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ABSTRACT: Accurate streamflow prediction is essential for irrigation planning, water allocation, and flood risk management, 
particularly in water-scarce regions like the Niger River Basin. However, the complexity of hydrological processes and data 
limitations make reliable predictions challenging. This study optimizes Support Vector Machine (SVM) hyperparameters for daily 
streamflow prediction using time-lagged climate data and four metaheuristic algorithms—Binary Slime Mould Algorithm (BSMA), 
African Vulture Optimisation Algorithm (AVOA), Archery Algorithm (AA), and Intelligent Ice Fishing Algorithm (IIFA). Model 
performance was assessed using eight evaluation metrics, with results showing that AA and IIFA consistently outperform the others, 
achieving Nash-Sutcliffe Efficiency (NSE) values between 0.986–0.999 and 0.893–0.999, respectively. AVOA and BSMA show 
less consistent performance, with NSE ranges of 0.524–0.999 and 0.863–0.965, respectively. The study highlights the novel 
integration of multiple metaheuristic algorithms for optimizing machine learning models, offering insights into their effectiveness 
for hydrological prediction. By demonstrating the superior performance of AA and IIFA, this research provides a robust framework 
for enhancing long-term streamflow forecasting. These findings support improved water resource management in West Africa, 
helping policymakers address climate variability, water scarcity, and hydrological uncertainty. 
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1. Introduction 

Several indicators have shown that there is poor water resource management in terms of its availability and 
distribution in West African countries [1]. Despite its paramount importance and crucial role in supporting livelihoods, 
agriculture, and ecosystems. This condition is expected to worsen with increasing pressures from population growth, 
urbanization, and climate change [2]. Though effective management of the water resources, including accurate 
streamflow forecasting, is essential for sustainable water resource development and resilience under various stressors 
in the region [3]. The prediction of water flow in rivers and streams under the currently identified stressors is critical 
for informed decisions related to various sectors of the economy, such as agriculture [4,5], water supply [6,7], 
hydropower generation [8], and disaster risk reduction [9]. In terms of agriculture, accurate streamflow forecasts are 
critical for planning irrigation schedules, managing water resources, and mitigating the impacts of droughts and floods 
on crops. A lot of farmers depend on timely and reliable information to make informed decisions about planting periods, 
irrigation water demand, and harvesting patterns [10]. If this is achieved, it will improve agricultural productivity while 
minimizing risks. Furthermore, many water resource management authorities in the region require streamflow forecasts 
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to allocate water resources efficiently by balancing competing water demands and guaranteeing sustainable water 
supply for domestic, industrial, and environmental purposes [11]. Another significant sector in which the application of 
streamflow forecasting is seriously required is hydropower generation, as many countries in the region rely on it as a 
primary source of electricity. It enables hydropower operators to optimise reservoir operations, manage water releases, 
and plan the quantity of electricity generation [12]. Thereby maximising energy production and minimising disruptions, 
as noticed in many countries in the region. Accurate forecasts are essential for balancing energy supply and demand, 
particularly during periods of peak consumption or low water availability [13]. 

In addition to supporting socio-economic activities, streamflow forecasting plays an important role in disaster risk 
reduction and climate resilience efforts in West Africa [10]. Appropriate and accurate forecasts can help decision-makers 
anticipate and respond to hydrological related hazards, such as floods and droughts [14]. It further guides the 
implementation of early warning systems, prevention of disaster by evacuating at-risk communities, and implementing 
measures to protect infrastructure and livelihoods [15]. Additionally, integrating streamflow forecasts into disaster risk 
management strategies in West African countries can enhance their resilience to climate-related hazards and reduce the 
socio-economic impacts of extreme events [16]. 

Over the past few years, progress in optimization techniques has contributed to substantial advances in streamflow 
forecasting accuracy and reliability [17]. These techniques include machine learning models and hybrid optimisation 
algorithms, which have shown the potential of hydrological prediction. Although several optimisation algorithms are 
evolving, and many are yet to be utilised for streamflow prediction. According to Rajwar, et al. [18], there are more 
than 500 nature-inspired optimisation algorithms known as meta-heuristic algorithms (MA) in existence, but only a few 
are utilised for streamflow prediction [19]. For example, machine learning models such as adaptive neuro-fuzzy 
inference system (ANFIS), artificial neural networks (ANNs), multilayer perceptron (MLP), random forest (RF), 
support vector regression (SVR), and long short-term memory (LSTM) networks have shown promise in capturing 
complex relationships and patterns in streamflow data [20–22]. However, the performance of machine learning models 
relies on the optimisation of model parameters and hyperparameters, which can be challenging due to the high-
dimensional and nonlinear nature of the optimisation problem [23]. 

On the other hand, hybrid optimisation algorithms, which combine elements of different optimisation techniques, 
offer a powerful approach to streamflow forecasting optimization. These algorithms integrate machine learning models 
with metaheuristic optimisation algorithms, such as grey wolf optimisation (GWO), particle swarm optimisation (PSO), 
genetic algorithm (GA), simulated annealing (SA), differential evolution (DE), particle swarm optimisation (PSO), and 
other MA’s, to achieve superior performance and robustness [24]. By leveraging hybrid algorithms’ strengths, individual 
methods’ limitations can be overcome, while accurate and reliable streamflow forecasts can be produced. Currently, 
there has been growing interest in optimisation algorithms inspired by natural phenomena, such as those based on MA’s 
principles, to enhance streamflow forecasting. These optimization algorithms mimic the behavior of natural processes 
to efficiently solve complex optimization problems, offering the potential to improve the accuracy and reliability of 
streamflow predictions. Additionally, advancements in related optimisation techniques, such as the Chaotic Grey Wolf 
Optimisation (CGWO) algorithm, immune-inspired algorithms, the Adaptive Fast Orthogonal Search (FOS) algorithm, 
the Butterfly optimisation algorithm, and many more, have provided further opportunities for streamflow forecasting 
[25]. But a recent study shows that PSO often suffers from premature convergence due to velocity-position updates, 
leading to stagnation in local optima [26]. GA, while effective, relies on computationally expensive selection, crossover, 
and mutation processes, requiring extensive tuning [27]. The GWO is constrained by its hierarchical structure, limiting 
its search diversity in complex, nonlinear problems [28]. 

Since many meta-heuristic algorithms (MA) are yet to be tested for streamflow prediction, this study employs four 
MA hybrids in support vector machine (SVM) to predict streamflow. Meanwhile, the ultimate goal of applying hybrid 
optimisation techniques to streamflow predictions is to efficiently utilise well-trained MA algorithms to forecast 
streamflow in real-world scenarios, enhancing the efficiency of hydrologists and water resource engineers. The selection 
of four MA’s (the BSMA, AVOA, AA, and IIFA) over PSO, GA, and GWO is based on their superior exploration-
exploitation balance, adaptability, and computational efficiency in optimizing SVR for streamflow prediction. Their 
adaptive parameter control mechanisms enhance predictive accuracy while reducing computational overhead, making 
them ideal for streamflow forecasting [29]. 

However, conventional MAs often lack explicit equations that can be directly utilised by experts. As a substitute, 
researchers naturally need to check the algorithms that can be restructured or modified to meet desired needs, which 
can be difficult due to the requirement for programming skills. Not only that, the computational time and parameter 
adjustments for optimal output and precision in most machine learning models make them weak at providing the desired 
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results [30]. To address this challenge, coupling ML and MAs to overcome the intricateness of the ML model and, at 
the same time, opening the capabilities of several MA’s will continue to open ways for reliable prediction in water 
sciences [31]. Therefore, in West Africa, where hydrological variability is high, and data availability is often limited, 
these approaches may offer valuable insight for enhancing streamflow prediction capabilities in the region. 

