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ABSTRACT: In this paper, the distributed leader-follower consensus of a group of agents with second-order dynamics under the 
undirected graph communication topology is studied. The main objective of this study is to solve a major practical multi-agent 
problem in which the acceleration of the leader is not communicated to each follower. In contrast, the follower agents include some 
unknown dynamics in their intrinsic structure. By assuming a linear regression structure for leader acceleration and agent’s 
unknown dynamics, Lyapunov-based adaptive control algorithms are devised to control the network of agents in the presence of the 
communication loss and modeling uncertainties. The presented study describes two multi-agent control strategies called fully-distributed 
adaptive control (FDAC) and partially-distributed adaptive control (PDAC) systems in the first method, the followers do not have any a 
priori information about the communication graph, while in the second method, some information about the eigenvalues of the 
communication graph is available. The mathematical manipulations required to prove the stability of the FDAC and PDAC methods 
are presented. Finally, illustrative simulations are conducted to render the proposed algorithms’ merits and efficiencies. 
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1. Introduction 

Cooperative control of multi-agent systems has been studied intensively over the last two decades. This is due to 
the fact that multi-agent systems have broad applications in diverse areas such as unmanned air vehicles [1], flocking 
[2], formation control [3] and sensor networks [4]. Consensus is an important problem in the area of multi-agent 
systems, and it has been studied comprehensively in the literature. The studies [5,6] are well-known references for the 
review of the most critical problems in the area of multi-agent systems and consensus problems. 

