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ABSTRACT: The memory updating (MU) process is a core component of working memory (WM). To systematically examine the 
validity of two commonly used MU tasks as WM measures, the present meta-analysis (76 studies, total N = 16,184) synthesized 
results on the correlation between the two MU tasks and two criterion tasks (working memory capacity (WMC) and fluid 
intelligence (Gf)). Results indicated a moderate correlation between running memory (RM) and WMC (r = 0.42, 95% CI = [0.37, 
0.48]), a weak correlation between n-back and WMC (r = 0.23, 95% CI = [0.19, 0.28]), and moderate correlations between both 
RM (r = 0.40, 95% CI = [0.35, 0.46]) and n-back (r = 0.34, 95% CI = [0.32, 0.37]) and Gf. Subgroup analyses showed that memory 
load moderated the correlation between RM and WMC, and stimulus-onset asynchrony moderated the correlation between n-back 
and both WMC and Gf. The recollection and recognition nature of RM and n-back contributed to their different correlation with 
WMC, and the involvement of controlled attention in both tasks accounted for their association with Gf. The present meta-analysis 
indicated that RM is a more valid WM measure in behavioral studies on individual differences. 
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1. Introduction 

Working memory (WM) refers to a cognitive system that “provides temporary storage and manipulation of the 
information necessary for complex cognitive tasks” [1]. A core feature of WM is its dynamic nature, as representations 
in WM are constantly being updated, with older and no longer relevant information replaced by newer and more relevant 
ones [2]. Measures of WM capacity (WMC), such as the most widely used complex span tasks (also referred to as WM 
span tasks [3]), have captured this feature of dynamism. For example, in an operation span task, participants need to 
solve a math operation and then remember a word before moving to the next operationword pair. At the end of the trial, 
they are asked to recall the words in order [4]. In order to complete this task, participants have to update the retained 
list of words every time they see a new word. Given its importance, the memory updating (MU) process has been 
extensively addressed when investigating WM [5], but systematic evaluation of the validity of MU tasks in measuring 
WM is rare. 

A commonly used MU task is the running memory (RM) task [6], which requires the participants to watch or listen 
to a series of items and then recall a fixed number of the most recent items in sequence (fixed partial recall). The length 
of the item series is usually unknown, so the participants have to constantly update their representations of the most 
recent items from the beginning to the end of each trial [3]. Multiple operations are involved in the RM task, including 
monitoring, encoding, maintaining, and updating representations of the stimuli throughout the trial. Moreover, the non-
stop presentation of stimuli within a trial demands all these processes to be executed in a very short period of time, 
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especially simultaneously registering the new stimulus and maintaining the older ones. These characteristics align with 
the core elements of WM, and RM has indeed been found to be closely linked with WM. Researchers identified a stable 
correlation (moderate to high) between RM and both WMC and fluid intelligence (Gf, the ability to reason and to solve 
problems [7]) tasks, supporting RM as a WM task that predicts higher-order cognitive functions [8,9]. Adding to this 
notion, neural substrates of RM greatly overlap with that of WM. Neuroimaging studies found that RM mainly relies on the 
prefrontal and parietal lobes [10,11], and poor performance on RM was observed in stroke patients with frontal damage [12]. 

Another frequently used MU task is the n-back task, which requires the participants to monitor a series of stimulus 
displayed in sequence, determine whether or not the current item matched the one presented n items ago, and make a 
response by key pressing [13]. As in the case of RM, n-back involves multiple cognitive operations, including encoding, 
monitoring and maintaining representations of a stimulus, as well as comparing it with a previously maintained one 
[14]. Also, frontoparietal activations were found to be associated with n-back tasks (see [15,16] for meta-analyses), and 
people with dorsolateral prefrontal dysfunctions, such as schizophrenic had poorer performance on n-back tasks (see 
[17] for review). Besides, performance on n-back has also been found to be closely related to Gf [13,18].  

