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ABSTRACT: The memory updating (MU) process is a core component of working memory (WM). To systematically examine the
validity of two commonly used MU tasks as WM measures, the present meta-analysis (76 studies, total N = 16,184) synthesized
results on the correlation between the two MU tasks and two criterion tasks (working memory capacity (WMC) and fluid
intelligence (Gf)). Results indicated a moderate correlation between running memory (RM) and WMC (r = 0.42, 95% CI =[0.37,
0.48]), a weak correlation between n-back and WMC (r = 0.23, 95% CI = [0.19, 0.28]), and moderate correlations between both
RM (r=10.40, 95% CI =10.35, 0.46]) and n-back (= 0.34, 95% CI =[0.32, 0.37]) and Gf. Subgroup analyses showed that memory
load moderated the correlation between RM and WMC, and stimulus-onset asynchrony moderated the correlation between n-back
and both WMC and Gf. The recollection and recognition nature of RM and n-back contributed to their different correlation with
WMC, and the involvement of controlled attention in both tasks accounted for their association with Gf. The present meta-analysis
indicated that RM is a more valid WM measure in behavioral studies on individual differences.
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1. Introduction

Working memory (WM) refers to a cognitive system that “provides temporary storage and manipulation of the
information necessary for complex cognitive tasks” [1]. A core feature of WM is its dynamic nature, as representations
in WM are constantly being updated, with older and no longer relevant information replaced by newer and more relevant
ones [2]. Measures of WM capacity (WMC), such as the most widely used complex span tasks (also referred to as WM
span tasks [3]), have captured this feature of dynamism. For example, in an operation span task, participants need to
solve a math operation and then remember a word before moving to the next operationword pair. At the end of the trial,
they are asked to recall the words in order [4]. In order to complete this task, participants have to update the retained
list of words every time they see a new word. Given its importance, the memory updating (MU) process has been
extensively addressed when investigating WM [5], but systematic evaluation of the validity of MU tasks in measuring
WM is rare.

A commonly used MU task is the running memory (RM) task [6], which requires the participants to watch or listen
to a series of items and then recall a fixed number of the most recent items in sequence (fixed partial recall). The length
of the item series is usually unknown, so the participants have to constantly update their representations of the most
recent items from the beginning to the end of each trial [3]. Multiple operations are involved in the RM task, including
monitoring, encoding, maintaining, and updating representations of the stimuli throughout the trial. Moreover, the non-
stop presentation of stimuli within a trial demands all these processes to be executed in a very short period of time,
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especially simultaneously registering the new stimulus and maintaining the older ones. These characteristics align with
the core elements of WM, and RM has indeed been found to be closely linked with WM. Researchers identified a stable
correlation (moderate to high) between RM and both WMC and fluid intelligence (Gf, the ability to reason and to solve
problems [7]) tasks, supporting RM as a WM task that predicts higher-order cognitive functions [8,9]. Adding to this
notion, neural substrates of RM greatly overlap with that of WM. Neuroimaging studies found that RM mainly relies on the
prefrontal and parietal lobes [10,11], and poor performance on RM was observed in stroke patients with frontal damage [12].

Another frequently used MU task is the n-back task, which requires the participants to monitor a series of stimulus
displayed in sequence, determine whether or not the current item matched the one presented n items ago, and make a
response by key pressing [13]. As in the case of RM, n-back involves multiple cognitive operations, including encoding,
monitoring and maintaining representations of a stimulus, as well as comparing it with a previously maintained one
[14]. Also, frontoparietal activations were found to be associated with n-back tasks (see [15,16] for meta-analyses), and
people with dorsolateral prefrontal dysfunctions, such as schizophrenic had poorer performance on n-back tasks (see
[17] for review). Besides, performance on n-back has also been found to be closely related to Gf[13,18].

Although the face validity of n-back as a WM measure seems to have been endorsed by the above evidence, doubts
on its criterion validity still exist. In contrast with the case of RM, weak or even no correlation was found between n-
back and WMC [13,18-21]. Other researchers argued that these studies had methodological issues such as task selection,
and their studies found wide-ranging correlations (0.17 to 0.51) between n-back and WMC [22].

