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ABSTRACT: Arttificial Intelligence (AI) and Machine Learning (ML) are transforming manufacturing processes, offering
unprecedented opportunities to enhance sustainability and environmental stewardship. This comprehensive review analyzes the
transformative impact of Al technologies on sustainable manufacturing, focusing on critical applications, including energy
optimization, predictive maintenance, waste reduction, and circular economy implementation. Through systematic analysis of
current research and industry practices, the study examines both the opportunities and challenges in deploying Al-driven solutions
for sustainable manufacturing. The findings provide strategic insights for researchers, industry practitioners, and policymakers
working towards intelligent and sustainable manufacturing systems while elucidating emerging trends and future directions in this
rapidly evolving field.
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1. Introduction

The manufacturing sector is at a critical juncture, facing increasing pressure to reduce its environmental footprint
while maintaining productivity and competitiveness. Sustainable manufacturing, which seeks to design and develop
affordable ways of manufacturing perfect products with proven techniques that have little effect on the environment
and use minimal energy and natural resources [1], has become an important tool that helps deal with these challenges.
Simultaneously, the growing development of artificial intelligence (Al) and Machine Learning (ML) technologies has
introduced new opportunities to develop manufacturing fields in different branches [2,3]. The incorporation of Al and
ML into sustainable manufacturing strategies is one of the best ways to foster sustainable development while
simultaneously boosting economic success [4]. Different Al technologies, such as ML, deep learning (DL), and
computer vision (CV), provide significant improvements in resource management, minimize waste, increase energy
efficiency, and secure a sustainable manufacturing environment [5,6].

The advent of Al has heralded a paradigm shift in the manufacturing sector, propelling the Fourth Industrial
Revolution, also known as Industry 4.0 [7]. Al encompasses a diverse array of computational methodologies that endow
machines with capabilities traditionally associated with human cognition, including visual perception, speech
recognition, decision-making, and language translation [8]. Within the manufacturing domain, Al technologies are
integrated across various facets of production processes, spanning from conceptualization and planning to
implementation and quality assurance. The application of Al in manufacturing incorporates multiple interconnected
technologies that synergistically enhance production processes. Machine Learning (ML) serves as the cornerstone of
this technological framework, empowering systems to autonomously learn and refine their performance based on data
analysis, particularly in critical areas such as predictive maintenance and quality control [9]. As a specialized branch of
ML, DL leverages multilayered neural networks to recognize complex patterns, excelling in image and speech
recognition tasks critical for manufacturing operations [10]. CV technology complements these capabilities by
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analyzing visual data using cameras and sensors, thereby facilitating automated inspection and process monitoring [11].
Natural Language Processing (NLP) enables effective human-machine communication and analysis of unstructured text
data, making manufacturing systems more interactive and intelligent [ 12]. Together, these Al technologies have created
a comprehensive framework for advancing manufacturing automation and efficiency.

The integration of Al technologies into manufacturing has led to the development of several innovative and
intelligent manufacturing frameworks. Smart factories represent a significant advancement, featuring highly connected
and digitized production environments that harness Al to optimize operations and dynamically adapt to real-time
conditions. These developments are complemented by Cyber-Physical Systems, which create a seamless merger
between computational and physical processes by utilizing embedded computers and networks to monitor and control
operations through sophisticated feedback mechanisms [13]. Digital twins further enhance these capabilities by creating
accurate virtual replicas of physical assets and processes, leveraging real-time data and Al algorithms to simulate
operations, predict outcomes, and optimize performance across the manufacturing ecosystem [14].

Figure 1 shows how contemporary manufacturing systems have incorporated various Al technologies. These
technologies are functional and linked to important manufacturing processes. ML is used in the context of predictive
maintenance and interaction with augmented reality, whereas DL is used for quality control. CV supports visual
examination and links big data for decision-making. NLP supports process documentation, and the IoT connects to
cyber-physical systems. Digital Twins are connected for diagnostics, demonstrating how these technologies can be
combined to build an intelligent manufacturing ecosystem. This interconnection structure shows how various Al
technologies work in harmony to support manufacturing activities, including maintenance, quality assurance,
documentation, and decision-making, which is a new-generation smart factory model.
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Figure 1. Al Technologies in Manufacturing.

