2 + 1
ρ2 b

2 − 2ab ≥ 0⇒ 1
2ρ

2a2 + 1
2ρ2 b

2 − ab ≥ 0⇒
ab− 1

2ρ2 b
2 ≤ 1

2ρ
2a2 ⇒ 1

2ab+ 1
2ab−

1
2ρ2 b

2 ≤ 1
2ρ

2a2
(64)

The following substitutions are carried out: a = d̃ and b = eTPL and the previous relation becomes

1
2 d̃
TLTPe+ 1

2e
TPLd̃− 1

2ρ2 e
TPLLTPe≤ 1

2ρ
2d̃T d̃ (65)

Equation (65) is substituted in Equation (62) and the inequality is enforced, thus giving

V̇≤− 1
2e
TQe+ 1

2ρ
2d̃T d̃ (66)

Equation (66) shows that the H∞ tracking performance criterion is satisfied. The integration of V̇ from 0 to T gives∫ T
0
V̇ (t)dt≤− 1

2

∫ T
0
||e||2Qdt+ 1

2ρ
2
∫ T
0
||d̃||2dt⇒

2V (T ) +
∫ T
0
||e||2Qdt≤2V (0) + ρ2

∫ T
0
||d̃||2dt

(67)

Moreover, if there exists a positive constant Md > 0 such that

∫∞
0
||d̃||2dt ≤Md (68)

then one gets ∫∞
0
||e||2Qdt ≤ 2V (0) + ρ2Md (69)

Thus, the integral
∫∞
0
||e||2Qdt is bounded. Moreover, V (T ) is bounded and from the definition of the Lyapunov

function V in Equation (52) it becomes clear that e(t) will be also bounded since e(t) ∈ Ωe = {e|eTPe≤2V (0)+ρ2Md}.
According to the above and with the use of Barbalat’s Lemma one obtains limt→∞ e(t) = 0. �

Through the stages of the stability proof one arrives at Equation (66) which shows that the H-infinity tracking

performance criterion holds. By selecting the attenuation coefficient ρ to be sufficiently small and in particular to satisfy
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ρ2 < ||e||2Q/||d̃||2 one has that the first derivative of the Lyapunov function is upper bounded by 0. This condition holds

at each sampling instance and consequently global stability for the control loop of the bicopter can be concluded.

7. Multi-Loop Flatness-Based Control for the Autonomous Bicopter

Multi-loop flatness-based control is also proposed as an alternative method for the stabilization and autonomous

navigation problem of the 6-DOF bicopter. The state variables of the 6-DOF bicopter are redefined as follows:

z1 = x z2 = y z3 = z z4 = φ z5 = θ z6 = ψ

z7 = ẋ z8 = ẏ z9 = ż z10 = φ̇ z11 = θ̇ z12 = ψ̇
(70)

Using the redefinition of the state viarable of the 6-DOF bicopter, the state equations of the system comes to the

following form:

ż1 = z7 ż2 = z8 ż3 = z9 ż4 = z10 ż5 = z11 ż6 = z12 (71)

ż7 = − 1
m [sin(z4)sin(z6) + cos(z4)sin(z5)cos(z6)]u1 − 1

m [cos(z5)cos(z6)]u3 (72)

ż8 = − 1
m [sin(z4)cos(z6) + cos(z4)sin(z5)sin(z6)]u1 + 1

m [cos(z5)sin(z6)]u3 (73)

ż9 = − 1
m [cos(z4)cos(z5)]u1 − 1

m [sin(z5)]u3 + g (74)

ż10 = 1
Ixx

u1 ż11 = 1
Iyy
u2 ż12 = 1

Izz
u3 (75)

Next, the new control inputs v1 to v6 are defined:

v1 = − 1
m [sin(z4)sin(z6) + cos(z4)sin(z5)cos(z6)]u1

v2 = − 1
m [sin(z4)cos(z6) + cos(z4)sin(z5)sin(z6)]u1

v3 = − 1
m [cos(z4)cos(z5)]u1 + g

v4 = u2

v5 = u3

v6 = u4

(76)

Once again, through numerical operations one can confirm that the following relation holds

v21 + v22 + (v3 − g)2 = 1
m2u

2
1⇒u1 = m

√
v21 + v22 + (v3 − g)2 (77)

This results into the following state-space description in matrix form:

ż1

ż2

ż3

ż4

ż5

ż6

ż7

ż8

ż9

ż10

ż11

ż12



=



z7

z8

z9

z10

z11

z12

0

0

0

0

0

0



+



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1 0 0 0 − cos(z5)cos(z6)m 0

0 1 0 0 cos(z5)sin(z6)
m 0

0 0 1 0 − sin(z6)m 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1





v1

v2

v3

v4

v5

v6


(78)