However, there has not been a report on the application of many MA in the prediction of streamflows and the 
assessment of their capabilities in dealing with hydrological issues. Furthermore, while several studies have applied 
metaheuristic algorithms to machine learning models in hydrology, a direct comparison of multiple novel algorithms 
for SVR-based streamflow prediction remains limited. This research contributes to the field by systematically evaluating 
the performance of different optimization techniques and identifying the most suitable approach for enhancing SVR 
predictions. The results provide valuable insights into the potential of hybridizing machine learning with metaheuristics 
for improving hydrological forecasting models. To this end, this study is the first to integrate four novel meta-heuristic 
algorithms—Archery Algorithm (AA), African Vulture Optimisation Algorithm (AVOA), Binary Slime Mould 
Algorithm (BSMA), and Intelligent Ice Fishing Algorithm (IIFA)—into the Support Vector Machine (SVM) framework 
for streamflow prediction in West Africa. This study provides a comprehensive evaluation of these hybrid models, using 
multiple statistical metrics to assess their predictive accuracy, and compares their performance against conventional 
SVM models. 

The study utilises some input combinations of scenarios using the time lag method, including daily streamflows, 
rainfall, and minimum and maximum temperature. For clear comprehension, these approaches cover the simple SVM 
and hybrid integrative (SVM-AA, SVM-AVOA, SVM-BSMA, and SVM-IIFA) models. In each case, the results 
obtained from the models are compared to check their effect and influence on enhancing the accuracy of the results. 
This research seeks to contribute to the advancement of streamflow forecasting techniques and provide valuable insights 
into the optimization of machine learning models for hydrological prediction. The findings of this study are expected 
to provide insight into decision-making processes in water resource management for agriculture, energy production, 
and disaster risk reduction purposes in the region. 

2. Material and Methods 

2.1. Machine Learning (ML) and Meta-Heuristic Models (MA) 

This section describes the methodology for developing hybrid forecast models and introduces the performance 
evaluation criteria. The study considered two types of forecast models: SVM (Support Vector Machine), enhanced with 
a meta-heuristic algorithm (Figure 1), including AA (Archery Algorithms), AVOA (African Vulture Optimization 
Algorithm), BSMA (Binary Slime Mould Algorithm), and IIFA (Intelligent Ice Fishing Algorithms). The hybrid models 
were developed exclusively for simulation purposes, aimed at predicting streamflow under historical time steps. For 
this purpose, SVM hybrid-based models similar to Bahramifar, et al. [32] were adopted. Due to the increase in data 
mining and the capability to utilize large amounts of data for scientific inferences, ML methods have become useful 
tools for analyzing data for future reference. Combining ML and MA algorithms is helpful when you have a lot of 
complex scenarios representing the natural sequences of the climate data, and it’s hard to figure out the relationships. 
These methods are mostly based on data-driven processes and involve using data science to understand possible future 
occurrences. How well combining an ML method and MA works depends on the quality of the training data and how 
well it can find the relationships and information underneath. ML algorithms are different from traditional models 
because they don’t use predetermined mathematical equations to find patterns in data. Instead, they use computer 
techniques and sequences. The MA is often used when the search space for hyperparameters in machine learning (ML) 
algorithms is large, complex and traditional optimization methods are inadequate. In this study, two MLs (SVM) are 
selected (Figure 2) and combined with four meta-heuristic algorithms that are used to optimize the hyperparameters of 
SVM to enhance the performance and prediction of the streamflow. 
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Figure 1. Simplify concept of the Methodology used in this study. 

 

Figure 2. A flowchart of the Hybrid Models integration process. 

2.1.1. Support Vector Machine (SVM) 

SVM’s purpose is to find the optimum hyperplane that splits classes in feature space [33]. It is considered the most 
rigorous parameter-tuning ML model and tends to have a larger number of hyperparameters that require more careful 
tuning to achieve optimal performance. To tune these parameters like kernel choice and the regularization parameter 
(C) are critical for realizing the right equilibrium between model complexity and generalization. Although the SVMs 
can handle high-dimensional data efficiently, but the choice of kernel and other hyperparameters becomes more critical 
as the dimensionality increases [34]. In a linear SVM, the aim is to find the optimal hyperplane that separates the data 
into different classes. This hyperplane is defined as;  
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𝑤்𝑥 + 𝑏 = 0 (1)

where w is the weight vector perpendicular to the hyperplane and b is the bias term. In this case, the weight vector w 
determines the orientation of the hyperplane in the feature space. When an input data x is given, its class label is 
determined by which side of the hyperplane it falls on after computing 𝑤்𝑥 + 𝑏. The SVM algorithm learns the optimal 
values for w during the training process. 

For classification, an input x is assigned a class based on which side of the hyperplane it falls on. The optimal 
values of w and b are learned during the training process by solving an optimization problem. 

For non-linearly separable data, SVM employs a kernel function 𝐾(𝑥, 𝑥ᇱ) to transform the input features into a 
higher-dimensional space, where a linear separation can be achieved. The decision function, in this case, is defined as: 

𝑓(𝑥) = ෍ 𝛼௜

௡

௜ୀଵ
𝑦௜𝐾(𝑥, 𝑥ᇱ) + 𝑏 (2)

where αi is term as the Lagrange multipliers derived by solving the dual optimization problem. 
Both classification (Support Vector Classification, SVC) and regression (Support Vector Regression, SVR) 

applications can use the versatile Support Vector Machine (SVM) [35]. The selection of the kernel and other 
hyperparameters plays an integral part in attaining the best possible performance, particularly in cases involving high-
dimensional spaces or dynamically distinct data. In this study, the regression SVM (known as SVR) was used for the 
analysis of the hybrid ML model. 

2.1.2. Archery Algorithm (AA) 

The Archery Algorithm (AA) imitates an archer’s behavior during chaos situation, by guiding each member of the 
population to a target boundary in the search space [36]. In population-based algorithms like AA, each individual 
represents a potential solution to the optimization problem, defined by problem variables within the input 
domain. The population is represented as a matrix where each row corresponds to an individual solution. 

𝑃௩ =
𝑃 − 𝑃௪

∑ (𝑃௜ − 𝑃௪)௡
௜ୀଵ

 (3)

Given that Pw is the objective function value of the worst population member and Pv is the probability vector. This 
is to ensure that there is a greater probability function and a better likelihood of being chosen as the archery simulation 
member who performed better on the objective function value. To simulate the selection process, a cumulative 
probability approach is used, where each member has a likelihood of being chosen based on its performance. The 
position of the selected members is updated iteratively using the update rule: 

The algorithm iterates through these steps, updating the population members until a stopping criterion is met. Once 
completed, AA provides the best possible solution to the optimization problem. 

𝑎௜,ௗ
௡௘௪ ቊ

𝑎௜,ௗ + 𝑟 × ൫𝑎௜,ௗ − 𝑆 × 𝑎௜,ௗ൯,   𝑃௞ < 𝑃௜

𝑎௜,ௗ + 𝑟 × ൫𝑎௜,ௗ − 𝑆 × 𝑎௜,ௗ൯,   𝑒𝑙𝑠𝑒
 (4)

S is a scaling factor, defined as 𝑆 = 𝑟𝑜𝑢𝑛𝑑(1 + 𝑟𝑎𝑛𝑑) and 𝐴௜ ൜
𝐴௜

௡௘௪, 𝑃௜
௡௘௪ < 𝑃௜

𝐴௜ , 𝑒𝑙𝑠𝑒
. 

where 𝐴௜
௡௘௪ is the new status of the ith member, 𝑎௜,ௗ

௡௘௪ is its dth dimension, 𝑃௜
௡௘௪ is its objective function value, r is 

a random number with a normal distribution that falls within the closed interval [0, 1], 𝑃௞ is its objective function value, 
and 𝑎௜,ௗ is the dth dimension of the member chosen by Archer. The algorithm iterates through these steps, updating 
the population members until a stopping criterion is met. Once completed, AA provides the best possible solution to 
the optimization problem. (Figure 2 Shows the schematic of the implementation process using python). 