It is worth noting that n-back and RM bear substantial disparities, although both tasks are popular MU tasks
involving serial representation of stimuli at the center of the screen. During an n-back task, participants are instructed
to compare whether a stimulus matches another, rendering the task familiarity- and recognition-based; during an RM
task, on the other hand, participants are instructed to recall a number of items, making the task recollection-based and
therefore, more similar to complex span tasks. Such differences in the two tasks may result in their discrepant correlation
with WMC. However, there has been no study systematically synthesizing and comparing existing results on the
correlation between these two MU tasks and the criterion tasks.

Several variables within the two MU tasks (n-back and RM) can potentially moderate the MU tasks’ association
with WMC and Gf. First, by altering the memory load in n-back and RM, the updating demands of both MU tasks can
be manipulated. Concerning the fact that the measurement of individual differences in WMC is largely based on
variances in WM load, if the two MU tasks are indeed valid WM measures, their association with WMC is supposed to
vary with memory load. This means that in an MU task, the higher the memory load is, the larger WMC should be
required and the stronger its correlation with WMC measures should be. Another possible moderating variable is
stimulus-onset asynchrony (SOA), which refers to the stimulus presentation rate, and participants tend to use different
strategies during slow- and fast-presentation MU tasks [23]. For example, longer SOAs allow more time for the
participants to rehearse the information, and this difference in strategy utilization can potentially affect the variance
shared by the MU tasks and WMC. Furthermore, the content of stimuli (verbal vs. non-verbal) of a MU task is associated
with domain-specific cognitive processes [24] and, therefore, could contribute to different variances shared by the MU
task and the criterion task. A final candidate moderator is the response method (particularly in n-back tasks), which
influences both the cognitive demands [13] and the updating and decision-making processes [25,26], potentially
affecting the task’s relationship with WMC and Gf. It is, therefore, intriguing whether these within-task variables
influence the validity of n-back and RM as WM measurements.

To sum up, the present meta-analysis focuses on the criterion validity of the two representative MU tasks, namely
the recognition-based n-back and the recollection-based RM. Complex span, the most established measurement of
individual difference in WMC [3,27], was selected as a criterion task. Since an important feature of either WM or MU
is its ability to predict individual differences in higher-order cognition [28-30], Gf was selected as another criterion.
Specifically, the present study aimed to examine: (1) the correlations between the two MU tasks (RM and n-back) and
the two criterion tasks (WMC and Gf); and (2) the moderating effects of two groups of within task variables, such as
task difficulty, on these correlations.

2. Materials and Methods

The present study followed the PRISMA guideline for reporting systematic reviews, including meta-analysis [31,32].
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2.1. Search Strategies and Study Selection

Three online databases (APA PsycInfo, APA PsycArticles and PubMed) and Google Scholar were searched for
relevant articles in June 2023, and a supplementary search was performed in November 2024. Search terms were
determined separately for each combination of the MU tasks (RM and n-back) and the criterion tasks (WMC and Gf).
For example, search terms for articles that used both n-back and WMC tasks (complex span tasks) were: (“back” OR
“2-back” OR “3-back”) AND (“working memory span” OR “operation span” OR “reading span” OR “computation
span” OR “counting span” OR “symmetry span” OR “rotation span”). Four searches were conducted for the four
combinations, and no limit was set on the year of publication (see Table S1 for the full search strategy).

To be included in the present study, an article needed to meet all inclusion criteria and no exclusion criteria.
Inclusion criteria required that: (1) the article was peer-reviewed and published journal article; (2) the study included at
least one of the two MU tasks (RM or n-back) and one criterion task (complex span or Gf test); (3) participants were
healthy adults (above 18 years old); and (4) the article reported Pearson correlation coefficient () between accuracy on
target probes of the MU task and the criterion task, or provided other data that could be used to calculate r. If an article
did not provide such data, the authors were contacted to obtain the necessary information. The article was included if
the required data were obtained through this process. Exclusion criteria were: (1) the n-back task used did not include
either 2- or 3-back. 1-back tasks were excluded since they did not adequately engage MU [33]; while 4-back tasks and
above were excluded since higher loads are relatively less common and may suffer from floor effects and low reliability
[18]. and (2) variants of RM (see [34,35] for example) with major adaptations of the task’s core elements (e.g., SOA >
500 ms and presenting only one stimulus at the center of the screen at one time).

Retrieved records were imported into Endnote X9, and two authors independently screened titles and abstracts of
the records. Relevant studies were then included in the full-text screening process, during which needed information
was extracted to decide the study’s eligibility for inclusion. The two authors discussed the record together when there
was a disagreement, and a third author would join the discussion and provide an opinion if no consensus was reached.