The graph depicted in Figure 2 presents a comprehensive analysis of publication trends in manufacturing
approaches from 2014 to 2024, focusing on the integration of Al, ML, and sustainable practices across four distinct
categories. The visualization demonstrates a significant increase in Manufacturing + Al publications, which dominates
the trend with exponential growth from approximately 100 publications in 2014 to over 3000 by 2024, exhibiting
particularly rapid acceleration after 2020. Subsequently, the Manufacturing + Al + ML category exhibits moderate but
consistent growth, reaching around 800 publications by 2024, indicating increasing interest in combining traditional Al
with machine learning in manufacturing processes. Notably, the categories incorporating sustainable practices
(Manufacturing + Al + Sustainable and Manufacturing + Al + ML + Sustainable) maintain relatively lower publication
numbers throughout the period, suggesting a smaller but steady focus on environmental considerations in Al-enhanced
manufacturing. The graph’s vertical axis represents the “Number of Publications” ranging from 0 to 3500, while the
horizontal axis spans the decade from 2014 to 2024. This visualization effectively highlights the manufacturing sector’s
strong emphasis on Al integration while simultaneously revealing potential growth opportunities in sustainable
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manufacturing practices. The marked contrast between Al-focused publications and those incorporating sustainability
elements indicates a potential gap in research attention that could become increasingly relevant as environmental
concerns continue to gain prominence in industrial sectors. The data suggests that while technological advancement in
manufacturing is rapidly progressing, the integration of sustainable practices with these technological improvements
remains an area for potential future development.

3500
7 | =msm Manufacturing + AI
3000 J | === Manufacturing + AI + ML
] | ==m Manufacturing + AI+ Sustainable
7 | = Manufacturing + AI+ ML + Sustainable
., 2500 ]
E ]
B ]
= 2000
S N
= ]
£ 1500 ]
2 i
E -
| ]
“ 1000 ]
500 7 I |
0 7 - L L L

2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024
Year

Figure 2. Publication trends in the area of Al in sustainable manufacturing. (Data obtained from Web of Science with keywords: “Al +
Manufacturing”, “Al + ML + Manufacturing”, “Al + Sustainable + Manufacturing”, and “Al + ML + Sustainable + Manufacturing”).

2. Al Applications for Sustainable Manufacturing

The integration of Al in sustainable manufacturing makes it possible to achieve reductions in environmental
impacts, optimize resource utilization, and reinforce circular economy principles. Through the integration of Al in
sustainable manufacturing practices, new opportunities have emerged to reduce the environmental impact, maximize
resource utilization, and support a circular economy [15,16]. Research has also shown potential impacts for sustainable
areas like biomedical [17-21], water [22—24], nanomaterials [25-30], Composites [31-33], safety [34,35], etc. This
section examines some of the key areas where Al is making a significant difference in sustainable manufacturing.
Because of the Fourth Industrial Revolution, which is characterized by the fusion of digital, biological, and physical
advancements, Al has been identified as a central technology lever in the modernization of manufacturing processes
[36]. The manufacturing sector is under increasing pressure to adopt more sustainable practices due to global concerns
about climate change, resource depletion, and environmental degradation. The toolkit provided by Al, which has the
ability to handle large amounts of data, identify complicated patterns, and respond to input intelligently and quickly, is
powerful in addressing these challenges [37]. Sustainable manufacturing, as defined by the U.S. Department of
Commerce, involves “the creation of manufactured products that use processes that minimize negative environmental
impacts, conserve energy and natural resources, are safe for employees, communities, and consumers and are
economically sound” [38]. Al technologies are uniquely positioned to support each aspect of this definition, from
optimizing energy use and resource consumption to enhancing worker safety and improving economic outcomes. The
applications of Al in sustainable manufacturing span the entire product lifecycle, from design and production to use and
end-of-life management [39]. Applications of Al in sustainable manufacturing include energy optimization through
consumption monitoring and efficiency enhancement, equipment longevity via predictive analytics, supply chain
network refinement, waste minimization protocols, and lifecycle-oriented product engineering methodologies. Each
area represents a critical leverage point for improving the sustainability of manufacturing operations. By harnessing Al
technologies, manufacturers can not only reduce their environmental footprint but also drive innovation, improve
product quality, and enhance their competitive position in an increasingly sustainability-conscious market. Moreover,
the integration of Al with other emerging technologies, such as the Internet of Things (IoT), blockchain, and advanced
robotics, creates new synergies and possibilities for sustainable manufacturing. For instance, the combination of Al and
IoT enables the creation of “digital twins”—virtual replicas of physical assets or processes that can be used for real-
time monitoring, predictive maintenance, and optimization of resource use [40]. As we delve into each application area,
it is important to note that while Al offers tremendous potential, its implementation in sustainable manufacturing is
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challenging. Issues such as data quality, integration with legacy systems, workforce adaptation, and ethical
considerations must be carefully addressed to fully realize the benefits of Al in this domain [41]. In the following
subsections, we explore each key application area in detail, examine current implementations, quantify benefits where
possible, and discuss emerging trends and future prospects. By providing a comprehensive overview of Al applications
in sustainable manufacturing, this section aims to offer valuable insights for researchers, practitioners, and policymakers
working towards a more sustainable and efficient manufacturing sector.

Table 1 presents a comprehensive analysis of the Al applications in sustainable manufacturing processes and
operations. The table systematically categorizes various research initiatives that address critical challenges in
manufacturing sustainability through Al methodologies. This systematic compilation provides valuable insights into
the current state of Al integration into sustainable manufacturing practices and identifies promising directions for future
research and implementation.

Table 1. Use of Al in sustainable manufacturing.