Next, the state-space model of Equation (78) is written in the form of two cascading subsystems. To this end the

following subvectors and submatrices are defined:

Subsysten Σ1 with state vector z1,6 = [z1, z2, z3, z4, z5, z6]T , drift vector f1,6(z1,6) = 06×1, control inputs gain matrix

g1,6(z1,6) = I6×6 and virtual control inputs vector v1 = z7,12 = [z7, z8, z9, z10, z11, z12]T .
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Subsystem Σ2 with state vector z7,12 = [z7, z8, z9, z10, z11, z12]T , drift vector f7,12 = 06×1, real control inputs vector

v = [v1, v2, v3, v4, v5, v6]T and control inputs gain matrix

g7,12 =



1 0 0 0 − cos(z5)cos(z6)m 0

0 1 0 0 cos(z5)sin(z6)
m 0

0 0 1 0 − sin(z6)m 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


(79)

Thus, the bicopter’s dynamics is written in the form of the chained subsystem: Σ1 and Σ2:

ż1,6 = f1,6(z1,6) + g1,6(z1,6)z7,12 (80)

ż7,12 = f7,12(z1,6, z7,12) + g7,12(z1,6, z7,12)v (81)

The integrated system of Equations (80) and (81) is differentially flat with flat outputs vector z1,6.

Indeed from Equation (80) one has that z7,12 = ż1,6 which means that z7,12 is a differential function of the flat

outputs vector z1,6.

From Equation (81) one solves for the control inputs v. This gives

v = g7,12(z1,6, z7,12)−1[ż7,12 − f7,12(z1,6, z7,12)] (82)

which signifies that control input v is a differential function of the flat output z1,6. Therefore, the integrated system of

Equations (80) and (81) is differentially flat.

Differential flatness can be also proven for each one of the subsystems of Equations (80) and (81) is these are examined

independently. For the subsystem of Equation (80) the flat output is taken to be y1 = z1,6 and the virtual control inputs

vector is defined to be v1 = z7,12. Thus, solving Equation (80) for v1 gives

v1 = g1,6(z1,6)−1[ż1,6 − f1,6(z1,6)] (83)

which signifies that v1 is a differential function of the flat outputs vector z1,6. Consequently, the subsystem of Equation (80)

is differentially flat.

For the subsystem of Equation (81) the flat output is taken to be y2 = z7,12, while z1,6 is considered to be a coefficients

vector and the real control inputs vector is v. Thus, solving Equation (81) for v gives

v = g7,12(z1,6, z7,12)−1[ż7,12 − f7,12(z1,6, z7,12)] (84)

which signifies that v is a differential function of the flat outputs vector z7,12. Consequently, the subsystem of Equation (81)

is also differentially flat.

The proof of differential flatness properties for the subsystems of Equations (80) and (81) means that: (i) these

subsystems can be written in the input-output linearized form and (ii) a stabilizing feedback controller can be designed

for each one of them by inverting their dynamics, as it is commonly done for input-output linearized flat systems.

8. Design of a Multi-Loop Flatness-Based Controller for the 6-DOF Bicopter

The bicopter’s dynamic model has been written in the form of the chained subsystems of Equations (80) and (81).

For the subsystem of Equation (80) the stabilizing feedback control is taken to be

v1 = g1,6(z1,6)−1[żd1,6 − f1,6(z1,6)−K1(z1,6 − zd1,6)] (85)

where zd1,6 is the setpoint for state vector z1,6 and K1∈R6×6 is a diagonal matrix with positive diagonal elements kii,1 > 0

for i = 1, · · · , 6.

For the subsystem of Equation (81) the stabilizing feedback control is taken to be

v = g7,12(z1,6, z7,12)−1[żd7,12 − f7,12(z1,6, z7,12)−K2(z7,12 − zd7,12)] (86)

where zd7,12 is the setpoint for state vector z7,12 and K2∈R6×6 is a diagonal matrix with positive diagonal elements

kii,2 > 0 for i = 1, · · · , 6.
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By substituting the feedback control input of Equation (85) into subsystem Σ1 of Equation (80) and by defining the

tracking error vector e1,6 = z1,6 − zd1,6 one gets asymptotically

ż1,6 = f1,6(z1,6) + g1,6(z1,6)g1,6(z1,6)−1[żd1,6 − f1,6(z1,6)−K1(z1,6 − zd1,6)]⇒
(ż1,6 − ż21,6) +K1(z1,6 − zd1,6) = 0⇒ė1,6 +K1e1,6 = 0