2.2. Coding Process

The author, publication year, and number of experiments were extracted for each article. Further, for each
experiment, we extracted the sample size, memory load of the MU task (n in n-back and number of to be remembered
items), modality of the MU task (type of stimulus), response method of n-back (pressing one or two key), SOA and
Pearson correlation coefficient () between the MU task and the criterion task. Memory load of n-back was coded into
three types: two, three and combined (of two and three), and that of RM was coded into two types: fixed (three or four)
and combined. Stimuli of n-back was coded into verbal if all stimuli were verbal (for example, word, letter or digit) and
non-verbal if non-verbal stimuli (for example, face, spatial or shape) were included in the experiment. SOA of n-back
was coded into two types: equal to or below 2500 ms and above 2500 ms. This cut-off value was decided based on the
Baddeley’s working memory model, which suggested that the phonological loop can maintain information for about 2—
3 s without rehearsal. Therefore, an SOA within this range is considered to reflect “pure” WM [1]. SOA of RM was
also coded into two types: equal to or below 1000 ms and above 1000 ms. This cut-off value was chosen since previous
studies comparing slow- and fast-presentation RM typically used an SOA of 1000 ms or above for the slow-presentation
condition (e.g., [8,23]). Number of response keys in n-back was coded into two types: one key or two keys. Some studies
reported more than one correlation, for example, correlations between 2-back and Gfand 3-back and Gf were reported for a
single experiment. A weighted average r would be calculated for this experiment in such cases.

2.3. Publication Bias Estimation

Publication bias was estimated through a combination of fail-safe numbers (N), Egger’s test, and. Ny, refers to the
number of studies needed to render the meta-results non-significant [36], and a smaller Ny indicates a high possibility
of publication bias. When an Ny is smaller than 5k + 10 (k being the number of studies included in the analysis), there
is an elevated risk that the positive findings have resulted from publication bias instead of actual effects [37]. Concerning
the Egger’s test, an intercept with a large absolute value that reached statistical significance (p < 0.05) indicates a high
risk of publication bias [38] and a need for further exploration. Funnel plots with trim and fill analysis examine the
symmetry of study distribution and estimates adjusted effect sizes by correcting for potential asymmetry in the funnel
plot [39].
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2.4. Statistical Analysis

The analyses were conducted using CMA 3.3. First, a Fisher’s Z score was converted from the original » for each
experiment. With T inverse-variance weighting, these Z scores and standard errors (SE) were used to calculate a
summary Fisher’s Z, which would then be converted back into a summary 7. This summary » was used as an indicator
of effect size, with || within (0.5, 1.0] representing strong, (0.3 to 0.5] moderate, and [0.0, 0.3] weak correlation [40].
Heterogeneity of the studies was examined through a combination of * and the p-value for Cochran’s Q. According to
the Cochrane Handbook, fixed effects models should only be adopted when there is small heterogeneity between the
included studies (7 < 40%). Therefore, if p < 0.05 or I* > 40%, a random effect model would be adopted [41-43]. To
test moderating effects, 95% Cls of the subgroup correlations between the MU and criterion tasks were compared. Non-
overlapping Cls indicate a significant difference between the subgroup correlations and moderating effect [43].

3. Results

A total of 1616 records were retrieved. After removing 366 duplicates, 1250 articles were included in the title and
abstract screening, where 885 were excluded due to irrelevant research object, 86 due to characteristics of the
participants, 1 due to publications being retracted, 7 due to being review study, and 1 being media report. Within the
270 articles retained for full-text screening, 109 were excluded due to irrelevant research objects, 2 due to characteristics
of the participants and 83 due to incomplete data. Finally, 76 articles with a total sample size of 16,184 were included
in the present meta-analysis. Specifically, 27 articles reported the correlation between n-back and WMC, 34 between
n-back and Gf, 22 between RM and WMC, and 21 between RM and Gf. See Supplementary Tables S2—S5 for basic
information on the included studies and Supplementary Figures S1-S4 for the forest plots.