In practice, each agent might be subjected to uncertainty or unknown dynamics. Also, many existing works on 
the leader-follower consensus assumed that the leader input is not zero and is unknown to the followers. In 
leader-follower multi-agent control algorithms, the term “leader” refers to a designated agent or agents that set the 
reference trajectory or control commands for the other agents, known as “followers”. The leader’s role typically 
involves leading behavior, information dissemination, coordination and stability, dynamic response and control 
algorithms. The leader dictates the desired path, behavior, or objectives that the followers are supposed to follow. This 
can include position, velocity, or orientation. Also, the leader often shares information about the environment or the 
desired goals, enabling followers to make informed decisions. On the other hand, the presence of a leader can provide 
stability to the multi-agent system by ensuring that all agents move cohesively toward a common objective, reducing 
the risk of inconsistencies or chaotic behavior among the followers. The leader can adapt its behavior in response to 
external changes (like obstacles or new objectives), guiding the followers to adapt their behavior accordingly. In some 
applications, the leader may implement specific control strategies to maintain a desired formation or behavior. At the 
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same time, followers adjust based on pre-defined rules or algorithms referencing the leader’s state. Finally, in 
practical applications, such as robotics, autonomous vehicles, and drone swarms, the concept of a leader-follower 
framework enhances coordination and cooperative behavior among agents, allowing them to achieve collective tasks 
efficiently. Depending on the existence of the modeling uncertainties, non-zero leader input and unawareness of 
followers from the leader’s input, the consensus problem of multi-agent systems for coping with these problems has 
been studied in diversestudies. The formation problem of a leader-follower multi-agent system in which the agents 
translate togetherhas been studied in [7,8]. In studies [7,8], the authors assumed that only the leader has access to the 
reference velocity. Accordingly, they proposed the decentralized adaptive method for each follower in order to exploit 
the reference velocity. In study [9], the robust decentralized adaptive control approach in which the neural network is 
used has been proposed to solve the consensus problem of the multi-agent systems with uncertainties and external 
disturbances. In the study [10], the neural network has been used to estimate the unknown nonlinearity of the 
first-order agent dynamics. The adaptive estimation approach has been applied to determine the neural network 
weights in order to compensate for the unknown nonlinearity of agent dynamics. As a major consequence, it has been 
proven that the errors of synchronization tracking and the estimation of neural network weights are both uniformly 
ultimately bound. Similar to the study [10], in the study [11], the neural network approach has been applied to the 
high-order dynamic multi-agent system with unknown nonlinear dynamics. In [12], the authors investigated the 
distributed adaptive output synchronization of the networked nonlinear SISO systems, which can be transformed into 
the semi-strict feedback form. In [12], the authors assumed the existence of parameter uncertainty in the dynamics of 
each agent. Then, by application of the back-stepping method and the adaptive parameter updating recursion, the 
output synchronization of the network is analyzed. Authors in a study [13] worked on the first-order leader-follower 
consensus in which the unknown dynamics of each follower and the velocity of the leader were described by the 
linearly parameterized models. In the study [13], consensus stability and parameter convergence have been proven 
under adaptive control algorithms. Similar to [13], in [14], the authors studied the finite time leader-following 
consensus of the high-order multi-agent systems with unknown nonlinear dynamics. In [15], the authors studied a 
decentralized adaptive tracking control of a second-order leader-follower system with unknown dynamics and relative 
position measurements. The two introduced research articles have been cited appropriately in the introduction section. 
Thanks to the information extracted from these research articles, the following text has been added to the introduction 
section. Consensus algorithms are crucial in many real-world applications, enabling decentralized systems to achieve 
agreement among distributed nodes. Understanding the size of a network is vital for optimizing resource allocation 
and ensuring efficient communication. Consensus algorithms can facilitate network size estimation by allowing nodes 
to exchange information about their local views of the network. Approaches like gossip protocols enable nodes to 
share their knowledge iteratively, leading to a collective understanding of the total number of nodes in the system. 
This is particularly useful in mobile ad-hoc networks (MANETs) and Internet of Things (IoT) environments, where 
network topology can dynamically change. In sensor networks and distributed data systems, data aggregation is 
essential for reducing the communication overhead and improving data quality. Consensus algorithms help aggregate 
data collected from various nodes to provide global insights without requiring each node to communicate its data 
directly to a central authority. Techniques like averaging, voting, and weighted sums allow nodes to collaboratively 
compute and share summary statistics, such as the average temperature or humidity readings while maintaining data 
privacy and minimizing bandwidth usage. Unmanned Aerial Vehicles (UAVs) often operate in teams, requiring 
coordinated behaviors such as formation flying or collaborative search and rescue missions. Consensus algorithms 
enable UAVs to agree on actions and trajectories in real-time, ensuring that they operate cohesively despite potential 
communication delays or interruptions. Techniques such as consensus-based flocking algorithms allow each UAV to 
adjust its path based on the positions and velocities of its neighbors, facilitating smooth and efficient formation 
changes in dynamic environments. Consensus mechanisms are fundamental to blockchain and distributed ledger 
technologies, ensuring that all nodes in a network agree on the validity of transactions. Various algorithms, such as 
Proof of Work (PoW), Proof of Stake (PoS), and Practical Byzantine Fault Tolerance (PBFT), facilitate trustless 
environments where multiple parties can securely agree on a shared state without relying on a central authority. This 
application extends to cryptocurrencies, supply chain management, and transparent voting systems. In multi-agent 
systems, consensus algorithms enable autonomous agents to make decisions collaboratively. Applications range from 
robotic swarms performing collective tasks, such as exploration and mapping, to smart grid systems managing energy 
distribution effectively. Agents employ consensus to synchronize their actions, exchange environmental information, 
and adapt to changes in real-time, which enhances the system’s overall efficiency and resilience.Consensus 
algorithms are also integral to achieving fault tolerance in distributed systems. By ensuring agreement among healthy 
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nodes despite the presence of faulty nodes or communication failures, these algorithms enable robust operations in 
systems such as cloud computing and distributed databases. Algorithms like Raft and Paxos are designed to maintain 
a consistent state among nodes even in the face of partial failures, thereby maintaining system reliability. Consensus 
algorithms are foundational to many modern technologies, facilitating decentralized networks’ coordination, data 
integrity, and resilience. Their diverse applications across fields such as sensor networks, UAV control, and 
blockchain underscore their importance in shaping the future of interconnected systems [16,17]. In recent years, the 
development of resilient control strategies for multi-agent systems has garnered significant attention, particularly in the 
face of potential cybersecurity threats. One notable contribution in this area is the work by Zhang et. al, [18]. The study 
[18] presents an innovative adaptive neural consensus tracking control strategy, specifically designed to ensure robust 
coordination among agents while mitigating the effects of actuator attacks. By leveraging jointly connected topologies, 
the proposed approach enhances the system’s resilience and effectiveness, thereby providing a framework for future 
research and applications in dynamic and potentially compromised environments [18]. 