(87)

By substituting the feedback control input of Equation (86) into subsystem Σ1 of Equation (81) and by defining the

tracking error vector e7,12 = z7,12 − zd7,12 one gets asymptotically

ż7,12 = f7,12(z1,6, z7,12) + g7,12(z1,6, z7,12)g7,12(z1,6, z7,12)−1·
·[żd7,12 − f7,12(z1,6, z7,12)−K2(z7,12 − zd7,12)]⇒

(ż7,12 − ż27,12) +K2(z7,12 − zd7,12) = 0⇒ė7,12 +K2e7,12 = 0

(88)

Consequently, the closed-loop system dynamics of the bicopter becomes asymptotically:

ė1,6 +K1e1,6 = 0⇒limt→∞e1,6(t) = 0⇒limt→∞z1,6(t) = zd1,6(t)

ė7,12 +K2e7,12 = 0⇒limt→∞e7,12(t) = 0⇒limt→∞z7,12(t) = zd7,12(t)
(89)

which comes to confirm that the bicopter state vector’s tracking error converges asymptotically to zero, and the system

is globally asympotitcally stable.

Global asymptotic stability for the bicopter’s control loop can be also proven through Lyapunov stability analysis.

To this end, the following Lyapunov function is defined:

V = 1
2 [eT1,6e1,6 + eT7,12e7,12] (90)

By differentiating in time one gets:

V̇ = 1
2 [2eT1,6ė1,6 + 2eT7,12ė7,12] (91)

Next, using the tracking error dynamics which was shown in Equation (89) one gets

V̇ = [eT1,6(−K1e1,6) + eT7,12(−K2e7,12)] (92)

or equivalently

V̇ = −[eT1,6K1e1,6 + eT7,12K2e7,12] (93)

with K1 > 0 and K2 > 0. Thus, one obtains

V̇ < 0 ∀ e1,6 6=0 and ∀ e7,12 6=0

V̇ = 0 iff e1,6 = 0 and e7,12 = 0
(94)

Consequently, the Lyapunov function of the bicopter’s control loop is strictly diminishing until it converges to 0 and

thus the system is globally asymptotically stable.

9. Simulation Tests

9.1. Results from Nonlinear Optimal Control

To confirm the fine performance of the proposed nonlinear optimal control method for the 6-DOF bicopter simulation

experiments have been also performed. To apply this control scheme, the algebraic Riccati equation of Equation (57) had

to be repetitively solved at each time-step of the control algorithm. The obtained results are depicted in Figures 3–18.

State estimation is performed with the H-infinity Kalman Filter using as measurable outputs the odd numbered state

variables xi, i = 1, 3, 5, 7, 9, 11. Indicative parametrization for the dynamic model of the bicopter can be found in [4]

The values for the parameters of the dynamic model of the bicopter which have been used in the simulation experiments

have been: m = 2 kg, Kt = 1.0, L = 1.0 m, Ixx = 1.0 kg·m2, Iyy = 0.2 kg·m2, Izz = 0.2 kg·m2 and g = 9.81 m/s
2
. The

real values of the state vector elements of the 6-DOF bicopter are printed in blue, the associated setpoints are marked

in red while state estimates which have been provided by the H-infinity Kalman Filter are plotted in green. It can be

noticed that the nonlinear optimal control method achieves fast and accurate tracking of setpoints by the state variables
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of the 6-DOF bicopter while keeping also moderate the variations of the control inputs. The transient performance of

the control method is determined by the values of the coefficients r, ρ and Q of the above-noted Riccati equation. For

relatively small values of gain r the tracking error of the state variables is eliminated, while for relatively large values of

the diagonal elements of matrix Q fast convergence of the state variables to setpoints is enabled. Moreover, the smallest

value of the attenuation coefficient ρ for which one obtains a valid solution from the method’s Riccati equation (in the

form of a positive definite and symmetric matrix P ) is the one that gives to the control loop its maximum robustness.