3.1. Publication Bias

Ng for RM and WMC, n-back and WMC, RM and Gf, and n-back and Gf were 5890, 3733, 7284, and 7939,
respectively, much larger than 5k + 10 (Table 1). Also, Egger’s test indicated that the intercepts for the four sets of
studies were —0.10 (p =0.905, 95% CI=[—1.88-1.67]), —0.18 (p =0.837, 95% CI =[—1.92-1.56]), —2.05 (p = 0.084, 95%
CI = [-4.39-0.30]) and 0.32 (p = 0.519, 95% CI = [-0.67-1.31]), respectively. In addition, trim-and-fill analyses
showed no change in the pattern of results. Together, these results indicated low-risk of publication bias.

Table 1. Publication bias of main results.

. Egger’s Test Trim-and-Fill Analyses
Correlation ko N itercept  SE __ 95%CI p Kk Adjustedr __ 95%CI
RM & WMC 23 5890 —0.10 0.85 [-1.88-1.67] 0905 1 0.43 [0.37-0.48]

n-back & WMC 29 3733 —0.18 085 [-1.92-1.56] 0.837 3 0.22 [0.17-0.26]
RM & Gf 22 7284 -2.05 1.13 [-4.39-0.30] 0.084 1 0.39 [0.34-0.45]
n-back & Gf 40 7939 0.32 049  [-0.67-1.31] 0519 7 0.32 [0.29-0.35]

Note. k= the number of studies; SE = standard error; CI = confidence interval; k,= the number of studies trimmed; WMC = working
memory capacity; RM = running memory; Gf = general fluid intelligence.

3.2. Summary Effects

The results of all four heterogeneity tests were statistically significant (p < 0.001, Table 2), and therefore, random
effect models were adopted for all main analyses. Regarding association with WMC, a moderate correlation was found
between RM and WMC (r = 0.42, 95% CI =[0.37, 0.48]), and a weak correlation was found between n-back and WMC
(r=0.23,95% CI=1[0.19, 0.28]). Results indicated that the » for RM was significantly larger than that for n-back, since
there was no overlap between the two 95% Cls. Regarding Gf, a moderate correlation was found between both RM and
Gf (r=10.40, 95% CI = [0.35, 0.46]), and n-back and Gf'(r = 0.34, 95% CI =[0.32, 0.37]). The overlap in the two 95%
Cls indicated that the difference between these two correlations with Gf was not statistically significant.
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Table 2. Meta-analysis of main results and Heterogeneity.

Correlation k Sample Size p Effe;;s: Zé[ for r geterogeneltylz (%)
RM & WMC 23 3239 0.42 [0.37, 0.48] 96.88 *** 77.29
n-back & WMC 29 6456 0.23 [0.19, 0.28] 149.09 *** 81.22
RM & Gf 22 4960 0.40 [0.35, 0.46] 121.59 *** 82.73
n-back & Gf 40 7906 0.34 [0.32, 0.37] 93.85 *** 58.45

Note. k =the number of studies; CI = confidence interval; WMC = working memory capacity; RM = running memory; Gf = general
fluid intelligence. *** p <0.001.

3.3. Moderator Analysis

Random effect models were adopted for all moderator analyses based on the results of the heterogeneity tests (Table
3). For RM, memory load (3 & 4 or combined) and SOA (equal to or below 1000 ms and above 1000 ms) were tested for
moderating effects. Memory load but not SOA was found to be an effective moderator of the correlation between RM and
WMC. Specifically, the correlation was higher in the combined condition (r = 0.48, 95% CI = [0.42, 0.55]) than in the 3
& 4 condition (» = 0.34, 95% CI =[0.28, 0.41]). Regarding the correlation between RM and Gf, no statistically significant
difference was found between the subgroup correlations for either variable. For n-back, memory load (2, 3 or combined),
stimuli (verbal or non-verbal), SOA (equal to or below 2500 ms and above 2500 ms) and response method (1 or 2 keys)
were identified as potential moderators. Only SOA was found to be an effective moderator of the correlation between n-
back and WMC. Specifically, the correlation was higher when SOA was equal to or below 2500 ms (» = 0.29, 95% CI =
[0.25, 0.34]) than above 2500 ms (» = 0.13, 95% CI = [0.04, 0.21]). For each other moderator, there was an overlap in the
subgroup 95% Cls for 7, indicating that there was no statistically significant difference between the subgroup correlations
and that none of these other within-task variables moderated the correlation between n-back and the criterion tasks.

Table 3. Moderator analyses.