Research Problem Al Methodology Findings Ref.
Ene.rg.y cgnsumption Genetic Algorithm Achieved .optimal schedule minimizing energy [42]
optimization consumption
Cutting tool life prediction Neuro-fuzzy logic and. Achieved high accuracy in tool life prediction [43,44]

support vector regression
Produgtlp n schedqllng NSGA-II Achieved 4.4% reduction in carbon emissions [45]
(electricity & tardiness)
Production scheduling Ant colony optimization Demonstrated superior results compared to [46]
(makespan & electricity) (ACO) NSGA-II
Ma.chi.ning process parameters Fuzzy logic Achieved >95% accuracy in identifying gptimal [47]
optimization process parameters for green manufacturing
Lean and green concept Artificial Neural Network Enhanced firm performance and enabled [48.49]
adoption in smart manufacturing  (ANN) lean/green production ’
Sustainable scheduling ACO Outperformed NSGA-II in optimization tasks ~ [50]
(completion time & energy)
Optimizing defect rate and . An enhanced decision-making system for

. Decision tree oo . . [51]
operational cost optimizing rework procedures in manufacturing
Milling tool condition Support vector machine Achieved an 85% classification rate for tool [52]
monitoring (SVM) replacement guidance
PCB manufacturing order Deep reinforcement learning  Achieved higher prediction accuracy with an (53]
acceptance (DRL) eco-friendly acceptance rate
Sustainable schedulin o Achieved 9% reduction in energy consumption
(makespan & energy)g Whale swarm optimisation and 69% reduction in computat%c};n time ’ [34]
Smart manufacturing fault Convolutional Neural Developed 2D CNN approach for bearing fault [55]
detection Network (CNN) detection
Quality prediction in milling DL Achi.eyed 92.45% accuracy with 93.14% [56]

precision
Multi-axis additive CNN Achieved 98% accuracy in 3D-printed parts fault [57]
manufacturing fault detection detection
(S);grpﬁf’zzzzﬁl network gggforcement Learning Reduced operational costs by 15% [58]
Enhancing urban renewal Generative Adversarial Reduction in environmental impact and assist [59]
efficiency Network (GAN) factory renovation design
Predictive maintenance for Long Short-Term Memory Improved prediction accuracy for equipment [60]
industrial equipment (LSTM) networks failures

2.1. Applying Al and ML for Energy Management and Efficiency

Al applications, particularly the incorporation of ML algorithms and IoT sensors, have transformed energy
management into sustainable manufacturing. These advanced systems provide real-time monitoring and analysis of
energy usage patterns across various manufacturing processes, equipment, and facilities. Sophisticated Al models,
including deep neural networks (DNN) and RL algorithms, can forecast energy requirements, detect inefficiencies, and
autonomously modify operational parameters to enhance energy efficiency.

Al-powered energy management systems have demonstrated significant potential for reducing energy consumption
in manufacturing plants, with research indicating reductions of greater than 10-20% [61]. According to a comprehensive
review, the implementation of Al has consistently led to energy reductions exceeding 25% across various applications
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[62]. This substantial improvement in energy efficiency can be attributed to the AI’s ability to optimize processes,
predict energy demand, and enable more dynamic and responsive energy management systems. For instance, in Chinese
manufacturing, incorporating an additional unit of industrial robots per hundred workers leads to an approximately 2.5%
reduction in enterprise energy intensity [63]. Labor-intensive and technology-intensive sectors show more significant
reductions in energy intensity than capital-intensive sectors [64]. Digital twins allow manufacturers to model and
optimize energy-consumption scenarios without interrupting ongoing operations [40]. These technologies are especially
potent when combined with smart grid integration, enabling manufacturing facilities to adjust their energy usage
flexibly based on grid demand and pricing fluctuations [41]. Moreover, Al algorithms can enhance production
scheduling to capitalize on off-peak energy rates and renewable energy availability, thereby contributing to both cost
reduction and environmental sustainability objectives [65,66]. Recent case studies from the automotive and chemical
manufacturing industries have shown that Al-enabled energy management systems can significantly reduce carbon
emissions while maintaining or improving production output.