Compared to other nonlinear control schemes that one could have considered for treating the control problem of the

6-DOF bicopter it can be stated that the article’s nonlinear optimal control scheme exhibits specific advantages. Unlike

global linearization-based control methods (Lie algebra-based control and flatness-based control with transformation into

canonical forms) the new nonlinear optimal control method avoids changes of state variables and complicated state-

space model transformations. Besides, it does not need inverse transformations for computing the control inputs that

should be applied to the initial nonlinear state-space model of the system and in this manner singularity issues are

also avoided. Unlike Nonlinear Model Predictive Control, the proposed nonlinear optimal control method is of proven

global stability and the convergence of its iterative search for the optimum does not depend on initial conditions and

on ad-hoc parametrization of the controller. Unlike sliding-mode control and backstepping control, in the new nonlinear

optimal control method there is no need the controlled system to be found or to be transformed into a specific state-

space form. For instance, in sliding-mode control the selection of sliding surfaces becomes an intuitive procedure if the

system is not previously transformed into the input-output linearized form. Furthermore, the application of backstepping

control is hindered if the controlled system is not found in the backstepping integral (strict feedback) form. Compared

to PID control approaches the new nonlinear optimal control method is of proven global stability, performs well at

changes of operating points and does not use empirical knowledge and ad-hoc procedures for selecting the feedback

gains of the controller. Finally, compared to multi-model feedback control the new nonlinear optimal control method

is computationally more efficient because it does not need to linearize around multiple operating points and because it

does not have to solve multiple Riccati equations or LMIs so as to compute the feedback control signals.
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Figure 3. Tracking of setpoint 1 by the 6-DOF bicopter with the use of nonlinear optimal control: (a) convergence of state

variables x1 to x6 (blue lines) to the associated setpoints (red lines) and estimated values provided by Kalman Filtering (green

lines) (b) convergence of state variables x7 to x12 (blue lines) to the associated setpoints (red lines) and estimated values provided

by Kalman Filtering (green lines).
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Figure 4. Tracking of setpoint 1 by the 6-DOF bicopter with the use of nonlinear optimal control: (a) variations of the control

inputs u1 and u4 (blue lines) (b) convergence of the path of the bicopter’s center of gravity (blue line) to its reference trajectory

in the XYZ cartesian space (red line).
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Figure 5. Tracking of setpoint 2 by the 6-DOF bicopter with the use of nonlinear optimal control: (a) convergence of state

variables x1 to x6 (blue lines) to the associated setpoints (red lines) and estimated values provided by Kalman Filtering (green

lines) (b) convergence of state variables x7 to x12 (blue lines) to the associated setpoints (red lines) and estimated values provided

by Kalman Filtering (green lines).
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Figure 6. Tracking of setpoint 2 by the 6-DOF bicopter with the use of nonlinear optimal control: (a) variations of the control

inputs u1 and u4 (blue lines) (b) convergence of the path of the bicopter’s center of gravity (blue line) to its reference trajectory

in the XYZ cartesian space (red line).
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Figure 7. Tracking of setpoint 3 by the 6-DOF bicopter with the use of nonlinear optimal control: (a) convergence of state

variables x1 to x6 (blue lines) to the associated setpoints (red lines) and estimated values provided by Kalman Filtering (green

lines) (b) convergence of state variables x7 to x12 (blue lines) to the associated setpoints (red lines) and estimated values provided

by Kalman Filtering (green lines).
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Figure 8. Tracking of setpoint 3 by the 6-DOF bicopter with the use of nonlinear optimal control: (a) variations of the control

inputs u1 and u4 (blue lines) (b) convergence of the path of the bicopter’s center of gravity (blue line) to its reference trajectory

in the XYZ cartesian space (red line).
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Figure 9. Tracking of setpoint 4 by the 6-DOF bicopter with the use of nonlinear optimal control: (a) convergence of state

variables x1 to x6 (blue lines) to the associated setpoints (red lines) and estimated values provided by Kalman Filtering (green

lines) (b) convergence of state variables x7 to x12 (blue lines) to the associated setpoints (red lines) and estimated values provided

by Kalman Filtering (green lines).
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Figure 10. Tracking of setpoint 4 by the 6-DOF bicopter with the use of nonlinear optimal control: (a) variations of the control

inputs u1 and u4 (blue lines) (b) convergence of the path of the bicopter’s center of gravity (blue line) to its reference trajectory

in the XYZ cartesian space (red line).
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Figure 11. Tracking of setpoint 5 by the 6-DOF bicopter with the use of nonlinear optimal control: (a) convergence of state

variables x1 to x6 (blue lines) to the associated setpoints (red lines) and estimated values provided by Kalman Filtering (green

lines) (b) convergence of state variables x7 to x12 (blue lines) to the associated setpoints (red lines) and estimated values provided

by Kalman Filtering (green lines).
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Figure 12. Tracking of setpoint 5 by the 6-DOF bicopter with the use of nonlinear optimal control: (a) variations of the control