Moderator k p Effe;tsiZeCI Torr Z 0 P (%)
load
RM & WMC
Fixed (3 or 4) 11 0.34 [0.28, 0.41] 10.00 *** 29.01 ** 65.53
Mixed 11 0.48 [0.42, 0.55] 15.32 *** 2448 ** 59.14
n-back & WMC
2 11 0.19 [0.11,0.26] 4.86 *** 38.19 #** 73.82
3 12 0.22 [0.16, 0.29] 6.84 *** 54 .33 ¥k 79.75
Mixed 12 0.25 [0.17, 0.34] 5.67 *** 39.48 *** 72.14
RM & Gf
Fixed (3 or 4) 10 0.38 [0.28, 0.49] 7.13 **k 89.84 *** 89.98
Mixed 11 0.42 [0.36, 0.48] 14.32 *** 20.58 ** 66.20
n-back & Gf
2 18 0.33 [0.30, 0.37] 16.88 *** 38.82 ** 56.21
3 17 0.33 [0.28, 0.38] 13.63 *** 46,17 *** 65.35
Mixed 14 0.36 [0.31, 0.40] 16.13 *** 21.86 40.54
SOA
RM & WMC
<1000 7 0.41 [0.33, 0.49] 10.33 *%** 16.05 * 62.61
>1000 11 0.44 [0.35, 0.53] 9.48 *** 68.71 *** 85.45
n-back & WMC
<2500 17 0.29 [0.25, 0.34] 12,95 *** 37.74 ** 57.61
>2500 11 0.13 [0.04,0.21] 3.01 ** 48.28 *** 79.29
RM & Gf
<1000 8 0.43 [0.31, 0.54] 7.3] **k 58.23 *** 87.98
>1000 16 0.39 [0.33,0.45] 12,78 *** 60.13 *** 75.05
n-back & Gf
<2500 25 0.36 [0.33, 0.39] 23.57 *** 46.57 ** 48.46
>2500 12 0.29 [0.23, 0.34] 10.29 *** 32,52 ** 66.17
Stimuli
n-back & WMC
verbal 18 0.23 [0.17, 0.28] 8.28 *** 68.62 *** 75.23
non-verbal 17 0.24 [0.17,0.31] 6.96 *** 82.08 *** 80.51

n-back & Gf
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verbal 21 0.33 [0.30, 0.37] 18.19 *** 59.05 *** 66.13
non-verbal 24 0.35 [0.32, 0.38] 20.39 *** 54.17 *** 57.54
Number of response key
n-back & WMC
One 11 0.20 [0.12, 0.29] 4.57 *** 83.94 *** 88.09
Two 15 0.25 [0.19,0.31] 8.22 H** 46.75 *** 70.05
n-back & Gf
One 21 0.34 [0.31,0.37] 23.46 *** 40.08 * 50.10
Two 17 0.35 [0.30, 0.40] 13.00 *** 53.54 *** 70.12

Note. k =the number of studies; CI = confidence interval; WMC = working memory capacity; RM = running memory; Gf = general
fluid intelligence. * p < 0.05, ** p <0.01, *** p <0.001.

4. Discussion

To add evidence to the debate on whether MU tasks are valid WM measures, the present meta-analysis examined
the criterion validity of the two most widely used MU tasks, namely the n-back task and the RM task. Results indicated
that n-back tasks were weakly correlated with complex span tasks, replicating a previous meta-analysis [21], and
moderately correlated with Gf. In contrast, RM tasks were moderately correlated with both complex span and Gf. It is
worth noting that although the word WMC was used in the results and the following discussions, the complex span task
was selected as the indicator of this theoretical construct throughout the present study. Therefore, when interpreting the results,
it should be borne in mind that our findings cannot necessarily be generalized to other WMC indicators.

4.1. MU and WMC

Although being an established measurement of WMC, the complex span has been criticized for its task impurity
due to the inherent storage-processing trade-off, resulting in difficulty in interpreting individual differences in
performance. Additionally, there have been debates on whether the scoring scheme was reasonable, taking performance
on only the memory task but not the processing task into account [44]. These limitations have motivated researchers to
use MU tasks as alternative indicators of WM, making it intriguing and crucial to examine the relationship between
these MU tasks and complex spans as well as other higher-order cognitive abilities.