2.1.3. African Vulture Optimization Algorithm (AVOA) 

AVOA is a metaheuristic algorithm based on African vultures foraging behaviour as they regularly gather in large 
groups to scavenge carcasses, often competing for the best food. According to Sasmal, et al. [37], AVOA simulates 
interactions of a vulture on carcasses by utilising a population of hunting agents competing for optimal optimisation 
solutions. The AVOA overview comprises all pertinent criteria and features described in each step, based on basic 
vulture principles as outlined by Abdollahzadeh, et al. [38]. 
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The fitness of each solution of AVOA is verified after the initial population has been arranged, starting from the 
first and second group, the best vulture is the solution with the highest fitness and ability to hunt. Afterward, the solutions 
that are still open move closer to the best ones in the first and second groups, as defined by the expression; 

R(𝑖) = ቊ
B୴ଵ,  if p

௜
= 𝐿ଵ

B୴ଶ,  if p
௜

= 𝐿ଶ
ቋ (5)

t is a systematic approach to picking the selected vultures to lead the other vultures to one of the most promising 
solutions in each group, where L1 and L2 are the outcomes and the parameter values that need to be checked prior to the 
search operation lie within the range of 0 and 1. On the whole, the choice of the optimal solution is determined through 
the roulette wheel method, which calculates the probability of selecting each vulture based on its fitness. 

To determine the hunger and satisfaction levels of vultures during the transition between the exploration and 
exploitation phases: 

𝐹 = (2 × 𝑟𝑎𝑛𝑑ଵ + 1) × 𝛧 × ൬1 −
𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛

𝑀𝑎𝑥𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛
൰ + 𝑡 (6)

where F is the vultures’ level of happiness that is iterated on, i is the current iteration number, and Maxiteration is the 
total number of iterations. Also, the value of the variable Z is random and can be within a range from −1 to 1 as it varies 
with each iteration. For the variable h, a random value between −2 and 2 is assigned with a random value between 0 
and 1 given to the variable rand1. If the z value drops below 0, it means the vulture is starving, but if it rises to 0, it 
means the vulture is full. 

In AVOA, vultures have the ability to look into different areas while searching for carcasses strategically. The 
choice of search method is determined by a parameter named P1, which must be assigned a value between 0 and 1 
before the search operation begins, as it influences the selection of exploration techniques. 

The vulture’s exploitation ability is determined using a distance-based strategy, which guides vultures in exploiting 
promising regions. The second stage of operation involves organized hunting, leading to diverse vulture classes around 
the food supply, resulting in powerful rivalry and aggressive behaviours in their quest for food. During food scarcity, 
vulture species congregate at a food site due to intense resource competition. 

The AVOA algorithm has a computational complexity relies on three key procedures: initialization, fitness 
evaluation, and vulture updates. For N vultures, the initialization process has O(N) computational complexity and is 
updated by the location vector of all formed vultures searching for the most rightful location. The optimization process 
begins with a random solution set, and then improvements are made to the population until an end condition is met 
during the implementation process (Figure 2). 

2.1.4. Binary Slime Mould Algorithm (BSMA) 

Slime moulds have the ability to detect food odours in the air, and based on this ability and behaviour, slime mould 
algorithms were developed. The mathematical models try to mimic the contraction mode to express its approaching 
behaviour [39]. 

According to Li, et al. [40], for a slime mould to detect food via food odour, a contraction mode is expected to be 
active and is expressed as follows:  

𝑋(𝑡 + 1)ሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬ⃗ = ൝
𝑋௕(𝑡)ሬሬሬሬሬሬሬሬሬሬሬ⃗ + 𝑣𝑏ሬሬሬሬ⃗ · ൫𝑊ሬሬሬ⃗ · 𝑋஺(𝑡)ሬሬሬሬሬሬሬሬሬሬሬ⃗ − 𝑋஻(𝑡)ሬሬሬሬሬሬሬሬሬሬሬ⃗ ൯ · 𝑟 < 𝑝

𝑣𝑐ሬሬሬሬ⃗ · 𝑋(𝑡)ሬሬሬሬሬሬሬሬ⃗ , 𝑟 ≥ 𝑝
 (7)

where the parameter 𝑣𝑏ሬሬሬሬ⃗  ranges from [−a, a], while 𝑣𝑐ሬሬሬሬ⃗  diminishes linearly from 1 to 0, t denotes the current iteration, 
𝑋௕ is the highest odor concentration, 𝑋 represents slime mold location, 𝑋஺ and 𝑋஻ signify two randomly chosen 
individuals, and W denotes slime mold weight. 

To update the location of the searching individual �⃗�, the best location 𝑋஻
ሬሬሬሬሬ⃗  is fine-tune by adjusting the parameters 

𝑣𝑏ሬሬሬሬ⃗ , 𝑣𝑐ሬሬሬሬ⃗ , and 𝑊ሬሬሬ⃗ . Considering the above idea, the mathematical formula for keeping track of where slime mold is; 

�⃗�(𝑡 + 1) = ቐ

𝑟𝑎𝑛𝑑 ∗ (𝑈𝐵 − 𝐿𝐵) + 𝐿𝐵, 𝑟𝑎𝑛𝑑 < 𝑧

𝑋௕
ሬሬሬሬ⃗ (𝑡) + 𝑣𝑏ሬሬሬሬ⃗ ∗ ൣ𝑊ሬሬሬ⃗ · 𝑋஺

ሬሬሬሬ⃗ (𝑡) − 𝑋஻
ሬሬሬሬሬ⃗ (𝑡)൧, 𝑟 < 𝑝

𝑣𝑐ሬሬሬሬ⃗ · �⃗�(𝑡), 𝑟 ≥ 𝑝

 (8)



Hydroecology and Engineering 2025, 2, 10006 7 of 20 

 

The lower and upper limits of the search range are defined by LB and UB, and the random value lies between 0 to 
1 described by rand and r, while the z value can be determined from experiment parameter settings. It is also important 
to note that BSMA has a computational complexity similar to other metaheuristic algorithms like AVOA, as mentioned 
earlier, with similar implementation processes (Figure 2). 

2.1.5. Intelligent Ice Fishing Algorithm (IIFA) 

The Intelligent Ice Fishing Algorithm (IIFA) is a nature-inspired optimization algorithm premised on the behavior 
of fish under ice cover. As a “trace” algorithm, the IIFA utilizes the coordinates and results of a particular number of 
previous tests to help the population agents evolve. This algorithm tries to mimic the movements of fish searching for 
food in icy environments to solve optimization problems. According to Karpenko and Kuzmina [41], the main steps in 
the algorithm are; initialization (where the N-object is placed for the first time), local search series, short- and long-
range relocation, and ending the search.  

The attractiveness of the fish 𝛼௜(𝑡) toward the target area is expressed in Equation (9). 

𝛼௜(𝑡) = 𝜆௘𝑒௜(𝑡) + 𝜆௣𝑝௜(𝑡) (9)

where 𝑒௜(𝑡) is referered to as area development define in Equation (10), which is the same as the total number of track 
|𝑋௜(𝑡)|, {𝑋௜(𝑡)}ே ஻ that is part of the prospect area 𝑃௜(𝑡), 𝑎𝑛𝑑 𝜆௘ , 𝜆௣ is the weighting factor, The area development 
𝑒௜(𝑡) is given by: 

𝑒௜(𝑡) = |{𝑋௜(0)  ∈ 𝑑௜(0)} | + |{𝑋௜(𝑡)}ே ஻ ∈ 𝑑௜| (10)

The value of the objective function is calculated if the object is traced within the forbidden region ൛𝑑௜௝(𝑡)ൟ
ఢ

∈

𝑑௜(𝑡) at point ൛𝑋௜௝ , 𝑗 ∈ |𝜇௜(𝑡)|ൟ. The number 𝜇௜(𝑡) of the object is assumed to be related to the forbidden area 𝑑௜(𝑡) 

attractiveness of the fish 𝛼௜(𝑡)  which may not exceed the maximum possible value of 𝜇௠௔௫ . A sorrogate model 
𝐹௜

௅(𝑋) is build based on the attractiveness function 𝑑௜(𝑡) within the track coordinates |𝑋௜(𝑡)|, {𝑋௜(𝑡)}ே ஻, ൛𝑋௜௝(𝑡)ൟ. 
The maximum point within the function 𝐹௜

௅(𝑋) is found to be with a condition that if 𝑋௜
∗ ∈ Λ, the target object 

moved to a point 𝑋௜(𝑡 + 1), else it moved to the projection point of 𝑋௜
∗ onto the boundary {Ι Ι} in an area Λ. 