Although the face validity of n-back as a WM measure seems to have been endorsed by the above evidence, doubts 
on its criterion validity still exist. In contrast with the case of RM, weak or even no correlation was found between n-
back and WMC [13,18–21]. Other researchers argued that these studies had methodological issues such as task selection, 
and their studies found wide-ranging correlations (0.17 to 0.51) between n-back and WMC [22]. 

It is worth noting that n-back and RM bear substantial disparities, although both tasks are popular MU tasks 
involving serial representation of stimuli at the center of the screen. During an n-back task, participants are instructed 
to compare whether a stimulus matches another, rendering the task familiarity- and recognition-based; during an RM 
task, on the other hand, participants are instructed to recall a number of items, making the task recollection-based and 
therefore, more similar to complex span tasks. Such differences in the two tasks may result in their discrepant correlation 
with WMC. However, there has been no study systematically synthesizing and comparing existing results on the 
correlation between these two MU tasks and the criterion tasks. 

Several variables within the two MU tasks (n-back and RM) can potentially moderate the MU tasks’ association 
with WMC and Gf. First, by altering the memory load in n-back and RM, the updating demands of both MU tasks can 
be manipulated. Concerning the fact that the measurement of individual differences in WMC is largely based on 
variances in WM load, if the two MU tasks are indeed valid WM measures, their association with WMC is supposed to 
vary with memory load. This means that in an MU task, the higher the memory load is, the larger WMC should be 
required and the stronger its correlation with WMC measures should be. Another possible moderating variable is 
stimulus-onset asynchrony (SOA), which refers to the stimulus presentation rate, and participants tend to use different 
strategies during slow- and fast-presentation MU tasks [23]. For example, longer SOAs allow more time for the 
participants to rehearse the information, and this difference in strategy utilization can potentially affect the variance 
shared by the MU tasks and WMC. Furthermore, the content of stimuli (verbal vs. non-verbal) of a MU task is associated 
with domain-specific cognitive processes [24] and, therefore, could contribute to different variances shared by the MU 
task and the criterion task. A final candidate moderator is the response method (particularly in n-back tasks), which 
influences both the cognitive demands [13] and the updating and decision-making processes [25,26], potentially 
affecting the task’s relationship with WMC and Gf. It is, therefore, intriguing whether these within-task variables 
influence the validity of n-back and RM as WM measurements. 

To sum up, the present meta-analysis focuses on the criterion validity of the two representative MU tasks, namely 
the recognition-based n-back and the recollection-based RM. Complex span, the most established measurement of 
individual difference in WMC [3,27], was selected as a criterion task. Since an important feature of either WM or MU 
is its ability to predict individual differences in higher-order cognition [28–30], Gf was selected as another criterion. 
Specifically, the present study aimed to examine: (1) the correlations between the two MU tasks (RM and n-back) and 
the two criterion tasks (WMC and Gf); and (2) the moderating effects of two groups of within task variables, such as 
task difficulty, on these correlations. 

2. Materials and Methods 

The present study followed the PRISMA guideline for reporting systematic reviews, including meta-analysis [31,32]. 
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2.1. Search Strategies and Study Selection 

Three online databases (APA PsycInfo, APA PsycArticles and PubMed) and Google Scholar were searched for 
relevant articles in June 2023, and a supplementary search was performed in November 2024. Search terms were 
determined separately for each combination of the MU tasks (RM and n-back) and the criterion tasks (WMC and Gf). 
For example, search terms for articles that used both n-back and WMC tasks (complex span tasks) were: (“back” OR 
“2-back” OR “3-back”) AND (“working memory span” OR “operation span” OR “reading span” OR “computation 
span” OR “counting span” OR “symmetry span” OR “rotation span”). Four searches were conducted for the four 
combinations, and no limit was set on the year of publication (see Table S1 for the full search strategy). 