This paper describes the solution procedure of the distributed adaptive coordination problem for second-order 
leader-follower multi-agent systems with unknown nonlinear dynamics under the constraint which imposes the 
availability of only relative position measurements and loss of communication between agents. The authors in a 
similar study [15] assumed that the communication between agents is available, while in this study, the 
aforementioned assumption is not applied during the solution of the problem.  

This paper is organized as follows. Section 2 reviews some basic notation and preliminaries of graph theory and 
formal statement of the problem. In Section 3, the main results of this study are presented. Finally, in Section 4, 
simulation results are shown to illustrate the proposed methods’ effectiveness. The concluding remarks associated 
with PDAC and FDAC methods are given in Section 5. 

2. Preliminaries and Problem Formulation 

Let 𝐺 = (𝑉, 𝐸, 𝑨) is a graph of order 𝑁 with 𝑉 = {1, 2, … , 𝑁} which represents node-set, 𝐸 ⊆ 𝑉 × 𝑉 is the 
set of edges, and 𝑨 is the weighted adjacency matrix with nonnegative elements. An edge (𝑖, 𝑗) denotes that the 
node 𝑗 has access to the information of the node 𝑖. The graph 𝐺 is undirected if (𝑖, 𝑗) ∈ 𝐸 then (𝑗, 𝑖) ∈ 𝐸 for any 
pair of (𝑖, 𝑗). In the undirected graph, two nodes 𝑖 and 𝑗 are neighbors if (𝑖, 𝑗) ∈ 𝐸. Set of neighbors of node 𝑖 is 
shown by 𝑁௜ = {𝑗 ∈ 𝑉 ∶ (𝑗, 𝑖) ∈ 𝐸, 𝑗 ≠ 𝑖}. A path is a sequence of connected edges in a graph. An undirected graph is 
connected if between any pair of distinct nodes 𝑖 and 𝑗 a path exists. In the context of graph theory, a self-loop 
refers to an edge that connects a node to itself, denoted as (𝑖, 𝑖) for some node 𝑖 ∈ 𝑉. In many applications, 
including networked systems, self-loops can be significant as they may represent scenarios where an agent or node 
processes or reflects its information. Additionally, in the definition of this paper, the expression 𝐸 ⊆ 𝑉 × 𝑉 is 
defined so as to imply a generally broad perspective on the types of connections that could exist in the graph. While it 
is technically correct to say that 𝐸 can include self-loops, it might be recognized that the presence of self-loops might 
not always align with the specific applications that are considered. In undirected graphs, self-loops can exist, but they do 
not affect the concept of adjacency between distinct nodes. They are relevant for scenarios where it is required to allow a 
node to have a degree of connection with itself. This can be conceptually important in many applications, such as social 
networks, where individuals may have a relationship with their past actions or decisions. Accordingly, the 𝐸ௗ௜௦௧௜௡௖௧ ≜
{(𝑖, 𝑗) ∈ 𝐸|𝑖 ≠ 𝑗} is defined to emphasize the edges connecting distinct nodes more clearly. 

In addition, for the follower agents 1 to 𝑁, there exists a leader labeled by 0. Information is exchanged between 
the leader and the follower agents, which belong to the neighbors of the leader. Then, the graph �̅� = (𝑉ത, 𝐸ത, 𝑨ഥ) with 
node set 𝑉ത = 𝑉 ∪ {0} and edge set 𝐸ത = 𝑉ത × 𝑉ത , represents the communication topology between the leader and the 
followers. The communication graph between the leader and the followers is assumed to be unidirectional. A network 
topology is assumed to be defined by a graph where nodes represent agents and edges represent communication links. 
While the leader has direct links to certain followers, non-directly linked agents can still receive information through 
a networked relay system. Each follower agent typically communicates within it communication range with its 
immediate neighbors. In situations where an agent does not have a direct link to the leader, it can relay messages. This 
means that the follower can pass on the leader’s commands or state information through a communication chain (i.e., 
from the leader to its direct neighbors and further down the line). To ensure that all agents, including those without 
direct lines to the leader, can achieve consensus, consensus protocols allow agents to update their states based on their 
information and the information received from neighboring agents. For instance, at each time step, a follower updates 
its state by considering the state of its neighbors, thus indirectly incorporating the leader’s influence. The message 
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propagation process explicitly details how the leader’s state or directives are broadcasted throughout the network. 
This may involve strategies such as flooding (where messages are rapidly disseminated) or controlled dissemination 
based on a time or distance metric. The implications of communication delays, packet loss, and the potential need for 
robust communication protocols (such as acknowledgments or redundancy) to ensure that critical information from 
the leader reaches all agents effectively might be further discussed.  