inputs u1 and u4 (blue lines) (b) convergence of the path of the bicopter’s center of gravity (blue line) to its reference trajectory

in the XYZ cartesian space (red line).
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Figure 13. Tracking of setpoint 6 by the 6-DOF bicopter with the use of nonlinear optimal control: (a) convergence of state

variables x1 to x6 (blue lines) to the associated setpoints (red lines) and estimated values provided by Kalman Filtering (green

lines) (b) convergence of state variables x7 to x12 (blue lines) to the associated setpoints (red lines) and estimated values provided

by Kalman Filtering (green lines).
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Figure 14. Tracking of setpoint 6 by the 6-DOF bicopter with the use of nonlinear optimal control: (a) variations of the control

inputs u1 and u4 (blue lines) (b) convergence of the path of the bicopter’s center of gravity (blue line) to its reference trajectory

in the XYZ cartesian space (red line).
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Figure 15. Tracking of setpoint 7 by the 6-DOF bicopter with the use of nonlinear optimal control: (a) convergence of state

variables x1 to x6 (blue lines) to the associated setpoints (red lines) and estimated values provided by Kalman Filtering (green

lines) (b) convergence of state variables x7 to x12 (blue lines) to the associated setpoints (red lines) and estimated values provided

by Kalman Filtering (green lines).
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Figure 16. Tracking of setpoint 7 by the 6-DOF bicopter with the use of nonlinear optimal control: (a) variations of the control

inputs u1 and u4 (blue lines) (b) convergence of the path of the bicopter’s center of gravity (blue line) to its reference trajectory

in the XYZ cartesian space (red line).
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Figure 17. Tracking of setpoint 8 by the 6-DOF bicopter with the use of nonlinear optimal control: (a) convergence of state

variables x1 to x6 (blue lines) to the associated setpoints (red lines) and estimated values provided by Kalman Filtering (green

lines) (b) convergence of state variables x7 to x12 (blue lines) to the associated setpoints (red lines) and estimated values provided

by Kalman Filtering (green lines).
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Figure 18. Tracking of setpoint 8 by the 6-DOF bicopter with the use of nonlinear optimal control: (a) variations of the control

inputs u1 and u4 (blue lines) (b) convergence of the path of the bicopter’s center of gravity (blue line) to its reference trajectory

in the XYZ cartesian space (red line).

To elaborate on the tracking performance and on the robustness of the proposed nonlinear optimal control method

for 6-DOF bicopter the following Tables are given: (i) Table 1 which provides information about the accuracy of tracking

of the reference setpoints by the state variables of the 6-DOF bicopter’s state-space model, (ii)Table 2 which provides

information about the robustness of the control method to parametric changes in the model of the 6-DOF bicopter, for

instance change in mass m, (iii) Table 3 which provides the convergence times of the 6-DOF bicopter’s state variables to

the associated setpoints.

Table 1. Nonlinear optimal control. Tracking RMSE for the 6-DOF bicopter in the disturbance-free case.

RMSEx1 RMSEx2 RMSEx3 RMSEx7 RMSEx8 RMSEx9

setpoint1 0.0008 0.0001 0.0002 0.0001 0.0001 0.0001

setpoint2 0.0002 0.0001 0.0005 0.0001 0.0001 0.0001

setpoint3 0.0009 0.0003 0.0007 0.0001 0.0001 0.0001

setpoint4 0.0008 0.0002 0.0006 0.0001 0.0001 0.0001

setpoint5 0.0006 0.0002 0.0002 0.0001 0.0001 0.0001

setpoint6 0.0006 0.0002 0.0002 0.0001 0.0001 0.0001

setpoint7 0.0002 0.0001 0.0003 0.0001 0.0001 0.0001

setpoint8 0.0002 0.0001 0.0002 0.0001 0.0001 0.0001
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Table 2. Nonlinear optimal control.Tracking RMSE for the 6-DOF bicopter in the case of disturbances.

∆a% RMSEx1 RMSEx2 RMSEx3 RMSEx7 RMSEx8 RMSEx9

0% 0.0002 0.0001 0.0005 0.0001 0.0001 0.0001

10% 0.0003 0.0001 0.0005 0.0001 0.0001 0.0001

20% 0.0004 0.0001 0.0005 0.0001 0.0001 0.0001

30% 0.0005 0.0001 0.0006 0.0001 0.0001 0.0001

40% 0.0005 0.0001 0.0006 0.0001 0.0001 0.0001

50% 0.0006 0.0001 0.0006 0.0001 0.0001 0.0001

60% 0.0006 0.0001 0.0007 0.0001 0.0001 0.0001

Table 3. Nonlinear optimal control.Convergence time (s) for the 6-DOF bicopter.