For short range, relocation procedure involved the identification of a region 𝐷௜ ∈ Λ of radius 𝑅ே that covers the 
tracks |𝑋௜(𝑡)|, {𝑋௜(𝑡)}ே ஻ whose center is within the point 𝑋௜(𝑡). Hence the target object traces and corresponding 
objective function that is close to the surrogate model 𝐹௜

௅(𝑋) is constructed. An Appropriate location {𝑋௜௟
∗ } is define 

in accordance to the values of function 𝐹௜
௅(𝑋) maxima ൛𝑓ሚ(𝑋௜௟

∗ ) = 𝑓௜௟
∗ൟ within an area 𝐷௜. At each point 𝑋௜௟

∗ ∈ {𝑋௜௟
∗ }, 

the area 𝑑௜௞  has a radius of r with center reference to the same point. The attractiveness 𝛼௜௟  of each 𝑑௜௟  area is 
determined based on the sets {𝑋௜௟

∗ },{𝑓௜௟
∗}. 

Under long-range relocation conditions, the current position of the target object is identify as {𝑋௜(𝑡)}ி ஻ for a far 
neighbors {𝑁௜(𝑡)}ே ஻ at far radius 𝑅ி. A subarea 𝐷௜

௅ of the maximum square which lack the content of {𝑋௜(𝑡)}ி ஻ 
is found. In each case, the process is completed for each target object to reach the specified number of iterations 𝑡. 

2.2. Performance Evaluation 

This section provides details on the performance evaluation and the prediction model’s accuracy using various 
metrics and approaches. The Small Error Probability and Posterior Error Ratio assessments are two additional 
approaches that complement the Average Relative Error (ARE) and Correlation Degree methods. Afterwards, the overall 
accuracy is then divided into distinct categories using predetermined criteria. The Average Relative Error (ARE) is a 
metric used to assess the accuracy of a prediction model [42]. It measures the average relative deviation between the 
simulated and observed values. While the Correlation Degree method finds the correlation between two or more patterns 
and provides a measure of the association between the observed and the simulated values [43]. Here are the basic 
numbers and steps required to use the Correlation Degree method: 

Absolute Correlation Degree (εjd) 

𝜀௝ௗ =
1 + |𝑠଴| + |𝑠௜|

1 + |𝑠଴| + |𝑠௜| + |𝑠௜ − 𝑠଴|
 (11)

si is the cumulative deviation times xi0(k), where s0 is the initialization (a variable or parameter) to zero sequence 
of the original sequence and si is the relative cumulative deviation between the fitting and original sequences. The 
Model’s accuracy can be assessed using the, Correlation Degree, Average Relative Error, Posterior Error Ratio, and 
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Small Error Probability. This stage includes grading each of the accuracy test results to assess model accuracy. Other 
performance metrics used include Nash-Sutcliffe Efficiency (NSE), Coefficient of Determination (R2), Mean Absolute 
Error (MAE), and Root Mean Square Error (RMSE). 

2.3. Case Study: The Niger River Basin 

The Niger River Watershed, located in West Africa between latitudes 4°10′ N and 23°57′ N, and longitudes 11°50′ 
W and 15°48′ E, encompasses a vast catchment area of approximately 2.156 million km2, making it the ninth largest in 
the world., The River is the third longest river in Africa, spanning a distance of 4200 km, coursing through over 10 
countries, including Benin, Algeria, Burkina Faso, Chad, Cameroon, Côte d’Ivoire, Mali, Guinea, Niger, and Nigeria 
(see Figure 3). The climate within the Niger River Watershed is characterized by its complexity, with distinct variations 
in precipitation patterns along a north-south axis. 

 

Figure 3. Niger River Basin, with its distribution of the climatic and hydrological stations. 

This region is influenced by the tropical convergence zone, resulting in well-defined dry (October to June) and wet 
seasons (July to September). According to [44], West Africa (WA) is experiencing rapid growth in comparison to other 
regions on the African continent. This growth may be ascribed to the creation and growth of the Economic Community 
of West African States, which has resulted in an increase in the population of the region (with a mean annual growth 
rate of 7%) and a rising level of urbanization. Despite this, agriculture continues to dominate the region’s industrial 
sector. The agricultural production, mainly focusing on grains, livestock, and grazing [45], contributes to 40% of the 
NRW’s GDP. However, due to the expanding human presence, the water security of the watershed is facing significant 
challenges [46]. The watershed has a total of 26 hydrological gauge stations spread across five countries, namely Guinea, 
Mali, Niger, Nigeria, and Burkina Faso, as seen in Figure 3.  

However, it is critical to emphasise that the 26 stations have a significant quantity of missing data, which leads to 
incorrect time series observations. A review of data consistency and trends revealed inconsistencies across all the 
stations. Therefore, we conducted a detrending inquiry using a moving average approach for only one station [47]. As 
a result, the chosen station’s detrend data (Niamey) spans 30 years, from 1993 to 2022. This is due to the previously 
specified constraint. 
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2.4. Time Lag Scenarios on Climate Data 

This study evaluated model sensitivity using three input scenarios (Figure 4). The default inputs, referred to as S1, 
were daily mean precipitation, maximum temperature (maxtemp), and minimum temperature (mintemp) from the selected 
hydrological station and appropriately captured the average climatic conditions of the study area. We use these inputs 
to drive the hybrid models of the MLs. In the next input scenario S2, focused on integrating lagged rainfall, mintemp, and 
streamflow data. The lagging of the input data is based on the cross-correlation and partial autocorrelation function 
(PACF) analyses utilised by Weiß, et al. [48] and defined, respectively, as follows: 

𝐶𝐶𝐹 (𝑋, 𝑌, 𝑘) =
∑ (𝑋௧ା௞ − 𝑋ത)(𝑌௧ − 𝑌ത)௡ି௞

௧ୀଵ

ට∑ (𝑋௧ା௞ − 𝑋ത)ଶ ∑ (𝑌௧ − 𝑌ത)ଶ௡ି௞
௧ୀଵ

௡ି௞
௧ୀଵ  

 
(12)

where n is the number of data points, Xt and Yt are the values of X and Y at time t, 𝑋ത and 𝑌ത are the means of X and Y, 
respectively. 

 

Figure 4. A statistical description of the climate data and their Partial Autocorrelation plots. 

The PACF of a time series X at lag k, denoted as ϕkk, is the correlation between Xt and Xt−k that is not accounted for by 
lags 1 through k − 1. It can be calculated using the Yule-Walker equations for an autoregressive (AR) process of order k: 

∅௞௞ =
𝛾(𝑘)

𝛾(𝑜)
 (13)

where γ(k) is the autocovariance at lag k and γ(0) is the variance of the time series. Using this method, further scenarios 
were created and referred to as forcing data. This data aids in accurately representing the hydrological response of the 
watershed and the direction of streamflow during model training. At hydrological stations, the measured rainfall, mintemp, 
and maxtemp are represented by S1. Table 1 summarises the S3 and S4 scenarios that arise from the inclusion of the 
lagged rainfall, mintemp, and streamflow in S2. 
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Table 1. Input Scenarios for the Prediction of Streamflow using SVM hybrid models. 