MU has long been identified as an important executive process closely correlated with WMC at the level of
individual differences [22,45]. Regarding why this correlation is different for n-back and RM, the types of retrieval
involved in the two tasks can give us a clue. While RM is a recollection-based task requiring serial recall of retained
items, similar to complex span tasks, n-back is recognition-based and requires a serial judgment of matching between
items. In line with this argument, a previous study has explicitly examined how WMC was linked with recognition and
recollection-induced variance [20]. They found that the performance of people with high and low WMC differed on
recollection-based but not recognition/familiarity-based measures. A further Structural Equation Model showed a
correlation between WMC and the recollection but not the familiarity latent factor in tasks involving both. Studies on a
recall-variant of n-back supported the above point of view. This variant asks the participants to recall the n-back item
after displaying a list of stimuli [46,47], turning the task into a recollection-based one that shares more variance with
WMC. We conducted a supplemental analysis and found a moderate correlation (» = 0.44, 95% CI = [0.35, 0.53])
between this recall-variant of n-back and WMC.

The Embedded-Processes Model of WM [48] provided a useful theoretical framework for understanding the
mechanisms underlying recognition- and recollection-based tasks. The model proposed a hierarchical structure within
WM, comprising an activated subset of long-term memory and a capacity-limited focus of attention (FoA), where a
limited storage of representations can be accessed and retrieved quickly. According to this model, the limit of WMC
reflects the number of items that can be stored in FoA [49]. While both types of storage can afford the demands of
recognition tasks, FoA meets the needs of recall tasks [20]. Therefore, during RM and complex span tasks, in order to
successfully recollect the to-be-remembered items, participants need to actively update the contents in FoA, replacing
its storage with the newest relevant items. On the other hand, as performance on n-back tasks is driven mainly by
familiarity-based discrimination [18], representations of the stimuli were more likely to be passively stored [50] and
would soon fade from FoA, leaving traces only in the activated subset long-term memory. Here, items are at a lower
level of activation than in FoA [48] but can still meet the need for recognition tasks. In a word, RM and n-back examine
different layers of WM, with RM focusing on FoA and n-back measuring the activated long-term memory.

Moderator analysis provided further support for the above explanation. The moderation tests on the type of stimuli
and the number of response keys were both non-significant. The type of stimuli is associated with cognitive operations
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specific to certain domains [24], while the number of response keys is associated with response bias and decision
thresholds [25,26]. Therefore, the lack of moderation effects indicated that the observed main results were domain-
general and not subjected to the factors related to decision-making or response process.

Concerning the moderation effects of memory load, the correlation between fixed-load (3 or 4) RM and WMC was
lower than between mixed-load RM and WMC. As the upper limit of memory load in the mixed condition (ranging
from 6 to 8) is much larger than in the fixed condition (see Supplementary Table S3), mixed-load RM casts higher
demand on individual’s ability to update information in FoA of WM and thus, share more variance with individual
difference in WMC. It is worth noting that even the fixed-load RM, where memory load is similar to that in commonly
used n-back, still had a moderate correlation with WMC, higher than that of n-back. That is to say, the stronger
correlation between RM and WMC cannot be explained by the larger memory load of RM than n-back, supporting a
distinction in the WM components that the two MU tasks address. For n-back, on the other hand, memory load did not
moderate its correlation with WMC. Since n-back mainly taps the activated subset of long-term memory, which does
not have a strict capacity limit as FoA [49], it is reasonable that n-back is less sensitive to the manipulation of memory
load than RM. Furthermore, as the capacity of FoA is the major source of variation in WMC, even if the individual
difference in the efficiency of activated long-term memory is better manifested when “n” is larger, the shared variance
between n-back and WMC will remain unchanged. Together, the moderating effects of memory load strengthened the
main result that the recollection-based RM is a more qualified WM measure than the recognition-based n-back.

Concerning the moderator for the association between n-back and WMC, when SOA was longer than 2500 ms, its
correlation with WMC (and also with Gf) was significantly weaker than when SOA was shorter, which may have
resulted from the different components n-back tasks with different SOA emphasize. During MU tasks, updating changed
items and maintaining remembered items have been identified as two separate operations [5,51]. Response time is
required for the updating operation and the switching between updating and maintenance [51]. During a slow-
presentation n-back task, there is more time left for the maintenance of stored items after participants have made a
response for the present trial and updated needed information. Therefore, we argue that n-back with a long SOA, to a
great extent, assesses the maintenance operation rather than focusing on updating efficiency. That means slow-
presentation n-back is more suitable for investigating the representation of maintained information instead of studying
the individual difference in MU.