Ts x1 Ts x2 Ts x3 Ts x7 Ts x8 Ts x9

setpoint1 3.0 3.0 2.5 3.0 3.0 1.0

setpoint2 2.5 3.0 3.0 2.5 3.0 2.5

setpoint3 0.5 0.5 2.0 2.5 3.0 2.5

setpoint4 2.5 3.5 0.5 2.5 3.0 2.5

setpoint5 0.5 0.5 3.5 2.5 2.5 3.5

setpoint6 2.5 3.5 3.5 2.5 3.0 3.0

setpoint7 3.5 3.5 2.5 2.5 3.0 2.5

setpoint8 3.5 3.0 2.5 2.5 3.0 2.5

9.2. Results from Multi-Loop Flatness-Based Control

The fine performance of the multi-loop flatness-based control method has been further confirmed through simulation

experiments. Under this control scheme the stabilization and autonomous navigation of the bicopter becomes a simple

procedure. It suffices to assign positive values to the diagonal elments of the two diagonal feedback gain matrices K1 and

K2 of the two chained subsystems in which the state-space model of the bicopter is decomposed. The obtained results are

depicted in Figures 19–34 The multi-loop flatness-based control method allows for treating also the setpoints definition

problem for the bicopter. Setpoints are chosen in an unconstrained manner for the state vector of the first subsystem.

Next, the virtual control inputs vector of the first subsystem becomes setpoints vector for the second subsystem. The

speed of convergence of the state variables of the two subsystems to their setpoints depends on the values of the diagonal

elements of gain matrices K1 and K2. An advantage of the multi-loop flatness-based control method is that it avoids

changes of state variables and complicated state-space model transformations.

The feedback control scheme, which is followed for the cascading subsystems that constitute the dynamic model of

the 6-DOF bicopter and which is based on inversion of the subsystems’ dynamics of this aerial drone, is equally robust

to sliding-mode control in which the switching control term has been substituted by a saturation function. One can

easily confirm this for the first-order i-th subsystem of the form żi = fi(zi) + gi(zi)vi by defining the sliding surface

si = ei = z1 − zdi and the associated sliding mode controller vi = ĝi(zi)
−1[żdi − f̂i(zi) − Kisgn(zi − zdi )] which after

substituting the sgn(si) function with the saturation sat(si) function becomes vi = ĝi(zi)
−1[żdi − f̂i(zi) −Ki(zi − zdi )].

The latter relation coincides with the flatness-based control in successive loops for the i-th subsystem under uncertainty

(with use of the estimated functions f̂i(zi) and ĝi(zi)) which is computed by the article’s control method. Therefore, the

proposed flatness-based control method in successive loops provides sufficient robustness margins which enable the reliable

and safe functioning of the 6-DOF bicopter under reasonable levels of model uncertainty or external perturbations.
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Figure 19. Tracking of setpoint 1 by the 6-DOF bicopter with the use of multi-loop flatness-based control: (a) convergence of

state variables x1 to x6 (blue lines) to the associated setpoints (red lines) and estimated values provided by Kalman Filtering

(b) convergence of state variables x7 to x12 (blue lines) to the associated setpoints (red lines) and estimated values provided by

Kalman Filtering.
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Figure 20. Tracking of setpoint 1 by the 6-DOF bicopter with the use of multi-loop flatness-based control: (a) variations of the

control inputs u1 and u4 (blue lines) (b) convergence of the path of the bicopter’s center of gravity (blue line) to its reference

trajectory in the XYZ cartesian space (red line).
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Figure 21. Tracking of setpoint 2 by the 6-DOF bicopter with the use of multi-loop flatness-based control: (a) convergence of

state variables x1 to x6 (blue lines) to the associated setpoints (red lines) and estimated values provided by Kalman Filtering

(b) convergence of state variables x7 to x12 (blue lines) to the associated setpoints (red lines) and estimated values provided by

Kalman Filtering.
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Figure 22. Tracking of setpoint 2 by the 6-DOF bicopter with the use of multi-loop flatness-based control: (a) variations of the

control inputs u1 and u4 (blue lines) (b) convergence of the path of the bicopter’s center of gravity (blue line) to its reference

trajectory in the XYZ cartesian space (red line).
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Figure 23. Tracking of setpoint 3 by the 6-DOF bicopter with the use of multi-loop flatness-based control: (a) convergence of

state variables x1 to x6 (blue lines) to the associated setpoints (red lines) and estimated values provided by Kalman Filtering