To be included in the present study, an article needed to meet all inclusion criteria and no exclusion criteria. 
Inclusion criteria required that: (1) the article was peer-reviewed and published journal article; (2) the study included at 
least one of the two MU tasks (RM or n-back) and one criterion task (complex span or Gf test); (3) participants were 
healthy adults (above 18 years old); and (4) the article reported Pearson correlation coefficient (r) between accuracy on 
target probes of the MU task and the criterion task, or provided other data that could be used to calculate r. If an article 
did not provide such data, the authors were contacted to obtain the necessary information. The article was included if 
the required data were obtained through this process. Exclusion criteria were: (1) the n-back task used did not include 
either 2- or 3-back. 1-back tasks were excluded since they did not adequately engage MU [33]; while 4-back tasks and 
above were excluded since higher loads are relatively less common and may suffer from floor effects and low reliability 
[18]. and (2) variants of RM (see [34,35] for example) with major adaptations of the task’s core elements (e.g., SOA > 
500 ms and presenting only one stimulus at the center of the screen at one time). 

Retrieved records were imported into Endnote X9, and two authors independently screened titles and abstracts of 
the records. Relevant studies were then included in the full-text screening process, during which needed information 
was extracted to decide the study’s eligibility for inclusion. The two authors discussed the record together when there 
was a disagreement, and a third author would join the discussion and provide an opinion if no consensus was reached. 

2.2. Coding Process 

The author, publication year, and number of experiments were extracted for each article. Further, for each 
experiment, we extracted the sample size, memory load of the MU task (n in n-back and number of to be remembered 
items), modality of the MU task (type of stimulus), response method of n-back (pressing one or two key), SOA and 
Pearson correlation coefficient (r) between the MU task and the criterion task. Memory load of n-back was coded into 
three types: two, three and combined (of two and three), and that of RM was coded into two types: fixed (three or four) 
and combined. Stimuli of n-back was coded into verbal if all stimuli were verbal (for example, word, letter or digit) and 
non-verbal if non-verbal stimuli (for example, face, spatial or shape) were included in the experiment. SOA of n-back 
was coded into two types: equal to or below 2500 ms and above 2500 ms. This cut-off value was decided based on the 
Baddeley’s working memory model, which suggested that the phonological loop can maintain information for about 2–
3 s without rehearsal. Therefore, an SOA within this range is considered to reflect “pure” WM [1]. SOA of RM was 
also coded into two types: equal to or below 1000 ms and above 1000 ms. This cut-off value was chosen since previous 
studies comparing slow- and fast-presentation RM typically used an SOA of 1000 ms or above for the slow-presentation 
condition (e.g., [8,23]). Number of response keys in n-back was coded into two types: one key or two keys. Some studies 
reported more than one correlation, for example, correlations between 2-back and Gf and 3-back and Gf were reported for a 
single experiment. A weighted average r would be calculated for this experiment in such cases. 

2.3. Publication Bias Estimation 

Publication bias was estimated through a combination of fail-safe numbers (Nfs), Egger’s test, and. Nfs refers to the 
number of studies needed to render the meta-results non-significant [36], and a smaller Nfs indicates a high possibility 
of publication bias. When an Nfs is smaller than 5k + 10 (k being the number of studies included in the analysis), there 
is an elevated risk that the positive findings have resulted from publication bias instead of actual effects [37]. Concerning 
the Egger’s test, an intercept with a large absolute value that reached statistical significance (p < 0.05) indicates a high 
risk of publication bias [38] and a need for further exploration. Funnel plots with trim and fill analysis examine the 
symmetry of study distribution and estimates adjusted effect sizes by correcting for potential asymmetry in the funnel 
plot [39]. 
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2.4. Statistical Analysis 

The analyses were conducted using CMA 3.3. First, a Fisher’s Z score was converted from the original r for each 
experiment. With T inverse-variance weighting, these Z scores and standard errors (SE) were used to calculate a 
summary Fisher’s Z, which would then be converted back into a summary r. This summary r was used as an indicator 
of effect size, with |r| within (0.5, 1.0] representing strong, (0.3 to 0.5] moderate, and [0.0, 0.3] weak correlation [40]. 
Heterogeneity of the studies was examined through a combination of I2 and the p-value for Cochran’s Q. According to 
the Cochrane Handbook, fixed effects models should only be adopted when there is small heterogeneity between the 
included studies (I2 < 40%). Therefore, if p ≤ 0.05 or I2 ≥ 40%, a random effect model would be adopted [41–43]. To 
test moderating effects, 95% CIs of the subgroup correlations between the MU and criterion tasks were compared. Non-
overlapping CIs indicate a significant difference between the subgroup correlations and moderating effect [43]. 