Daily 
Lags 

Significant Cross-Correlation Coefficients 
from PACF Scenarios 

Scenarios 
Description 

Additional 
Features 

Rational 
Mali Station Niger Station Lokoja Station 

1 1.00 1.00 1.00 S1 
Rainfall, MinTemp, 
Maxtemp, streamflow  

 

Basic setup with daily 
mean rainfall, maximum 
temperature and 
minimum temperature 
and stemflows  

2 −0.72 −0.84 −0.90 S2 

Rainfall, Mintemp, 
Maxtemp, Lagged 
Rainfall, Lagged 
Mintemp+ 
Streamflow  

Lagged rainfall 
(one-day lag), 
Lagged Mintemp 
(one-day lag), 
Lagged streamflow  

Builds upon S1 by 
Adding Lagged rainfall, 
minimum temperature, 
and streamflow based on 
significant lags 

3 0.30 −0.36 −0.57 S3 

Rainfall, Mintemp, 
Maxtemp, Lagged 
Rainfall, Lagged 
Mintemp, Lagged 
streamflow 

Lagged rainfall 
(two-day lag), 
Lagged Mintemp 
(two-day lag), 
Lagged streamflow  

Extends S2 by adding 
lagged streamflow based 
on significant lags 
observed in partial 
autocorrelation analysis 

4 −0.13 −0.16 −0.88 S4 

Rainfall, Mintemp, 
Maxtemp, Lagged 
Rainfall, Lagged 
Mintemp, Lagged 
streamflow 

Lagged rainfall 
(three-day lag), 
Lagged Mintemp 
(three-day lag), 
Lagged streamflow  

Extends S3 by adding 
lagged streamflow based 
on significant lags 
observed in partial 
autocorrelation analysis 

The adoption of a differencing standardisation approach was employed in order to achieve meaningful comparison, 
enhance model performance, and reduce outliers in the time series data at the same time, ensuring peak flows are well 
captured in the prediction. This approach makes data stationary and simpler to analyse since statistical features like 
mean and variance do not vary. Further, this type of evaluation becomes useful in the context of streamflow forecasting. 
The standardization process of differencing comprises the calculation of the divergence between successive 
observations within the time series. Mathematically, differencing can be expressed as: 

∆𝑋௧ = 𝑋௧ − 𝑋௧ିଵ (14)

where ΔXt is the differenced value at time t, Xt is the original value at time t, and Xt−1 is the original value at time t − 1. 
The imputation methods used in this study were primarily linear interpolation and multiple imputations (MI), 

depending on the nature and extent of missing data within the time series. Since streamflow and meteorological 
variables (rainfall, mintemp, maxtemp) exhibit strong temporal autocorrelation (Figure 4), linear interpolation preserves 
the underlying trend without introducing significant bias. While on the other hand, MI improves robustness, especially 
when missing data is not completely random (e.g., seasonal patterns in rainfall and streamflow). It prevents 
underestimation of variability that often occurs with single imputations like mean or median filling. 

In this study, to ensure effective computation, the data is split from 1 January 1993 to 31 December 2011 for model 
training and data from 1 January 2012 to 30 December 2022 for testing considering threefold Cross-validation (CV) (k = 3).  

2.5. Hyperparameter Optimization Strategy 

To optimize the hyperparameters of the Support Vector Regression (SVR) model, four metaheuristic algorithms—
BSMA, AVOA, AA, and IIFA—were employed. The optimization process aimed to enhance SVR’s predictive 
performance by fine-tuning three key hyperparameters: the regularization parameter (C), which controls the trade-off 
between model complexity and training error; the tube radius (Epsilon), which defines the margin of tolerance for 
prediction errors; and the kernel coefficient (Gamma), which determines the influence of individual training examples 
in the radial basis function (RBF) kernel. The search space for these hyperparameters was predefined based on empirical 
testing and prior studies to ensure a balance between exploration and computational efficiency. The objective function 
for the optimization was to minimize the Mean Absolute Error (MAE) between observed and predicted streamflow values. 
Each algorithm iteratively adjusted the SVR hyperparameters to reduce MAE, following its unique search mechanism. 

A consistent train-test split was used across all models to ensure a fair comparison. To validate the optimized 
hyperparameters, k-Fold Cross-Validation (k = 5) was employed, reducing the risk of overfitting and ensuring robust 
model generalization. The final hyperparameter values obtained for each algorithm across different prediction scenarios 
(S1–S4) are presented in Table 2, demonstrating how each optimization method influenced the SVR model’s 
configuration. By systematically tuning the SVR hyperparameters, this methodology ensures an effective and unbiased 
comparison of metaheuristic-based optimization strategies for streamflow prediction. 
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Table 2. Hyperparameter distribution of SVR model determine under each Meta-heuristic Algorithms. 

Prediction 
Scenarios 

BSMA AVOA AA IIFA 
C Epsilon Gamma C Epsilon Gamma C Epsilon Gamma C Epsilon Gamma 

S1 10 0.8 0.1 16.66 0.01 0.1 1000 0.01 0.00091 267 0.405 0.0021 
S2 10 0.36 0.1 15.4 0.01 0.1 1000 0.132 0.1 241 0.178 0.0016 
S3 10 0.02 0.1 57.71 0.01 0.1 1000 0.185 0.1 197 0.316 0.001 
S4 10 0.14 0.1 65.27 0.5 0.0001 1000 0.199 0.1 191 0.312 0.001 

3. Results and Discussion 

3.1. Optimised Hyperparameters for SVM Models 

Table 2 provides a detailed analysis of the distribution of the Support Vector Regression (SVR) model’s 
hyperparameters when utilising various metaheuristic methods for prediction. We looked at three hyperparameters—
Regularisation Parameter (C), Tube Radius (epsilon), and Kernel Coefficient (gamma)—that have a significant effect 
on how well the SVR model predicts streamflow. When compared to other algorithms, BSMA tends to pick smaller 
numbers for C and Epsilon. In S1, BSMA picks out C to be equal to 10, Epsilon is equal to 0.8, and Gamma is equal to 
0.1. In S2, C = 10, Epsilon = 0.36, and Gamma = 0.1 mean the following things: Specifically, the numbers given for S3 
are C = 10, Epsilon = 0.02, and Gamma = 0.1. The BSMA method picks the numbers C = 10, Epsilon = 0.14, and 
Gamma = 0.1 for S4. When it comes to regularisation (C) and margin error (Epsilon), BSMA pick smaller numbers, 
which allow the model to find a simpler decision function, which may improve generalisation to unseen data. At the 
same time, the large epsilon values for S1, S2, and S4 allow more errors within the margin, resulting in a simpler model as 
compared to S3, which will allow the model to be more sensitive to errors, potentially leading to a more complex model. 

AVOA, on the other hand, tends to pick higher values for parameter C and smaller values for parameter Epsilon. 
When it comes to S1, AVOA optimised the C value at 16.66, Epsilon to be 0.01, and Gamma as 0.1, which is similar 
to S2, except for the C value, which is 15.4. For S3, AVOA chooses C = 57.71 with the same Epsilon and Gamma 
values, whereas for S4, the C value is 65.27, Epsilon is 0.5, and Gamma is 0.0001. As you can see from these numbers 
(Table 3), AVOA tends to support higher levels of regularisation (C) and lower levels of margin error (Epsilon). This 
lets the model fit the training data more closely, which could lead to overfitting. On the other hand, this can make the 
decision boundary smooth. In each case, AA always picks high numbers for C (C = 1000), as shown in S1, S2, S3, and 
S4, while also varying Epsilon and Gamma from 0.01 to 0.199 and 0.00091 to 0.1, respectively. The results show that 
AA has a strong tendency towards high regularisation (C), which allows it to control the trade-off between achieving a 
low error on the training data and minimising the complexity of the decision function. 