Figure 3 depicts a comprehensive framework for energy management in smart systems, integrating anomaly
detection and diagnosis using unsupervised learning, energy demand prediction through time-series forecasting and
historical data analysis, and real-time optimization leveraging sensor networks, Al algorithms, and actuators to enhance
efficiency metrics. Time-series forecasting models have demonstrated significant utility in predicting the energy
demand within manufacturing facilities with enhanced precision [67]. These models analyze historical energy
consumption data, production schedules, and environmental variables such as meteorological conditions to forecast
future energy requirements. This capability enables manufacturers to optimize production scheduling, negotiate more
advantageous energy contracts, and effectively plan renewable energy integration. Research has compared six ML
algorithms, including ANN, Gaussian regression (GR), and SVM, to predict the power demand and supply in smart
grids. Their analysis revealed that these algorithms performed similarly in both quantitative and qualitative measures
when optimized, particularly for predictable patterns such as solar PV generation and daily power consumption [68]. A
recent study was conducted over a three-year period from January 2020 to January 2023, using energy consumption
data collected from three institutional buildings that had implemented smart building ecosystems. The experimental
methodology involved comprehensive data preprocessing, including handling of missing data and feature importance
analysis, with statistical evaluation of data normality through skewness and kurtosis measurements. For clarity, we have
revised the reporting of our metrics to use more appropriate precision levels: the Boosting Regressor (GBR) model
achieved mean absolute percentage error (MAPE) values of 9.3%, 12.3%, and 4.0% Center of Law and Society (CLAS),
Nursing and Health Innovation (NHAI), and Cronkite, respectively, while mean absolute error (MAE) values were 71.0
and 53.8 for CLAS and Cronkite. All three buildings were analyzed using three supervised machine learning algorithms:
GBR, Long Short-Term Memory (LSTM), and Random Forest (RF), with consistent evaluation metrics applied across
all cases to ensure a fair comparison of model performance [69].

A comprehensive analysis of DL techniques for building energy consumption prediction revealed that memory-
based architectures (LSTMs) demonstrate superior performance compared to stateless networks (MLPs) in time-series
analysis, even without data aggregation through CNNs. Research conducted on an operational office building,
specifically the ICPE facility, indicated that Recurrent Neural Networks (RNNs) achieved a 50% reduction in
Normalized Mean Absolute Error (NMAE), whereas CNNs exhibited optimal performance in datasets characterized by
missing values and consistent trends [70]. A study presented a novel DL-based approach for energy prediction in
machine tools, demonstrating significant performance improvements with accuracy increasing from 19.14% to 74.13%
for grinding machines and from 64.89% to 85.61% for milling machines, compared to conventional handcrafted-feature
methods. The innovative methodology, as shown in Figure 4, employs unsupervised learning for extracting sensitive
energy consumption features from raw machinery data, coupled with supervised learning for prediction model
development, thereby establishing a more generalized and efficient approach to machine tool energy modelling that
requires minimal expert intervention. It is important to note that these predictions are achieved without requiring
additional hardware measurements or sensor installations. The model utilizes existing building data infrastructure to
generate accurate energy consumption forecasts, making it a cost-effective solution for building energy management
systems [71].
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2.2. Predictive Maintenance and Equipment Optimization Using Al & ML

Predictive maintenance powered by Al is revolutionizing equipment management in manufacturing, contributing
significantly to sustainability efforts by reducing downtime, extending the equipment lifespan, and optimizing resource
use [72]. A comprehensive study of Al-driven predictive maintenance in U.S. manufacturing revealed that increased Al
integration leads to significant reductions in downtime and improved operational efficiency while highlighting the
critical role of organizational culture and employee training in successful Al implementation [73].

Figure 5 provides a comprehensive process flow for Al-assisted predictive maintenance, comprising six key stages.
The sequence begins with the identification of maintenance requirements, progresses through the implementation of Al
tools and data analysis, advances to maintenance prediction and scheduling, and culminates in execution. This
systematic approach elucidates how Al transforms conventional maintenance practices into a proactive data-driven
process that enables organizations to anticipate and address equipment maintenance needs prior to the occurrence of
failures. Recent reviews indicate that ANN, particularly LSTM and Bi-LSTM architectures, along with random forests,
have emerged as predominant methods for industrial equipment performance monitoring and failure prediction, with
applications spanning diverse sectors, including the oil and gas, automotive, and coal industries [74]. A comprehensive
review of Al methods for condition monitoring and fault detection of induction motor bearings highlights their critical
role in industrial environments, with particular emphasis on various Al techniques, including signal processing, data
fusion, and expert systems, for early fault diagnosis and the prevention of catastrophic failures [75]. A study reported
that Deep Forest and Gradient Boosting algorithms achieved an average accuracy exceeding 90% in fault-detection
models [76]. A laser welder predictive maintenance model based on the LSTM-AE algorithm achieved an accuracy rate
0f 97.3% and detected equipment abnormalities 27 h before failure, reducing downtime by 18 h compared with existing
processes [77]. Random Forest was found to be the most effective in predicting the machine conditions and failure
modes for a milling machine [78]. These Al-driven solutions enable organizations to move beyond rigid calendar-based
maintenance routines to more intelligent predictive approaches by continuously learning from historical data and real-
time equipment performance metrics. This transformation allows manufacturers to strategically minimize unnecessary
maintenance interventions while ensuring that critical equipment receives timely attention, leading to reduced
production disruptions and extended equipment lifespans.

Identify Need Implement Al =

W Analyze Data Freels

Recognizing
the need for Deploying Al Execute
maintenance technology for Processing Maintenance
maintenance data to predict Forecasting
maintenance maintenance Planning
needs requirements maintenance Carrying out
activities maintenance
tasks

Figure 5. Al-assisted predictive maintenance.