3. Results 

A total of 1616 records were retrieved. After removing 366 duplicates, 1250 articles were included in the title and 
abstract screening, where 885 were excluded due to irrelevant research object, 86 due to characteristics of the 
participants, 1 due to publications being retracted, 7 due to being review study, and 1 being media report. Within the 
270 articles retained for full-text screening, 109 were excluded due to irrelevant research objects, 2 due to characteristics 
of the participants and 83 due to incomplete data. Finally, 76 articles with a total sample size of 16,184 were included 
in the present meta-analysis. Specifically, 27 articles reported the correlation between n-back and WMC, 34 between 
n-back and Gf, 22 between RM and WMC, and 21 between RM and Gf. See Supplementary Tables S2–S5 for basic 
information on the included studies and Supplementary Figures S1–S4 for the forest plots. 

3.1. Publication Bias 

Nfs for RM and WMC, n-back and WMC, RM and Gf, and n-back and Gf were 5890, 3733, 7284, and 7939, 
respectively, much larger than 5k + 10 (Table 1). Also, Egger’s test indicated that the intercepts for the four sets of 
studies were −0.10 (p = 0.905, 95% CI = [−1.88–1.67]), −0.18 (p = 0.837, 95% CI = [−1.92–1.56]), −2.05 (p = 0.084, 95% 
CI = [−4.39–0.30]) and 0.32 (p = 0.519, 95% CI = [−0.67–1.31]), respectively. In addition, trim-and-fill analyses 
showed no change in the pattern of results. Together, these results indicated low-risk of publication bias. 

Table 1. Publication bias of main results. 

Correlation k Nfs 
Egger’s Test Trim-and-Fill Analyses 

Intercept SE 95% CI p kt Adjusted r 95% CI 
RM & WMC 23  5890  −0.10  0.85  [−1.88–1.67] 0.905  1 0.43 [0.37–0.48] 

n-back & WMC 29  3733  −0.18  0.85  [−1.92–1.56] 0.837  3 0.22 [0.17–0.26] 
RM & Gf 22  7284  −2.05  1.13  [−4.39–0.30] 0.084  1 0.39 [0.34–0.45] 

n-back & Gf 40  7939  0.32  0.49  [−0.67–1.31] 0.519  7 0.32 [0.29–0.35] 

Note. k = the number of studies; SE = standard error; CI = confidence interval; kt = the number of studies trimmed; WMC = working 
memory capacity; RM = running memory; Gf = general fluid intelligence. 

3.2. Summary Effects 

The results of all four heterogeneity tests were statistically significant (p < 0.001, Table 2), and therefore, random 
effect models were adopted for all main analyses. Regarding association with WMC, a moderate correlation was found 
between RM and WMC (r = 0.42, 95% CI = [0.37, 0.48]), and a weak correlation was found between n-back and WMC 
(r = 0.23, 95% CI = [0.19, 0.28]). Results indicated that the r for RM was significantly larger than that for n-back, since 
there was no overlap between the two 95% CIs. Regarding Gf, a moderate correlation was found between both RM and 
Gf (r = 0.40, 95% CI = [0.35, 0.46]), and n-back and Gf (r = 0.34, 95% CI = [0.32, 0.37]). The overlap in the two 95% 
CIs indicated that the difference between these two correlations with Gf was not statistically significant. 
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Table 2. Meta-analysis of main results and Heterogeneity. 