Table 3. Performance evaluation across meta-heuristic algorithms for each scenario. 

Scenarios Meta-Heuristic Algorithms 
Performance Matric 

ARE C P RMSE NSE MAE R2 
S1 

BSMA 

1.818 0.965 0.855 0.766 0.965 7.318 0.986 
S2 2.227 0.966 0.825 1.004 0.944 9.199 0.976 
S3 2.428 0.960 0.815 1.088 0.912 10.135 0.972 
S4 2.698 0.956 0.806 1.119 0.863 10.755 0.970 
S1 

AVOA 

1.662 0.999 0.863 0.736 0.999 6.911 0.987 
S2 1.696 0.975 0.855 0.900 0.971 7.878 0.981 
S3 3.380 0.942 0.775 1.265 0.942 12.537 0.962 
S4 12.253 0.848 0.479 2.599 0.524 44.847 0.839 
S1 

AA 

4.420 0.051 0.041 0.010 0.999 0.199 0.995 
S2 3.562 0.044 0.031 0.010 0.986 0.199 0.996 
S3 3.217 0.043 0.029 0.010 0.999 0.199 0.996 
S4 3.032 0.012 0.017 0.010 0.988 0.199 0.996 
S1 

IIFA 

0.061 0.042 0.999 4.391 0.985 4.197 0.995 
S2 1.130 0.981 0.894 0.651 0.973 6.748 0.989 
S3 0.760 0.998 0.917 0.575 0.952 5.290 0.992 
S4 0.749 0.999 0.920 0.566 0.893 5.227 0.992 

In the end, compared to other algorithms, the IIFA algorithm usually picks moderate numbers for both C and small 
numbers for Epsilon. In the given scenario, IIFA sets different values for C, Epsilon, and Gamma for four different 
scenarios (S1 to S4). For example, in S1, IIFA sets C = 100, Epsilon = 10, and Gamma = 0.01. These values determine 
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the trade-off between model complexity and training error, the influence of individual training examples, and the margin 
of tolerance for errors, respectively. Generally, large C values (e.g., C > 100) indicate a more complex model; small 
epsilon values (e.g., Epsilon < 0.1) increase sensitivity to errors; and small gamma values (e.g., Gamma < 0.01) lead to 
smoother decision boundaries. Because of this, each metaheuristic algorithm has a unique tendency towards certain 
hyperparameter values, which shows how they optimise problems. For the SVR model to work at its best, it is important 
to pick the right hyperparameters. The results show how important it is to look into different metaheuristic algorithms 
to find the ones with the best choices for a certain prediction case. 

3.2. Results of All the Cases Considered in Streamflow Time Series Predictions 

In scenario-S1, the SVM-BSMA achieves a Nash-Sutcliffe Efficiency (NSE) of 0.965, demonstrating a robust 
correlation between the observed and predicted daily streamflows. The cumulative probability curve aligns with the 1:1 
line, indicating that the model accurately captures streamflow range and pattern. SVM-AVOA surpasses BSMA with 
an NSE of 0.999, and the cumulative probability curve matches the 1:1 line, demonstrating a good match between 
projected and observed streamflows. The SVM-AA model, with an NSE of 0.999, provides accurate streamflow 
predictions in S1, similar to the SVM-AVOA model. In Scenario-S1, the SVM-IIFA has an NSE of 0.985, which is 
lower than the SVM-AA and SVM-BSMA hybrid models. In essence, SVM-IIFA has a lower cumulative probability 
curve than SVM-AA and SVM-AVOA, but it matches the predicted and observed streamflows. The SVM-BSMA 
performs well in Scenario-S2, with an NSE of 0.9441. The cumulative probability curve would match the 1:1 line, 
indicating a strong correlation between predicted and observed streamflows. With an NSE of 0.971, SVM-AVOA does 
a good job in this case. The model’s cumulative probability curve is very close to the 1:1 line (Figure 5b), which means 
that predicted and observed values are very close to each other. With an NSE value of 0.986, the SVM-AA model also 
does well in Scenario 2 because its cumulative probability curve crosses the 1:1 line, meaning that expected and 
observed streamflows are very similar. In S2, the SVM-IIFA model performs well, with an NSE of 0.973, and it matches 
the forecast and observed streamflows, though less than SVM-AA. 

 

Figure 5. The NSE CDFs of BSMA, AVOA, AA, and IIFA for each Scenario (a) S1 (b) S2 (c) S3 and (d) S4. 

In scenario S3, the SVM-BSMA works well with an NSE of 0.9119, and the cumulative probability curve’s 
departure from the 1:1 line shows that the expected and observed streamflows are not the same. But, the SVM-AVOA 
model performs well, with an NSE of 0.942 and good fits between projected and actual streamflows. However, SVM-
AA shows excellent performance, with an NSE score of 0.999 and close to a 1:1 line, indicating exceptional 
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performance. When compared to the observed data, SVM-IIFA prediction performance under S3 yielded an NSE value 
of 0.952. The cumulative probability curve matches forecast and observed streamflows, albeit less than SVM-AA 
(Figure 5c). 

In Scenario-S4 (Figure 5d), the SVM-BSMA performs well, with an NSE value of 0.8634. This differs from the 
1:1 line in the cumulative probability curve, meaning that the predicted and observed streamflows don’t match up. 
SVM-AVOA does not do well in S4 (NSE score of 0.524), and the cumulative probability curve is very far from the 
1:1 line, showing a big difference between what was predicted and what was observed in terms of streamflows. Although 
SVM-AA has an NSE value of 0.9876, this makes a good prediction in S4, as the cumulative probability curve for 
SVM-AA is close to 1:1. With an NSE of 0.893, the SVM-IIFA excels in S4, closely matching the projected and actual 
streamflows. As shown by using NSE values to describe how well models predict streamflows, the details make it easy 
to understand how well the hybrid model worked (Figure 5d). The cumulative probability curve also helps to see how 
well it worked. 

A density map was generated to assess the hybrid models’ predictive capability in capturing the temporal 
fluctuations of streamflows under high and low flow conditions (Figure 6a–d). It is employed to depict the distribution 
of a continuous variable by generating a continuous probability density function that accurately matches the data and 
illustrates the relative probability of different values appearing in the data. During high flows, all the models 
successfully replicated the phenomenon in all four scenarios. However, the effect was more noticeable in scenarios S1, 
S2, and S3 but diminished in scenario S4. However, after analysing the high flows at the 75th percentile, it was noted 
that the performance of the hybrid models differed across the four scenarios. The SVM-AA model accurately captures 
the peak flow range, followed by the SVM-BSMA model. The SVM-IIFA model performs somewhat worse, and the 
SVM-AVOA model performs the least well, as shown in Figure 6a,d. Regarding the prediction of low flow, all models 
demonstrate good performance, except for SVM-BSMA, which notably forecasts larger low flows compared to the 
other models (refer to Figure 6c,d). When considering settings where the flow is decreasing, SVM-AA outperforms 
SVM-BSMA, SVM-IIFA, and SVM-AVOA in capturing the flow. This conclusion is based on their performance in 
different scenarios, as shown in Figure 6a–d. 

 

Figure 6. A density plots of the predicted and observed Streamflow under (a) S1 (b) S2 (c) S3 (d) S4. 