Let the adjacency matrix 𝑨ഥ = ൣ𝑎௜௝൧ ∈ ℛ(ேାଵ)×(ேାଵ) is such that 𝑎௜௝ > 0 if (𝑗, 𝑖) ∈ 𝐸ത  and 𝑎௜௝ = 0, otherwise. 
It is assumed that 𝑎௜௜ = 0 for all 𝑖 ∈ 𝑉ത  and 𝑎଴௝ = 0 for all 𝑗 ∈ 𝑉. The Laplacian matrix 𝑳 = ൣ𝑙௜௝൧ ∈ ℛே×ே is 
defined as 𝑙௜௜ = ∑ 𝑎௜௝

ே
௝ୀଵ  and 𝑙௜௝ = −𝑎௜௝  for 𝑗 ≠ 𝑖 . Finally, the matrix 𝑯  is defined as 𝑯 = 𝑳 +

𝒅𝒊𝒂𝒈(𝑎ଵ଴, … , 𝑎ே଴).  

Lemma 1. (Ni and Cheng [18]):  

(i) The matrix 𝑯 has nonnegative eigenvalues.  
(ii) The matrix 𝑯 is positive definite if and only if the graph �̅� is connected. 

Let 𝜆ଵ, 𝜆ଶ, … , 𝜆ே are the eigenvalues of 𝑯 and 𝜆௠௜௡(𝑯) denotes the smallest eigenvalue of 𝑯. The Lemma 1 
implies that 𝜆௠௜௡(𝑯) > 0 if and only if the graph �̅� is connected. 

Lemma 2. (Boyd et al. [19]): Let 𝑺 be a symmetric real matrix. Suppose that 𝑺 partitioned as 𝑺 = ൤
𝑺ଵଵ 𝑺ଵଶ

𝑺ଵଶ
் 𝑺ଶଶ

൨ 

then 𝑺 ≻ 0 if and only if  

(i) 𝑺ଵଵ ≻ 0 and 𝑺ଶଶ − 𝑺ଵଶ
் 𝑺ଵଵ

ିଵ𝑺ଵଶ ≻ 0 
(ii) 𝑺ଶଶ ≻ 0 and 𝑺ଵଵ − 𝑺ଵଶ𝑺ଶଶ

ିଵ𝑺ଵଶ
் ≻ 0 

Consider a group of agents which consists of 𝑁 followers and a leader. The second-order dynamics of the 
follower agents is given by 

൜
�̇�௜ = 𝑣௜ ,                                           

�̇�௜ = 𝑢௜ + 𝑓௜(𝑡),   𝑖 = 1, 2, … , 𝑁
 (1)

where 𝑥௜ ∈ ℛ, 𝑣௜ ∈ ℛ, 𝑢௜ ∈ ℛ and 𝑓௜ ∈ ℛ are the position, velocity, control input and unknown time-varying 
dynamics of the 𝑖th follower, respectively.  

Also, the dynamic of the leader is governed by the following equation 

൜
�̇�଴ = 𝑣଴,      

�̇�଴ = 𝑢଴(𝑡) 
 (2)

where 𝑥଴ ∈ ℛ, 𝑣଴ ∈ ℛ and 𝑢଴ ∈ ℛ are the position, velocity and acceleration of the leader, respectively.  
The tracking errors of position and velocity of the 𝑖th agent are defined as 𝑥෤௜(𝑡) = 𝑥௜(𝑡) − 𝑥଴(𝑡) and 𝑣෤௜(𝑡) =

𝑣௜(𝑡) − 𝑣଴(𝑡), respectively. Also, the relative position measurement and relative velocity measurement are defined as 

 

(3)

where 𝑎௜௝ is the (𝑖, 𝑗) entry of the adjacency matrix 𝑨ഥ. 