Correlation k Sample Size 
Effect Size Heterogeneity  

r 95% CI for r Q I2 (%) 
RM & WMC 23  3239 0.42  [0.37, 0.48] 96.88 *** 77.29  

n-back & WMC 29  6456 0.23  [0.19, 0.28] 149.09 *** 81.22  
RM & Gf 22  4960 0.40  [0.35, 0.46] 121.59 *** 82.73  

n-back & Gf 40  7906 0.34  [0.32, 0.37] 93.85 *** 58.45  

Note. k = the number of studies; CI = confidence interval; WMC = working memory capacity; RM = running memory; Gf = general 
fluid intelligence. *** p < 0.001. 

3.3. Moderator Analysis 

Random effect models were adopted for all moderator analyses based on the results of the heterogeneity tests (Table 
3). For RM, memory load (3 & 4 or combined) and SOA (equal to or below 1000 ms and above 1000 ms) were tested for 
moderating effects. Memory load but not SOA was found to be an effective moderator of the correlation between RM and 
WMC. Specifically, the correlation was higher in the combined condition (r = 0.48, 95% CI = [0.42, 0.55]) than in the 3 
& 4 condition (r = 0.34, 95% CI = [0.28, 0.41]). Regarding the correlation between RM and Gf, no statistically significant 
difference was found between the subgroup correlations for either variable. For n-back, memory load (2, 3 or combined), 
stimuli (verbal or non-verbal), SOA (equal to or below 2500 ms and above 2500 ms) and response method (1 or 2 keys) 
were identified as potential moderators. Only SOA was found to be an effective moderator of the correlation between n-
back and WMC. Specifically, the correlation was higher when SOA was equal to or below 2500 ms (r = 0.29, 95% CI = 
[0.25, 0.34]) than above 2500 ms (r = 0.13, 95% CI = [0.04, 0.21]). For each other moderator, there was an overlap in the 
subgroup 95% CIs for r, indicating that there was no statistically significant difference between the subgroup correlations 
and that none of these other within-task variables moderated the correlation between n-back and the criterion tasks. 

Table 3. Moderator analyses. 

Moderator k 
Effect size 

Z Q I2 (%) 
r 95% CI for r 

load       
 RM & WMC       
  Fixed (3 or 4) 11 0.34  [0.28, 0.41] 10.00 *** 29.01 ** 65.53  
  Mixed 11 0.48  [0.42, 0.55] 15.32 *** 24.48 ** 59.14  
 n-back & WMC       
  2 11 0.19  [0.11, 0.26] 4.86 *** 38.19 *** 73.82  
  3 12 0.22  [0.16, 0.29] 6.84 *** 54.33 *** 79.75  
  Mixed 12 0.25  [0.17, 0.34] 5.67 *** 39.48 *** 72.14  
 RM & Gf       
  Fixed (3 or 4) 10 0.38  [0.28, 0.49] 7.13 *** 89.84 *** 89.98  
  Mixed 11 0.42  [0.36, 0.48] 14.32 *** 29.58 ** 66.20  
 n-back & Gf       
  2 18 0.33  [0.30, 0.37] 16.88 *** 38.82 ** 56.21  
  3 17 0.33  [0.28, 0.38] 13.63 *** 46.17 *** 65.35  
  Mixed 14 0.36  [0.31, 0.40] 16.13 *** 21.86  40.54  

SOA        
 RM & WMC       
  ≤1000 7 0.41  [0.33, 0.49] 10.33 *** 16.05 * 62.61  
  >1000 11 0.44  [0.35, 0.53] 9.48 *** 68.71 *** 85.45  
 n-back & WMC       
  ≤2500 17 0.29  [0.25, 0.34] 12.95 *** 37.74 ** 57.61  
  >2500 11 0.13  [0.04, 0.21] 3.01 ** 48.28 *** 79.29  
 RM & Gf       
  ≤1000 8 0.43  [0.31, 0.54] 7.31 *** 58.23 *** 87.98  
  >1000 16 0.39  [0.33, 0.45] 12.78 *** 60.13 *** 75.05  
 n-back & Gf       
  ≤2500 25 0.36  [0.33, 0.39] 23.57 *** 46.57 ** 48.46  
  >2500 12 0.29  [0.23, 0.34] 10.29 *** 32.52 ** 66.17  