3.3. Comparison of Hybrid SVM Models Performance 

Metaheuristic algorithms, inspired by natural processes, solve many complex optimisation issues [49]. However, 
in order to optimise the target parameter and guarantee reliable prediction, every method has a distinct impact. Therefore, 
we created standard criteria for the target hyperparameters, performance assessment, and computational procedure. We 
subjected all hybrid models to a maximum of 100 iterations throughout the computational process, and used an 8-
performance matrix to assess their influence on improving the SVR model for accurate daily streamflow prediction. 
Table 3 provides a comprehensive analysis of the hybrid models’ performance in various scenarios. Every scenario 



Hydroecology and Engineering 2025, 2, 10006 14 of 20 

 

denotes a distinct combination of parameters or degrees of intricacy for the optimisation problem. These measures aid 
in gauging the performance of the algorithms in terms of accuracy, convergence speed, and data fit. Its result indicates 
that SVM-BSMA does well in Scenario S1, with a posterior error ratio (C) of 0.855, an absolute relative error (ARE) 
of 1.818, and a small error probability (P) of 0.965. Nevertheless, its root means square error (RMSE) and mean absolute 
error (MAE) values exhibit a slight rise when compared to other methods in S1. Even so, SVM-BSMA does very well 
in terms of NSE (Nash-Sutcliffe Efficiency) and R2 (coefficient of determination), which means it does very well overall 
in S1. In subsequent scenarios (S2, S3 and S4), the SVM-BSMA model performance experiences a minor drop, 
characterized by higher absolute relative error (ARE) values and reduced precision. However, it still retains a tolerable 
small error probability (P) and posterior error ratio (C). 

The SVM-AVOA model has strong performance in S1, achieving an ARE of 1.662 and a P of 0.999. In Scenario-
S4, however, SVM-AVOA’s performance drops a lot, as shown by an ARE of 12.253 and a P of 0.848. This suggests 
that SVM-AVOA may encounter difficulties when dealing with intricate or noisy data [50]. SVM-AVOA exhibits 
varying performance in different settings, demonstrating satisfactory accuracy in simpler situations but inadequate 
performance in more intricate ones. In all cases, SVM-AA’s performance is consistently subpar for ARE values ranging 
from 3.032 to 4.420 and an extremely low small error probability (P) of less than 0.1. On the other hand, other tests 
(RMSE, NSE, MAE, and R2) have shown that SVM-AA has done really well. This means that it is a good choice for 
the optimisation tasks we looked at because it gives accurate and consistent results in many situations. The SVM-IIFA 
model performs well in all scenarios, with an average relative error (ARE) ranging from 0.612 to 1.130 and an accuracy 
above 0.97 in the majority of cases. In addition, the model has a small likelihood of P and a favourable ratio of posterior 
errors (C), as evidenced by its RMSE, NSE, MAE, and R2 values. These findings suggest that IIFA is a reliable and 
efficient metaheuristic algorithm for the optimisation tasks examined in the present study. 

A critical aspect influencing the reliability of the hybrid SVR models is the selection of time lags in streamflow 
prediction (S1 to S4). To quantify this impact, we conducted a statistical analysis comparing different lag structures 
(e.g., 1-day, 2-day, 3-day lags) on key model performance metrics such as RMSE, NSE, and ARE. The findings indicate 
that while shorter lags (1-day) provide higher accuracy in capturing immediate fluctuations, longer lags (3-day) tend to 
introduce higher errors due to increased uncertainty in hydrological response. For instance, in Scenario S1, SVM-BSMA 
exhibited an NSE of 0.965 with a 1-day lag but dropped to 0.912 with a 3-day lag. Similarly, SVM-AVOA’s ARE 
increased significantly from 1.662 to 3.380 when transitioning from a 1-day to a 3-day lag, indicating reduced predictive 
efficiency in longer forecasting windows. These results demonstrate the need for careful lag selection when optimizing 
streamflow predictions, particularly in basins with varying hydrological regimes. 

To assess the broader applicability of the proposed models, future research should consider transfer learning 
approaches, where models trained in one basin are fine-tuned using limited data from another basin. This technique can 
help determine the extent to which the optimized models retain predictive skills in new environments. Additionally, 
comparative studies across multiple basins with contrasting hydrological conditions would provide valuable insights 
into how metaheuristic algorithms perform across different settings. 

Despite these limitations, the study provides a strong foundation for optimizing machine learning models in 
streamflow prediction, particularly in data-scarce environments like West Africa. By incorporating adaptive modeling 
techniques and additional calibration strategies, the proposed hybrid models could be extended to other regions with 
different climatic and hydrological characteristics. 

3.4. Analysis of the Results 

Particularly in dynamic and complicated contexts like time series prediction, metaheuristic algorithms are potent 
tools for optimising hyperparameters in machine learning models [51]. Using a variety of performance metrics, we 
compare four different metaheuristic algorithms—BSMA, AVOA, AA, and IIFA—across four different scenarios to 
find the optimal method for choosing metaheuristic algorithms to optimise the hyperparameters of machine learning 
models used in time series prediction. One way to learn about the optimisation tendencies of different algorithms is to 
look at their hyperparameter distributions [52]. In order to promote simpler decision functions and maybe greater generalisation 
to unseen data, BSMA prefers to use smaller values for the Regularisation Parameter (C) and Tube Radius (Epsilon).  

Conversely, AVOA has a tendency to pick lower Epsilon values and larger C values, which might bring the model 
closer to the training data but also raise the possibility of overfitting. The fact that AA always goes with large values 
for C suggests that it prefers to manage the trade-off between a small decision function and no training mistake [53]. In 
order to strike a compromise between the complexity of the model and the training error, IIFA typically uses modest 
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values for Epsilon and C. To give a full picture of each method, we added the performance evaluation across several 
circumstances. For instance, it showed that IIFA maintained superior performance over the other algorithms in all cases, 
with lower ARE values and better accuracy (Table 2). In less complicated circumstances, BSMA performed 
competitively, but in more difficult ones, it somewhat underperformed. Perhaps as a result of overfitting, AVOA fared 
poorly in more complicated scenarios despite doing admirably in simpler ones.  

The fact that AA outperformed some other algorithms shows that it is well-suited to the optimisation tasks under 
consideration. Since IIFA consistently performs well in all of the tested circumstances, it stands out as a potential choice 
in our research. Nevertheless, meticulous assessment of the algorithms employing a mix of performance indicators and 
sophisticated selection criteria should underpin the selection process [54]. Model complexity, generalisability, and 
computing efficiency are all trade-offs that should be considered while choosing the optimal metaheuristic method for 
hyperparameter optimisation [55,56]. Still, for optimising hyperparameters in machine learning models for time series 
prediction, the study sheds light on how metaheuristic algorithms fare. In order to choose the best algorithm for a certain 
problem, it is crucial to take into account both basic selection criteria and performance measures [50]. The consistency 
of performance across circumstances makes IIFA a potential candidate, followed by AA, BSMA, and then AVOA. 
Nevertheless, meticulous assessment of the algorithms employing a mix of performance indicators and sophisticated 
selection criteria should underpin the selection process [57].  

However, streamflows are complex natural phenomena that change as environmental factors vary [58], but the 
ability of the MLs to capture this uniqueness required several amalgamations of the MAs to adequately capture this 
complex behaviour, which this study intends to showcase. In West Africa, we expect streamflow in large rivers such as 
the Niger River Basin, spanning several thousand kilometres, to traverse diverse climate zones, each contributing 
differently to the streamflow behaviour. These hybrid models’ ability to capture this complexity with such accuracy is 
a testament to their reliability in mimicking natural processes. 

One crucial aspect that requires further exploration is the impact of time lag on model performance. The choice of 
time lag significantly influences the predictive accuracy and generalizability of time series models. In hydrological 
modeling, streamflow responses to rainfall or other climatic variables are often delayed, meaning that selecting an 
optimal lag period is essential for capturing the relationship between past and present observations [59]. Different lag 
scenarios may lead to variations in model performance, where a short lag might fail to account for delayed responses in 
the system, while an excessively long lag could introduce unnecessary noise, reducing the model’s predictive capability. 