A novel ML-based approach using RL algorithms has shown significant improvements in reducing the downtime
and maintenance costs of parallel working machines [79]. In the aviation industry, a Deep Q-learning algorithm has
been successfully employed to optimize long-term maintenance scheduling for aircraft fleets, resulting in fewer
scheduled checks and increased fleet availability [80]. The knowledge-enhanced reinforcement learning (KERL)
method was developed for multi-machine systems, achieving higher overall business rewards and learning to avoid
failures in stochastic environments [81].

A study on a real-world use case of semiconductor front-end wafer fabrication showed that RL policies can learn
competitive joint scheduling strategies for dispatching and maintenance, considering both internal and external
opportunistic opportunities [82]. Some studies reported even higher improvements in overall equipment effectiveness
(OEE). For instance, a case study in the automotive industry demonstrated an OEE increase of over 5% by implementing
an Al-enhanced methodology for digital shift-books [83]. Another study in a manufacturing company showed an
improvement in OEE from 54.09% to 60.15% (a 6.06 point increase) by implementing Total Productive Maintenance
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(TPM) and Single Minute Exchange of Dies (SMED) [84]. A multinational semiconductor company in the Philippines
reported an increase in OEE from 68% to 87%, indicating a 19-point increase [85].

2.3. Waste Reduction and Recycling Using AI & ML

Al technologies play a significant role in promoting circular economy principles and minimizing the environmental
impact of manufacturing through waste reduction and recycling efforts [22,86]. In the manufacturing sector, digital
technologies, including Al, IoT, and blockchain, enhance visibility, traceability, and collaboration in supply chains,
thereby contributing to the implementation of circular economy principles [87]. Al-driven innovations in waste
management include optimizing waste collection routes, automating sorting processes, and enhancing recycling
efficiency. ML algorithms analyze historical data to predict waste generation patterns, thereby enabling more effective
resource allocation [88]. Notably, the application of Al technologies in waste management varies between developed
and developing regions. In the United States, Al is utilized to optimize advanced waste management infrastructure,
whereas in Africa, Al applications focus on scalable and adaptable solutions, such as crowd-sourced waste reporting
and smart bins for real-time collection route optimization [88]. Al technologies are crucial enablers for transitioning to
a circular economy model. They facilitate the design of sustainable products, enable new circular business models, and
support the broader infrastructure necessary to scale circularity [89]. Multilayer CNNs have been the subject of research
to evaluate the effectiveness of innovative approaches in smart city waste transportation [90]. Contemporary
investigations have explored the application of robotic systems for categorizing recyclable waste from demolition and
reconstruction activities, a process that demands precise segregation of various materials before demolition commences
[91]. The adoption of robotic technology has been shown to improve the efficacy of recyclable waste management for
resource utilization [92]. Within this framework, researchers have developed DL models to estimate the volume of
recoverable waste materials obtainable from structures prior to their demolition [93]. The outcomes of these studies
indicate the viability of accurately predicting the quantities of waste extracted from a building post-demolition based
on its essential characteristics.

Figure 6 presents a comprehensive roadmap for integrating Al into sustainable manufacturing and recycling
processes, which is depicted as a winding road with key milestones. The foundational level illustrates the Material Flow
in Manufacturing, which focuses on visualizing the movement of materials during the production process. The
progression then advances to Predictive Modeling for Waste Generation, wherein Al systems analyze data to forecast
waste patterns [94]. The roadmap encompasses the Design for Recyclability, utilizing Al tools to enhance product
recyclability from the conception phase. The trajectory continued to include CV & Waste Sorting, demonstrating how
Al systems can identify and classify waste materials. Ultimately, this culminates in the Optimization of Recycling
Processes, where Al is employed to maximize the recovery efficiency.

The experimental analysis of garbage classification demonstrated performance variations based on image quality
has been studied. High-quality images achieved detection confidence levels approaching 1.0 for common items, whereas
complex backgrounds reduced detection reliability. The implementation of GAN-based image enhancement improved the
classification accuracy from 89.26% to 91.98%, with kitchen waste detection increasing from 81.82% to 87.88%. These
results quantitatively validated the critical role of image quality optimization in waste classification systems. DL models,
such as MobileNetV2, EfficientNet, and YOLO variants, have been successfully applied to garbage detection and
classification tasks [95-97]. The development of region-specific waste databases has proven crucial for improving
model performance. For instance, the Taiwan Recycled Waste Database (TRWD) outperformed the commonly used
TrashNet dataset when training a YOLO-v3 model for detecting domestic waste specific to Taiwan [97]. This highlights
the importance of tailoring waste sorting systems to the local context. Intelligent waste sorting systems that combine
computer vision, DL, and robotics show great promise in automating and improving recycling processes. These systems
can achieve high accuracy rates and real-time performance even on embedded devices [98].