Stimuli        
 n-back & WMC       
  verbal 18 0.23  [0.17, 0.28] 8.28 *** 68.62 *** 75.23  
  non-verbal 17 0.24  [0.17, 0.31] 6.96 *** 82.08 *** 80.51  
 n-back & Gf       
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  verbal 21 0.33  [0.30, 0.37] 18.19 *** 59.05 *** 66.13  
  non-verbal 24 0.35  [0.32, 0.38] 20.39 *** 54.17 *** 57.54  

Number of response key       
 n-back & WMC       
  One 11 0.20  [0.12, 0.29] 4.57 *** 83.94 *** 88.09  
  Two 15 0.25  [0.19, 0.31] 8.22 *** 46.75 *** 70.05  
 n-back & Gf       
  One 21 0.34  [0.31, 0.37] 23.46 *** 40.08 * 50.10  

  Two 17 0.35  [0.30, 0.40] 13.00 *** 53.54 *** 70.12  

Note. k = the number of studies; CI = confidence interval; WMC = working memory capacity; RM = running memory; Gf = general 
fluid intelligence. * p < 0.05, ** p < 0.01, *** p < 0.001. 

4. Discussion 

To add evidence to the debate on whether MU tasks are valid WM measures, the present meta-analysis examined 
the criterion validity of the two most widely used MU tasks, namely the n-back task and the RM task. Results indicated 
that n-back tasks were weakly correlated with complex span tasks, replicating a previous meta-analysis [21], and 
moderately correlated with Gf. In contrast, RM tasks were moderately correlated with both complex span and Gf. It is 
worth noting that although the word WMC was used in the results and the following discussions, the complex span task 
was selected as the indicator of this theoretical construct throughout the present study. Therefore, when interpreting the results, 
it should be borne in mind that our findings cannot necessarily be generalized to other WMC indicators. 

4.1. MU and WMC 

Although being an established measurement of WMC, the complex span has been criticized for its task impurity 
due to the inherent storage-processing trade-off, resulting in difficulty in interpreting individual differences in 
performance. Additionally, there have been debates on whether the scoring scheme was reasonable, taking performance 
on only the memory task but not the processing task into account [44]. These limitations have motivated researchers to 
use MU tasks as alternative indicators of WM, making it intriguing and crucial to examine the relationship between 
these MU tasks and complex spans as well as other higher-order cognitive abilities. 

MU has long been identified as an important executive process closely correlated with WMC at the level of 
individual differences [22,45]. Regarding why this correlation is different for n-back and RM, the types of retrieval 
involved in the two tasks can give us a clue. While RM is a recollection-based task requiring serial recall of retained 
items, similar to complex span tasks, n-back is recognition-based and requires a serial judgment of matching between 
items. In line with this argument, a previous study has explicitly examined how WMC was linked with recognition and 
recollection-induced variance [20]. They found that the performance of people with high and low WMC differed on 
recollection-based but not recognition/familiarity-based measures. A further Structural Equation Model showed a 
correlation between WMC and the recollection but not the familiarity latent factor in tasks involving both. Studies on a 
recall-variant of n-back supported the above point of view. This variant asks the participants to recall the n-back item 
after displaying a list of stimuli [46,47], turning the task into a recollection-based one that shares more variance with 
WMC. We conducted a supplemental analysis and found a moderate correlation (r = 0.44, 95% CI = [0.35, 0.53]) 
between this recall-variant of n-back and WMC. 

