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ABSTRACT: Photoelectrochemical (PEC) water splitting has attracted significant attention in the general field of photocatalysis. 
However, the high cost of constructing PEC systems limits their practical application. Recently, an innovative approach was 
proposed to synthesize linear semiconducting polymer-based films. The polymer structure was optimized for oxidation reactions. 
Furthermore, the active site of the optimal linear polymer was investigated through in-situ characterizations. This work has the 
potential to address the challenges of high material costs and polymer film development in PEC technology. 
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The photoelectrochemical (PEC) system is a promising technology for converting solar energy into chemical 
energy, with broad potential applications in environmental treatment, solar power, and hydrogen-based energy [1–3]. 
The key component of the PEC system is the photoanode. Compared to traditional powder-generated photocatalysis, 
applying a specific voltage on a photo enhances the separation and transfer of photoexcitation charges, leading to 
improved energy conversion efficiency [4–6]. However, materials that can form a stable photoanode while maintaining 
chemical stability and responsiveness under visible light irradiation for chemical conversion are still to be identified [7].  

Compared to traditional inorganic semiconductor materials, organic semiconductor materials offer advantages such 
as flexibility, ease of processing, low cost, and good conductivity [8,9]. Linear polymers, among the earliest 
semiconducting polymers investigated for use as photoelectrodes, have recently seen widespread application of their 
donor-acceptor (D-A) structure to enhance performance in photoredox catalysis [10,11]. However, their performance 
remains challenging. 

In this study [12], linear polymers were synthesized on carbon cloth (CC) using a modified Suzuki-Miyaura 
reaction. Specifically, dibenzo[b,d]thiophene sulfone (FSO) linear conjugated polymer films were formed as 
photoanodes. Traditionally, the Suzuki-Miyaura reaction requires Pd as a catalyst; however, in this synthesis, Pd 
particles were anchored onto the CC via electrochemical deposition, facilitating the formation of the linear polymer on 
the CC. Moreover, the structure of the linear polymer can be easily modified by adjusting the precursor. The resulting 
photoanodes include FSO-Ph, FSO-Px, FSO-Pz, Px, and FSO-DTF, with their polymer unit structure shown in Figure 1. 
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Figure 1. (a) Growth mechanism of linear conjugated polymers on carbon cloth in Suzuki-Miyaura reaction. (b) The chemical 
structures of six linear polymer semiconductors are designed in this paper. Reprinted with permission from ref [12]. Copyright 2024, 
The Royal Society of Chemistry. 

The polymer photoanodes exhibit light absorption over a wide range of wavelengths, demonstrating the ability to 
absorb visible light, with the main absorption peak located between 400 and 450 nm. The FSO photoanode successfully 
operates with a photocurrent density of 140 μA/cm² for the water oxidation reaction. Its highest incident photon-to-
current conversion efficiency (IPCE) reaches 8.5% at a wavelength of 400 nm. Among all the photoanodes tested, the 
FSO photoanode shows the highest photocurrent density for the water oxidation reaction. Consequently, it was applied 
in organic transformations, as shown in Figure 2a. Two typical examples were demonstrated, namely the synthesis of 
N-benzylidene benzylamine by oxidation of benzylamine and the synthesis of methyl phenyl sulfoxide by oxidation of 
methyl phenyl sulfide. The yields and selectivity for the former reaction were 89% and 92%, respectively, while for the 
latter, they were 46% and 99%. The active site on the photoanode was also investigated using in-situ Raman 
spectroscopy. The spectra indicated that the stretching vibrational peaks of the sulfone group exhibited a blue shift as 
the PEC water oxidation reaction proceeded, with a specific response to the reaction (Figure 2b). It is speculated that 
the sulfone group may serve as the active site of the reaction, determining the rate of conversion. 

In summary, the unique design of this polymer photoanode material offers a new approach for PEC systems. The 
rational design of the polymer structure provides the potential to obtain photocatalysts at the molecular level. This 
capability could significantly enhance performance, not only in water oxidation reactions but also in organic 
transformations, with controlled selectivity.  
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Figure 2. (a) Photocurrent densities of the linear polymer photoanodes for the water oxidation reaction. (b) The yield and selectivity 
of FSO polymer photoanodes for two different organic oxidation reactions. Reprinted with permission from ref [12]. Copyright 
2024, The Royal Society of Chemistry. 
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