Metaheuristic algorithms optimize hyperparameters, but their effectiveness may vary depending on how well they 
handle time-dependent features [60]. For instance, algorithms like BSMA and IIFA, which tend to balance complexity 
and accuracy, may be better suited to selecting appropriate lag structures that enhance model generalizability. 
Conversely, AVOA’s tendency toward overfitting suggests that it may struggle with lag selection, as it may focus too 
closely on recent observations while neglecting longer-term dependencies [61]. Similarly, AA, which prioritizes minimizing 
training error, might require additional tuning to handle lag effects effectively. 

It is important to note that despite interpretability methods such as SHAP and LIME providing insights into feature 
contributions, they were not employed in this study due to the focus on optimizing model accuracy and generalization 
rather than feature attribution. Instead, we relied on direct performance evaluation metrics (e.g., NSE, RMSE, MAE, 
and R²) and comparative analysis across multiple scenarios to validate model reliability. Future work can incorporate 
interpretability techniques to enhance model transparency where necessary further. 

To improve model reliability, future research should investigate optimal time lag determination strategies, 
particularly within metaheuristic-based optimization frameworks. This could involve adaptive lag selection techniques 
that dynamically adjust based on changing hydrological conditions. Furthermore, the interaction between lag choice 
and model complexity should be examined to determine how different metaheuristic algorithms respond to varying lag 
structures and whether certain algorithms exhibit greater robustness to lag-induced variability in time series prediction.  

Another critical consideration is how missing and inconsistent hydrological data were handled and the potential 
impact of data gaps on model performance. While data availability issues in the Niger River Basin have been 
acknowledged, the preprocessing steps taken to address these gaps require further clarification. Missing data in 
hydrological records can arise due to instrument failure, human errors, or extreme weather conditions, which can 
introduce bias and reduce model reliability [62]. To mitigate these challenges, a combination of imputation techniques 
and data filtering methods was employed. Specifically, linear interpolation and multiple imputation approaches were 
used to estimate missing values where gaps were relatively short, while longer gaps were addressed using machine 
learning-based imputation techniques [63]. These techniques helped preserve data continuity and minimize distortions 
in the streamflow time series. 
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The impact of missing data on model performance varies depending on the extent and distribution of the gaps. In 
cases where missing values were randomly distributed, the effect on predictive accuracy was minimal [64]. However, 
systematic gaps, particularly those occurring during peak flow or dry season, could lead to biases in model training, as 
key hydrological patterns might be underrepresented. To account for this, sensitivity analyses were conducted to 
evaluate model performance under different missing data scenarios, as detailed by Fawkes, et al. [65] and Baig, et al. 
[66]. The results indicated that models trained with imputed datasets performed comparably to those trained on complete 
datasets, provided that imputation methods were carefully selected based on the data distribution [67]. 

It is well-known fact that the Hydrological modeling is highly dependent on regional characteristics such as 
topography, land use, climate variability, and basin-scale hydrodynamics. These factors influence how well a model 
trained in one region can be applied to another with distinct environmental conditions [68]. The Niger River Basin is 
characterized by diverse climatic zones, ranging from humid regions in the south to arid and semi-arid conditions in the 
north. This inherent variability suggests that the proposed hybrid models can handle a broad range of hydrological 
conditions within the basin itself. However, how do these unique characteristics of the Niger River Basin impact the 
model’s performance in other regions? The complex interplay between climatic zones means that models optimized for 
this basin may require significant recalibration when applied to areas with different precipitation patterns, soil types, 
and hydrological processes. For instance, while the Niger Basin experiences both seasonal flooding and prolonged dry 
periods, basins dominated by snowmelt or monsoonal rainfall would need modifications to account for delayed runoff 
or extreme seasonal fluctuations. Applying these models to other river basins—such as those in temperate or monsoonal 
regions—may introduce new challenges related to data availability, rainfall-runoff relationships, and seasonality effects. 

One key factor influencing generalizability is the ability of metaheuristic algorithms to adapt to different 
hydroclimatic conditions [31]. Algorithms like IIFA and BSMA, which balance complexity and accuracy, may be more 
flexible across regions with varying rainfall patterns, soil characteristics, and land cover dynamics. Conversely, 
AVOA’s tendency toward overfitting suggests that it might struggle when applied to basins with significantly different 
hydrological regimes, requiring additional tuning to avoid model bias. Another important consideration is the role of 
extreme hydrological events. Some basins experience more frequent or intense floods and droughts, which can impact 
the performance of machine learning models [69]. For instance, regions prone to flash floods, such as mountainous 
basins, may require models that incorporate higher-resolution rainfall data and terrain-sensitive hydrological parameters. 
Similarly, basins dominated by snowmelt processes would need additional modifications to account for delayed runoff 
generation due to seasonal temperature variations. 

Our findings align with previous research in demonstrating the effectiveness of metaheuristic algorithms for 
optimizing SVM-based streamflow prediction models. For instance, studies such as Sharma and Raju [49] and Pham, 
et al. [50] highlight the ability of hybrid models to improve predictive accuracy. However, our results show notable 
differences in algorithm performance under varying hydrological conditions. Unlike prior studies that primarily focused 
on specific climatic regions, our analysis incorporates diverse hydroclimatic scenarios, revealing that SVM-BSMA and 
SVM-IIFA exhibit greater adaptability across different rainfall-runoff dynamics. In contrast, SVM-AVOA’s 
performance declines significantly in more complex scenarios, suggesting a potential limitation in handling intricate or 
noisy datasets. These divergences likely stem from differences in methodology—particularly in hyperparameter tuning 
constraints and iteration limits—as well as variations in dataset characteristics, including temporal resolution and 
regional hydrological variability. Future comparative studies should further investigate these factors to enhance model 
robustness and transferability across diverse basins. 

The findings of this study have significant implications for water resource management, policy development, and 
community adaptation strategies in the Niger River Basin. Given the increasing variability in streamflow patterns, it is 
essential to integrate actionable measures that bridge the gap between research and real-world applications. Effective 
flood mitigation strategies, water allocation planning, and adaptive management approaches could benefit from the 
insights provided by optimized machine learning models [70]. By improving predictive accuracy, these models can 
enhance early warning systems and support decision-making for sustainable water use. 

Furthermore, the impact of climate change on streamflow variability warrants deeper consideration. Changing 
precipitation patterns and rising temperatures have the potential to alter hydrological cycles, disrupt water availability, 
and degrade water quality [71,72]. These shifts pose challenges for long-term water security, particularly in 
transboundary river basins like the Niger River Basin, where competing demands for water resources necessitate robust 
management frameworks. Integrating climate change projections into hydrological modeling efforts could strengthen 
the study’s applicability in addressing future water scarcity and flood risks. 



Hydroecology and Engineering 2025, 2, 10006 17 of 20 

 

4. Conclusions 

For the purpose of optimising the hyperparameters of the support vector machine (regressor) used to forecast 
streamflow in hydrology, this study compared the efficiency of four metaheuristic algorithms: the Binary Slime Mould 
Algorithm (BSMA), the African Vulture Optimisation Algorithm (AVOA), the Archery Algorithm (AA), and the 
Intelligent Ice Fishing Algorithm (IIFA). The study’s findings shed light on each algorithm’s optimisation approaches 
and generalisability. The findings show that different algorithms have different preferences when it comes to the values of 
the hyperparameters, which can have a major effect on how well the SVM model works. Overall, the results show that: 

i. BSMA preferred simpler decision functions; AVOA preferred closer fits to training data; AA preferred controlling 
the complexity-error trade-off; and IIFA sought a balance between the two.  

ii. IIFA and AA consistently outperformed the other algorithms across different scenarios, proving their effectiveness 
in optimising hyperparameters for SVR models in time series prediction. 

iii. Hybrid techniques integrating several metaheuristic algorithms could be the subject of future research if we want 
to improve optimisation performance even further in complicated machine learning problems. 
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