The Embedded-Processes Model of WM [48] provided a useful theoretical framework for understanding the 
mechanisms underlying recognition- and recollection-based tasks. The model proposed a hierarchical structure within 
WM, comprising an activated subset of long-term memory and a capacity-limited focus of attention (FoA), where a 
limited storage of representations can be accessed and retrieved quickly. According to this model, the limit of WMC 
reflects the number of items that can be stored in FoA [49]. While both types of storage can afford the demands of 
recognition tasks, FoA meets the needs of recall tasks [20]. Therefore, during RM and complex span tasks, in order to 
successfully recollect the to-be-remembered items, participants need to actively update the contents in FoA, replacing 
its storage with the newest relevant items. On the other hand, as performance on n-back tasks is driven mainly by 
familiarity-based discrimination [18], representations of the stimuli were more likely to be passively stored [50] and 
would soon fade from FoA, leaving traces only in the activated subset long-term memory. Here, items are at a lower 
level of activation than in FoA [48] but can still meet the need for recognition tasks. In a word, RM and n-back examine 
different layers of WM, with RM focusing on FoA and n-back measuring the activated long-term memory. 

Moderator analysis provided further support for the above explanation. The moderation tests on the type of stimuli 
and the number of response keys were both non-significant. The type of stimuli is associated with cognitive operations 
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specific to certain domains [24], while the number of response keys is associated with response bias and decision 
thresholds [25,26]. Therefore, the lack of moderation effects indicated that the observed main results were domain-
general and not subjected to the factors related to decision-making or response process. 

Concerning the moderation effects of memory load, the correlation between fixed-load (3 or 4) RM and WMC was 
lower than between mixed-load RM and WMC. As the upper limit of memory load in the mixed condition (ranging 
from 6 to 8) is much larger than in the fixed condition (see Supplementary Table S3), mixed-load RM casts higher 
demand on individual’s ability to update information in FoA of WM and thus, share more variance with individual 
difference in WMC. It is worth noting that even the fixed-load RM, where memory load is similar to that in commonly 
used n-back, still had a moderate correlation with WMC, higher than that of n-back. That is to say, the stronger 
correlation between RM and WMC cannot be explained by the larger memory load of RM than n-back, supporting a 
distinction in the WM components that the two MU tasks address. For n-back, on the other hand, memory load did not 
moderate its correlation with WMC. Since n-back mainly taps the activated subset of long-term memory, which does 
not have a strict capacity limit as FoA [49], it is reasonable that n-back is less sensitive to the manipulation of memory 
load than RM. Furthermore, as the capacity of FoA is the major source of variation in WMC, even if the individual 
difference in the efficiency of activated long-term memory is better manifested when “n” is larger, the shared variance 
between n-back and WMC will remain unchanged. Together, the moderating effects of memory load strengthened the 
main result that the recollection-based RM is a more qualified WM measure than the recognition-based n-back. 

Concerning the moderator for the association between n-back and WMC, when SOA was longer than 2500 ms, its 
correlation with WMC (and also with Gf) was significantly weaker than when SOA was shorter, which may have 
resulted from the different components n-back tasks with different SOA emphasize. During MU tasks, updating changed 
items and maintaining remembered items have been identified as two separate operations [5,51]. Response time is 
required for the updating operation and the switching between updating and maintenance [51]. During a slow-
presentation n-back task, there is more time left for the maintenance of stored items after participants have made a 
response for the present trial and updated needed information. Therefore, we argue that n-back with a long SOA, to a 
great extent, assesses the maintenance operation rather than focusing on updating efficiency. That means slow-
presentation n-back is more suitable for investigating the representation of maintained information instead of studying 
the individual difference in MU. 

Beyond theoretical considerations, psychometric factors could contribute to the stronger correlation between RM 
and complex span compared to n-back. First, researchers found inconsistent reliability on n-back, and the unsatisfactory 
reliability, especially in 3-back, could attenuate the validity of the n-back task [18,52]. Additionally, a higher task 
specificity or weaker discrimination power of n-back can be an alternative explanation for its limited shared variances 
with other WMC tasks, including complex spans. If supported by future empirical evidence, these characteristics would 
suggest that although n-back is suboptimal to measure individual differences in domain-general WMC, it can still serve 
as a valid measurement when a specific domain of WM needs to be addressed. 