(b) convergence of state variables x7 to x12 (blue lines) to the associated setpoints (red lines) and estimated values provided by

Kalman Filtering.
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Figure 24. Tracking of setpoint 3 by the 6-DOF bicopter with the use of multi-loop flatness-based control: (a) variations of the

control inputs u1 and u4 (blue lines) (b) convergence of the path of the bicopter’s center of gravity (blue line) to its reference

trajectory in the XYZ cartesian space (red line).
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Figure 25. Tracking of setpoint 4 by the 6-DOF bicopter with the use of multi-loop flatness-based control: (a) convergence of

state variables x1 to x6 (blue lines) to the associated setpoints (red lines) and estimated values provided by Kalman Filtering

(b) convergence of state variables x7 to x12 (blue lines) to the associated setpoints (red lines) and estimated values provided by

Kalman Filtering.
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Figure 26. Tracking of setpoint 4 by the 6-DOF bicopter with the use of multi-loop flatness-based control: (a) variations of the

control inputs u1 and u4 (blue lines) (b) convergence of the path of the bicopter’s center of gravity (blue line) to its reference

trajectory in the XYZ cartesian space (red line).
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Figure 27. Tracking of setpoint 5 by the 6-DOF bicopter with the use of multi-loop flatness-based control: (a) convergence of

state variables x1 to x6 (blue lines) to the associated setpoints (red lines) and estimated values provided by Kalman Filtering

(b) convergence of state variables x7 to x12 (blue lines) to the associated setpoints (red lines) and estimated values provided by

Kalman Filtering.
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Figure 28. Tracking of setpoint 5 by the 6-DOF bicopter with the use of multi-loop flatness-based control: (a) variations of the

control inputs u1 and u4 (blue lines) (b) convergence of the path of the bicopter’s center of gravity (blue line) to its reference

trajectory in the XYZ cartesian space (red line).
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Figure 29. Tracking of setpoint 6 by the 6-DOF bicopter with the use of multi-loop flatness-based control: (a) convergence of

state variables x1 to x6 (blue lines) to the associated setpoints (red lines) and estimated values provided by Kalman Filtering

(b) convergence of state variables x7 to x12 (blue lines) to the associated setpoints (red lines) and estimated values provided by

Kalman Filtering.
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Figure 30. Tracking of setpoint 6 by the 6-DOF bicopter with the use of multi-loop flatness-based control: (a) variations of the

control inputs u1 and u4 (blue lines) (b) convergence of the path of the bicopter’s center of gravity (blue line) to its reference

trajectory in the XYZ cartesian space (red line).
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Figure 31. Tracking of setpoint 7 by the 6-DOF bicopter with the use of multi-loop flatness-based control: (a) convergence of

state variables x1 to x6 (blue lines) to the associated setpoints (red lines) and estimated values provided by Kalman Filtering

(b) convergence of state variables x7 to x12 (blue lines) to the associated setpoints (red lines) and estimated values provided by

Kalman Filtering.
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Figure 32. Tracking of setpoint 7 by the 6-DOF bicopter with the use of multi-loop flatness-based control: (a) variations of the

control inputs u1 and u4 (blue lines) (b) convergence of the path of the bicopter’s center of gravity (blue line) to its reference

trajectory in the XYZ cartesian space (red line).
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Figure 33. Tracking of setpoint 8 by the 6-DOF bicopter with the use of multi-loop flatness-based control: (a) convergence of

state variables x1 to x6 (blue lines) to the associated setpoints (red lines) and estimated values provided by Kalman Filtering

(b) convergence of state variables x7 to x12 (blue lines) to the associated setpoints (red lines) and estimated values provided by

Kalman Filtering.
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Figure 34. Tracking of setpoint 8 by the 6-DOF bicopter with the use of multi-loop flatness-based control: (a) variations of the

control inputs u1 and u4 (blue lines) (b) convergence of the path of the bicopter’s center of gravity (blue line) to its reference

trajectory in the XYZ cartesian space (red line).

To elaborate on the tracking performance and on the robustness of the proposed multi-loop flatness-based control

method for 6-DOF bicopter the following Tables are given: (i) Table 4 which provides information about the accuracy of



Drones and Autonomous Vehicles 2025 , 2, 10010 32 of 35

tracking of the reference setpoints by the state variables of the 6-DOF bicopter’s state-space model, (ii) Table 5 which

provides information about the robustness of the control method to parametric changes in the model of the 6-DOF

bicopter, for instance change in mass m, (iii) Table 6 which provides the convergence times of the 6-DOF bicopter’s state

variables to the associated setpoints.