Figure 7 illustrates a circular waste management approach that uses Al and ML. It depicts a continuous cycle of
waste generation through detection using IoT technology, device interconnection, collection, data visualization,
segregation, and recycling. This advanced approach facilitates efficient monitoring, automated sorting, and sustainable
waste-handling practices. The literature has documented the development of an loT-based digital bin capable of waste
disposal management [99] and air pollutant forecasting in its immediate surroundings [100]. Concurrently, researchers
have explored biogas prediction methodologies using DL models [101]. Several investigations have focused on
predicting industrial waste generation quantities, employing digital research designs that incorporate deep data
augmentation techniques [102] and DL algorithms [103].
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ML algorithms have demonstrated considerable potential in enhancing the efficiency of renewable energy
generation from waste recycling. Research indicates that the application of these techniques can reduce energy
consumption by up to 30%, increase recycling output, and decrease greenhouse gas emissions. The 30% reduction was
calculated based on the aggregate annual energy consumption data, taking into account seasonal variations and
normalized for processing volume [104]. Evolutionary computation, which simulates natural selection to solve
optimization problems, has proven effective in identifying high-performance reinforcement-learning policies. These
approaches can automatically discover optimal representations, manage continuous action spaces, and address partial
observability, in some instances surpassing the performance of traditional temporal difference methods [105]. Recent
advancements have led to the development of adaptive evolutionary algorithms that are specifically tailored to multitask
reinforcement-learning environments. For example, the A-MFEA-RL algorithm incorporates crossover and inheritance
mechanisms to refine the exchange of genetic material, leveraging the multilayered structure of modern DL-based
reinforcement learning models [106]. This approach has shown competitive success rates across simultaneously
addressed tasks and promotes knowledge exchange among synergistic tasks.

The integration of Al, IoT, and blockchain enhances visibility, traceability, and collaboration in manufacturing
supply chains, optimizes resource utilization, and reduces waste generation [87]. These technologies play a crucial role
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in facilitating the transition towards a circular economy by improving the efficiency and effectiveness of recycling and
remanufacturing processes [107]. The Chemical Production and Waste Material Recovery Framework (CP&WMRF)
used an innovative system that outperforms traditional AI-ML approaches in sustainable chemical production and waste
management, achieving superior results across multiple metrics, including resource efficiency (97.5%) and waste
recovery (98.7%), surpassing AI-ML’s 91.5%. The framework integrates circular economy principles with advanced
technologies to transform industrial practices, showcasing how environmentally conscious solutions can be both
economically viable and significantly more effective than conventional methods [108]. Al technologies are making
significant contributions to waste reduction and recycling efforts in manufacturing, promoting circular economy
principles and minimizing environmental impacts.

Al has transformed product design and lifecycle management through four principal innovations. Generative
design tools driven by Al optimize sustainability criteria, resulting in designs that are 25% lighter and 30% more
recyclable, as evidenced in automotive components. The implementation of smart product platforming (SPP) powered
by Al and generative Al, in conjunction with big data analytics and machine learning, has been demonstrated to facilitate
personalized product design and manufacturing suitable for environmentally sustainable products in the circular
economy [109]. This research indicates that SPP and big data analytics are fundamental determinants for manufacturing
environmentally sustainable products, ultimately promoting circular economy applications. The integration of ML with
Life Cycle Assessment (LCA) has demonstrated its effectiveness in predicting environmental impacts and improving
design iterations [110]. The application of ML in material selection has led to substantial reductions in the
environmental footprint, with some studies reporting more than a 20% reduction in almost all environmental impact
indicators [111]. ML algorithms have proven to be valuable tools for enhancing material selection processes,
particularly for evaluating environmental impact and recyclability. Their integration with LCA methodologies has led
to significant reductions in the environmental footprint, often exceeding 20% [111].

Figure 8 depicts an Al-enhanced LCA framework for additive manufacturing, illustrating the progression from
design requirements through CAD, STL, and G-code generation to the final 3D-printed components. This framework
integrates design and process parameters into LCA/LCIA models, employing ML to analyze environmental impacts
(climate change, toxicity, ozone depletion, and land use) and to elucidate the correlations between manufacturing
parameters and environmental outcomes [110]. Al also plays a crucial role in low-carbon manufacturing by optimizing
production and industrial structures, helping achieve carbon emission reduction targets, and sustainable resource
development [112]. The integration of Al and [oT, forming Artificial Intelligence of Things (AloT), offers numerous
benefits to the manufacturing industry, including improved efficiency, waste reduction, and enhanced safety measures
[113]. The integration of Al across these areas enables manufacturers to create more sustainable products while
optimizing their environmental performance throughout their lifespans. In the near future, Artificial superintelligence
(ASI) may potentially surpass human cognitive capabilities across all domains, although it remains a theoretical concept,
as strong Al has not yet been achieved for a more sustainable future.