Beyond theoretical considerations, psychometric factors could contribute to the stronger correlation between RM
and complex span compared to n-back. First, researchers found inconsistent reliability on n-back, and the unsatisfactory
reliability, especially in 3-back, could attenuate the validity of the n-back task [18,52]. Additionally, a higher task
specificity or weaker discrimination power of n-back can be an alternative explanation for its limited shared variances
with other WMC tasks, including complex spans. If supported by future empirical evidence, these characteristics would
suggest that although n-back is suboptimal to measure individual differences in domain-general WMC, it can still serve
as a valid measurement when a specific domain of WM needs to be addressed.

4.2. MU and Gf

Our results have provided evidence for the close association between MU tasks (RM and n-back) and a widely
used construct of higher-order cognition, Gf. This association can be accounted for by controlled attention or cognitive
inhibition in both tasks. Controlled attention refers to a cognitive resource for the active maintenance of useful
information and inhibits distracting information in the face of concurrent processing and/or distractors [53]. Similarly,
cognitive inhibition denotes the ability to resist unwanted mental representations [54]. During both RM and n-back, as
the to-be-remembered items change, controlled attention is essential for inhibiting old and no longer needed items and,
at the same time, maintaining the new relevant ones. Previous studies have revealed that this ability to inhibit irrelevant
information is important in the correlation between MU and Gf. In a variant of n-back, lure trials (probes matching a
more recent item than the nth-to last one) were added to the task to measure the efficiency of inhibition, and compared
with accuracy on the non-lure trials, accuracy on the lure trials was found to more closely associated with Gf.
Furthermore, neural activation specific to the lure trials (mainly in dorsolateral prefrontal and parietal cortex) explained
the correlation between lure-trial accuracy and Gf [7,55]. In the original n-back tasks that the presented study
investigated, although lures are not explicitly labeled, probes matching an item near but not the nth-to last stimuli still
exist, tasking on the ability to inhibit the temptation to endorse these familiar probes.

Controlled attention has also been found to be one of the two components explaining the shared variance between
WMC tasks and Gf, with the other being the capacity component per se [S6—58]. In addition, other lower-level cognitive
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processes are also underlying contributors to the correlation between MU and Gf. According to the Process Overlap
Theory, the commonality between higher-level cognitive tasks often stems from a range of more basic cognitive
processes [59]. For example, processing speed contributes to both the efficiency of WM [60] and Gf'[61], and long-
term memory has been found to account for individual differences in WM and its association with Gf [58]. Therefore,
the weak yet significant correlation between n-back and WMC tasks can also be accounted for by their common
involvement of controlled attention and other lower-level cognitive abilities.

4.3. Limitations and Future Directions

A major limitation of the present meta-analysis is the unguaranteed exhaustiveness of the search strategy. A narrow
review strategy has been adopted, using specific task names rather than broader terms such as “WMC” as searching
terms. While this focused approach allowed for manageable and in-depth analysis, it would have led to relevant studies
being missed, particularly those examining WMC using multiple indicators. Future studies with greater resources can
adopt a more comprehensive search strategy to capture the additional studies. Furthermore, to maximize the quality of
the studies, only peer-reviewed published articles were included, and consequently, we may have left out pertinent grey
literature. However, since tests of asymmetry did not indicate significant publication bias, the exclusion of grey
literature should not have altered the major findings of the present study.

Another issue concerns the moderator analyses. The moderation effects should be interpreted cautiously due to the
relatively small number of included studies in some groups and, therefore, limited statistical power. Additionally, based
on existing theories and literature, only a few moderators most relevant to our research questions were selected. Other
factors, such as load and modality of the complex span task, could also influence its correlation with updating tasks
[21]. However, it is beyond the scope of the present study to thoroughly explore all moderating factors, and future
studies addressing these factors can provide a deeper understanding of the relationship between updating and WMC
measurements.

5. Conclusions

To sum up, the present meta-analysis indicated that while both MU tasks could predict higher-order cognitive
functions, the recollection-based RM was more closely correlated with WMC, the most commonly used WMC measure,
than the recognition-based n-back. We argue that during n-back, the representative executive process of WM, namely
FoA, is less involved than during RM, and RM can, therefore serve better as a valid WM measure in behavioral studies
on individual differences.
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