4.2. MU and Gf 

Our results have provided evidence for the close association between MU tasks (RM and n-back) and a widely 
used construct of higher-order cognition, Gf. This association can be accounted for by controlled attention or cognitive 
inhibition in both tasks. Controlled attention refers to a cognitive resource for the active maintenance of useful 
information and inhibits distracting information in the face of concurrent processing and/or distractors [53]. Similarly, 
cognitive inhibition denotes the ability to resist unwanted mental representations [54]. During both RM and n-back, as 
the to-be-remembered items change, controlled attention is essential for inhibiting old and no longer needed items and, 
at the same time, maintaining the new relevant ones. Previous studies have revealed that this ability to inhibit irrelevant 
information is important in the correlation between MU and Gf. In a variant of n-back, lure trials (probes matching a 
more recent item than the nth-to last one) were added to the task to measure the efficiency of inhibition, and compared 
with accuracy on the non-lure trials, accuracy on the lure trials was found to more closely associated with Gf. 
Furthermore, neural activation specific to the lure trials (mainly in dorsolateral prefrontal and parietal cortex) explained 
the correlation between lure-trial accuracy and Gf [7,55]. In the original n-back tasks that the presented study 
investigated, although lures are not explicitly labeled, probes matching an item near but not the nth-to last stimuli still 
exist, tasking on the ability to inhibit the temptation to endorse these familiar probes.  

Controlled attention has also been found to be one of the two components explaining the shared variance between 
WMC tasks and Gf, with the other being the capacity component per se [56–58]. In addition, other lower-level cognitive 



Lifespan Development and Mental Health 2025, 1, 10003 8 of 11 

 

processes are also underlying contributors to the correlation between MU and Gf. According to the Process Overlap 
Theory, the commonality between higher-level cognitive tasks often stems from a range of more basic cognitive 
processes [59]. For example, processing speed contributes to both the efficiency of WM [60] and Gf [61], and long-
term memory has been found to account for individual differences in WM and its association with Gf [58]. Therefore, 
the weak yet significant correlation between n-back and WMC tasks can also be accounted for by their common 
involvement of controlled attention and other lower-level cognitive abilities. 

4.3. Limitations and Future Directions 

A major limitation of the present meta-analysis is the unguaranteed exhaustiveness of the search strategy. A narrow 
review strategy has been adopted, using specific task names rather than broader terms such as “WMC” as searching 
terms. While this focused approach allowed for manageable and in-depth analysis, it would have led to relevant studies 
being missed, particularly those examining WMC using multiple indicators. Future studies with greater resources can 
adopt a more comprehensive search strategy to capture the additional studies. Furthermore, to maximize the quality of 
the studies, only peer-reviewed published articles were included, and consequently, we may have left out pertinent grey 
literature. However, since tests of asymmetry did not indicate significant publication bias, the exclusion of grey 
literature should not have altered the major findings of the present study.  

Another issue concerns the moderator analyses. The moderation effects should be interpreted cautiously due to the 
relatively small number of included studies in some groups and, therefore, limited statistical power. Additionally, based 
on existing theories and literature, only a few moderators most relevant to our research questions were selected. Other 
factors, such as load and modality of the complex span task, could also influence its correlation with updating tasks 
[21]. However, it is beyond the scope of the present study to thoroughly explore all moderating factors, and future 
studies addressing these factors can provide a deeper understanding of the relationship between updating and WMC 
measurements.  

5. Conclusions 

To sum up, the present meta-analysis indicated that while both MU tasks could predict higher-order cognitive 
functions, the recollection-based RM was more closely correlated with WMC, the most commonly used WMC measure, 
than the recognition-based n-back. We argue that during n-back, the representative executive process of WM, namely 
FoA, is less involved than during RM, and RM can, therefore serve better as a valid WM measure in behavioral studies 
on individual differences. 
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