Q Al
—_— W | — FHOE — —_—
STL IH GCODE
Desigiing Designing parameters Modelling Process parameters
Using AI and ML
ML predicted lists for
design and process
based on

environmental factors Correlation analysis

ML prediction
\ ML model training

Figure 8. LCA using ML and Al for Additive manufacturing process.
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3. Challenges and Limitations

The integration of Al in sustainable manufacturing presents significant opportunities to enhance efficiency and
reduce environmental impact. However, several critical challenges and limitations must be addressed to harness their
potential. Data quality and availability are primary concerns, with inconsistent or incomplete data across manufacturing
processes, a lack of standardized formats, and privacy issues impeding the effectiveness of Al systems [114]. Al-driven
energy management systems for smart buildings face challenges, including data privacy concerns and the need for
skilled personnel to operate and maintain these sophisticated systems [115]. The integration of Al with legacy systems
is a substantial obstacle. Many manufacturing facilities still rely on older equipment and systems, necessitating complex
retrofitting processes and ensuring the compatibility between modern Al software and existing enterprise systems. A
study showed that 65% of manufacturers identified legacy system integration as a major barrier to Al adoption for
sustainability initiatives, highlighting the need for innovative solutions to bridge this technological gap [116]. Skill gap
and workforce adaptation represent significant human resource challenges in the Al-driven sustainable manufacturing
landscape. Another study reported that 72% of manufacturing companies face difficulties in recruiting and retaining Al
talent for sustainability projects, indicating a critical shortage of specialized expertise [117]. This shortage necessitates
comprehensive workforce development strategies, including retraining programs and educational initiatives to prepare
the existing workforce for collaboration with Al systems. Ethical considerations and transparency in Al implementation
raise important questions regarding fairness, bias, and accountability in manufacturing processes [118]. Manufacturing
executives considering Al adoption for sustainability cite a lack of transparency in Al systems as a major concern,
emphasizing the need for explainable Al models and clear governance frameworks [119]. The energy consumption of
Al systems presents a paradoxical challenge to sustainable manufacturing goals. Although Al can significantly enhance
energy efficiency, the computational requirements of complex Al models, particularly during the training phases, can
be substantial. A study demonstrated that the energy consumption of large-scale AI models used in manufacturing
optimization could offset up to 15% of the energy savings they generate, highlighting the urgent need for more energy-
efficient Al architectures and algorithms [120,121]. The resolution of these challenges demands a comprehensive
strategy that integrates technological advancements, policy formulation, and synergistic efforts among industrial,
academic, and governmental sectors. Subsequent investigations should concentrate on formulating sophisticated data
governance frameworks, devising cohesive integration mechanisms for existing systems, addressing the artificial
intelligence competency gap through specialized educational initiatives, formulating ethical protocols and transparency
criteria for Al applications in manufacturing, and pioneering energy-conserving Al methodologies. By systematically
overcoming these obstacles, the manufacturing domain can leverage the transformative capabilities of Al to foster
sustainable operations and contribute to global ecological imperatives.

4. Future Prospects and Research Directions

The future of Al in sustainable manufacturing is set to witness remarkable progress across various domains, each
holding the potential to transform the sector’s approach to environmental responsibility and operational optimization.
A key area of advancement is Explainable Al (XAI), which addresses the existing opacity in Al decision-making
processes [122]. Research has yielded significant strides in this field, introducing an XAl framework for sustainable
manufacturing that achieved a 40% enhancement in user trust and adoption rates when compared to conventional black-
box Al systems [123]. This development emphasizes the crucial role of interpretability in building confidence among
industry stakeholders, potentially expediting the widespread adoption of Al-driven sustainability initiatives. Another
frontier in real-time sustainability optimization for manufacturing settings is the incorporation of Edge Al [124]. This
technology, which brings computational capabilities closer to data sources, presents unparalleled opportunities for swift,
energy-efficient decision-making. Edge and fog computing approaches have demonstrated significant latency
reductions compared to traditional cloud-based systems. A study reports that their proposed Active Queue Management-
based Green Cloud Model (AGCM) for mobile edge computing reduced latency by 84% compared to conventional
cloud models and 65% compared to femtolet models [125]. Reduced latency in edge servers brings significant benefits
in terms of energy consumption, although the exact percentage is not specified [126]. Such a marked improvement in
response time may facilitate more flexible and responsive manufacturing processes, enabling instantaneous adjustments
to curtail waste and energy usage. Al is also expected to play a pivotal role in advancing the circular economy. The
creation of Al-driven material passports and sophisticated algorithms for product lifecycle management is poised to
revolutionize resource utilization and waste reduction in manufacturing. Al-enabled tracking of materials and
equipment has been shown to reduce waste by over 40%, leading to significant cost savings and environmental benefits
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[127]. Al-based models have better prediction abilities compared to other models used in forecasting solid waste
generation and recycling [128]. In 2019, only 17.4% of the world’s e-waste was recycled by formal means, leaving
82.6% untreated or processed informally [129]. This indicates a significant potential for improvement in e-waste
recycling rates, although the paper does not specifically mention Al-driven improvements. A study provided compelling
evidence of Al’s potential in this realm, reporting a 40% increase in material recovery rates and a 30% reduction in
waste generation within the electronics sector through an Al-powered circular economy platform [130]. These results
suggest that Al could be instrumental in closing product lifecycle loops, substantially diminishing the environmental
impact of manufacturing operations. The synergy between human expertise and Al capabilities represents another
critical area for future exploration and development. A study involving mixed human-Al teams outperformed human-
only teams in an emergency response management scenario, with Al-only teams achieving the highest performance
[131]. Various studies underscored the promise of this collaboration, showing that human-Al teams attained superior
environmental performance scores in sustainable product design compared to either human-only or Al-only approaches.
This finding points to a future where Al enhances human creativity and decision-making rather than supplanting it,
paving the way for more innovative and effective sustainability solutions in the manufacturing industry.