Table 4. Multi-loop flatness-based control. Tracking RMSE for the 6-DOF bicopter in the disturbance-free case.

RMSEx1 RMSEx2 RMSEx3 RMSEx7 RMSEx8 RMSEx9

setpoint1 0.0002 0.0001 0.0002 0.0001 0.0001 0.0001

setpoint2 0.0009 0.0002 0.0005 0.0001 0.0001 0.0001

setpoint3 0.0014 0.0003 0.0006 0.0001 0.0001 0.0001

setpoint4 0.0009 0.0005 0.0014 0.0001 0.0001 0.0001

setpoint5 0.0012 0.0002 0.0007 0.0001 0.0001 0.0001

setpoint6 0.0004 0.0002 0.0009 0.0001 0.0001 0.0001

setpoint7 0.0008 0.0003 0.0010 0.0001 0.0001 0.0001

setpoint8 0.0002 0.0001 0.0002 0.0001 0.0001 0.0001

Table 5. Multi-loop flatness-based control. Tracking RMSE for the 6-DOF bicopter in the case of disturbances.

∆a% RMSEx1 RMSEx2 RMSEx3 RMSEx7 RMSEx8 RMSEx9

0% 0.0009 0.0005 0.0002 0.0001 0.0001 0.0001

10% 0.0009 0.0002 0.0005 0.0001 0.0001 0.0001

20% 0.0009 0.0002 0.0005 0.0001 0.0001 0.0001

30% 0.0009 0.0002 0.0005 0.0001 0.0001 0.0001

40% 0.0009 0.0002 0.0005 0.0001 0.0001 0.0001

50% 0.0010 0.0002 0.0005 0.0001 0.0001 0.0001

60% 0.0010 0.0002 0.0006 0.0001 0.0001 0.0001

Table 6. Multi-loop flatness-based control. Convergence time (s) for the 6-DOF bicopter.

Ts x1 Ts x2 Ts x3 Ts x7 Ts x8 Ts x9

setpoint1 7.5 7.5 8.0 12.0 7.5 2.5

setpoint2 8.0 7.5 10.0 12.5 7.5 2.5

setpoint3 0.5 0.5 8.0 12.5 7.5 2.5

setpoint4 8.0 8.0 0.5 12.5 7.5 2.0

setpoint5 0.5 0.5 10.0 12.5 7.5 7.5

setpoint6 7.5 7.5 10.0 12.5 7.5 7.5

setpoint7 10.0 8.0 9.0 12.5 7.5 7.5

setpoint8 9.0 8.0 8.0 12.5 7.5 7.5

10. Conclusions

The article has proposed two different solutions for the nonlinear control problem of the 6-DOF bicopter: (i) nonlinear

optimal control, (ii) multi-loop flatness-based control. In (i) nonlinear optimal control the dynamic model of the 6-DOF

bicopter undergoes linearization at each sampling instance around the temporary operating point (x∗, u∗) where x∗ is the

present value of the drone’s state vector and u∗ is the last sampled value of the control inputs vector. The linearization

is based on Taylor series expansion and on the computation of Jacobian matrices. For the linearized model of the system

an H-infinity feedback controller is designed. The H-infinity controller represents a min-max differential game where the

control inputs try to minimize a cost function which contains a quadratic term of the state vector’s tracking error while

the model uncertainty and external perturbation terms try to maximize this cost function. To compute the feedback

gains of this controller an algebraic Riccati equation is solved repetitively at each time-step of the control algorithm. The
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global stability properties of the control scheme are proven through Lyapunov analysis. The nonlinear optimal control

approach assures fast and accurate tracing of setpoints by the state variables of the 6-DOF bicopter, while also keeping

moderate the variations of the control inputs.

At a second stage the article has examined a multi-loop flaatness-based control method for the dynamic model of

the 6-DOF bicopter. The drone’s dynamics is written in the form of two chained and differentially flat subsystems. The

state vector of the second subsystem becomes virtual control input to the first subsystem, while the control inputs of

the first subsystem become setpoints for the second subsystem. Knowing that differential flatness properties hold for

each one of these subsystems a stabilizing feedback controller can be designed for each one of them by inverting their

dynamics as it is commonly done for input-output linearized flat systems. The global stability properties of the multi-loop

flatness-based control scheme are proven though Lyapunov analysis. Multi-loop flatness-based control achieves precise

tracking of setpoints by the state variables of the 6-DOF bicopter without the need for changes of state variables or

state-space model transformations.
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