Enhancing supply chain resilience through Al is becoming increasingly significant, particularly in response to
recent global disruptions. A study introduced a network optimization model that incorporates both sustainability (via
carbon emissions and embodied carbon footprints) and resilience (by considering location-specific risks) [132]. The
adoption of digital supply chain technology as a strategy for improving overall efficiency and operational resilience is
currently being studied [133]. Studies showed that an Al-powered resilient supply chain model not only reduced carbon
emissions but also improved supply chain responsiveness to disruptions. This dual benefit of environmental
sustainability and operational resilience demonstrates the potential of Al to address complex, multifaceted challenges
in manufacturing supply chains. Further exploration of the future application of quantum computing to sustainable
manufacturing optimization is promising. Although still predominantly theoretical, the potential impacts are substantial.
A study suggests that quantum algorithms could potentially solve facility location-allocation, unit commitment, and
heat exchanger network synthesis problems more efficiently [134]. A study highlights the potential of quantum
computing to revolutionize factory optimization, particularly in supply chain management, which could lead to
increased productivity and reduced environmental impact [135]. Studies proposed that quantum-enhanced optimization
algorithms could potentially improve energy efficiency in complex manufacturing processes compared to classical
methods. Although practical implementations remain a future objective, this research direction underscores the long-
term potential of quantum computing to revolutionize sustainable manufacturing practices.

As these research directions progress, it is evident that the future of Al and ML in sustainable manufacturing will
be characterized by more intelligent, responsive, and integrated systems. From explainable models that engender trust
in edge computing, which enables real-time optimization, to quantum algorithms that address complex sustainability
challenges, Al is poised to drive unprecedented advancements in manufacturing sustainability. The realization of this
potential lies in continued research, interdisciplinary collaboration, and a commitment to developing Al solutions that
are not only powerful but also ethical, transparent, and aligned with long-term sustainability goals.

5. Conclusions

The advent of Al has heralded a new era in sustainable manufacturing, offering innovative approaches to address
long-standing challenges in resource efficiency, waste reduction, and environmental impact mitigation. This
comprehensive review examines the diverse landscape of Al applications within sustainable manufacturing, focusing
on crucial areas such as energy management, predictive maintenance, waste reduction, and product lifecycle
management. The integration of Al technologies across these domains has exhibited significant potential for enhancing
environmental performance while simultaneously maintaining or improving economic viability. The influence of Al on
sustainable manufacturing is both profound and extensive. Al-powered energy optimization systems have demonstrated
the capacity to reduce energy consumption by up to 20%, while predictive maintenance models have successfully
extended equipment lifespan by 25%. These advancements underscore the pivotal role Al can play in advancing
sustainability initiatives within the manufacturing sector. Nevertheless, the path towards fully harnessing AI’s potential
in sustainable manufacturing is fraught with challenges. Issues including data quality, integration with legacy systems,
skill gaps, ethical considerations, and the energy consumption of Al systems pose significant obstacles. These
challenges, though formidable, also present fertile ground for future research and development. Promising avenues for
exploration encompass explainable Al, edge computing, human-Al collaboration, and the application of emerging
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technologies such as quantum computing. The future convergence of Al with other advanced technologies holds the
promise of further revolutionizing sustainable manufacturing. The development of Al-driven circular economy
solutions, resilient and sustainable supply chains, and quantum-enhanced optimization algorithms represents merely a
fraction of the exciting prospects on the horizon. While Al has already made substantial contributions to sustainable
manufacturing, we are likely only at the initial stages of this transformative journey. The way forward necessitates
continued research, interdisciplinary collaboration, and responsible implementation to fully harness AI’s potential in
creating a more sustainable and efficient manufacturing sector. Achieving an equilibrium between technological
innovation and ethical considerations is crucial. The pursuit of sustainability through Al must align with broader societal
goals and values. The future of sustainable manufacturing, empowered by Al and Machine Learning, offers immense
potential for addressing global environmental challenges while simultaneously driving economic growth and innovation.
By embracing these technologies and proactively addressing their associated challenges, the manufacturing industry is
poised to play a pivotal role in shaping a sustainable and prosperous future.
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