Definition 1. Second order leader-follower consensus of multi-agent system described by (1) and (2) is said to be 
achieved if 

lim
௧→ஶ

𝑥෤௜(𝑡) = 0,   lim
௧→ஶ

𝑣෤௜(𝑡) = 0,      𝑖 = 1,2, … , 𝑁 (4)

3. Solution of the Communication-Loss Problem 

This section deals with the solution procedure for the communication-loss problem in the network of followers 
and leaders. Based on the techniques of classical adaptive control ([15,16]), the unknown acceleration of the leader, 
𝑢଴, and the unknown dynamics of each agent, 𝑓௜(𝑡), can be parameterized approximately as a linear regression form 
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𝑢଴ ≃ 𝝓଴
்(𝑡)𝜽଴,   𝑓௜ ≃ 𝝓௜

்(𝑡)𝜽௜ (5)

where 𝝓଴ ∈ ℛ௠బ and 𝝓௜ ∈ ℛ௠೔ are the basis functions associated with the parameters 𝜽଴ and 𝜽௜. The numbers 
𝑚଴ and 𝑚௜ are the dimension of the basis functions associated with the parameter vectors 𝜽଴ and 𝜽௜, respectively. 
The arrays 𝜽଴ ∈ ℛ௠బ  and 𝜽௜ ∈ ℛ௠೔  are time-invariant parameters of the leader’s acceleration and agents’ 
uncertainties which are unknown to each follower.  

For compensating the terms 𝑢଴ and 𝑓௜, the parameter arrays 𝜽଴ and 𝜽௜ should be estimated by each follower. 
Assume that the 𝑖th follower estimates the 𝜽଴ and 𝜽௜ by 𝜽෡଴௜ and 𝜽෡௜, respectively; and also 𝑢଴ and 𝑓௜ by 𝑢ො଴௜ 
and 𝑓መ௜ which so that 

𝑢ො଴௜ = 𝝓଴
்(𝑡)𝜽෡଴௜ ,   𝑓መ௜ = 𝝓௜

்(𝑡)𝜽෡௜ ,    𝑖 = 1,2, … , 𝑁 (6)

When the velocity measurement of agents is not available, a filter for each follower agent can be implemented 
according to the procedure of study 22, 

𝑤௜ = 𝜗௜ + 𝑏𝑒௫௜,     �̇�௜ = −𝑎𝑤௜ ,    𝑖 = 1, … , 𝑁 (7)

where 𝑤௜ ∈ ℛ and 𝜗௜ ∈ ℛ are the filter output and auxiliary filter vector, respectively. The coefficients 𝑎 and 𝑏 
are positive constant quantities, which are design parameters. By eliminating the auxiliary filter vector, 𝜗௜, (7) can be 
written as 

�̇�௜ = −𝑎𝑤௜ + 𝑏𝑒௩௜ ,    𝑖 = 1, … , 𝑁 (8)

Now, the following adaptive control input is introduced for system (1) as 

𝑢௜ = −𝛼(𝑤௜ + 𝑒௫௜) + 𝝓଴
்(𝑡)𝜽෡଴௜ − 𝝓௜

்(𝑡)𝜽෡௜ ,     𝑖 = 1, … , 𝑁 (9)

where 𝛼 is a positive constant parameter. In (9), the term −𝛼(𝑤௜ + 𝑒௫௜) is stabilizing part. The adaptive terms 
𝝓௜

்(𝑡)𝜽෡௜, 𝝓଴
்(𝑡)𝜽෡଴௜ compensate the unknown dynamics of each agent and leader acceleration, respectively. 

Before giving the adaptive laws for estimated parameter arrays 𝜽෡଴௜, 𝜽෡௜, primitively two auxiliary arrays are 
defined as 

ቊ
𝝍଴௜ = 𝜽෡଴௜ + 𝛽𝝓଴𝑒௫௜ ,                        

𝝍௜ = 𝜽෡௜ − 𝛽𝝓௜𝑒௫௜,      𝑖 = 1, … , 𝑁 
 (10)

Design of the adaptive laws for 𝜽෡଴௜, 𝜽෡௜ is equivalent to design of adaptive laws for auxiliary arrays 𝝍଴௜, 𝝍௜ 
which are given as 

ቊ
�̇�଴௜ = ൫−𝛾𝝓଴ + 𝛽�̇�଴൯𝑒௫௜ + 𝛾𝝓଴𝑤௜,                        

�̇�௜ = ൫𝛾𝝓௜ − 𝛽�̇�௜൯𝑒௫௜ − 𝛾𝝓௜𝑤௜,         𝑖 = 1, … , 𝑁 
 (11)

where 𝛽 and 𝛾 are positive constant parameters. By substituting (10) in (11), the following result appears 

ቊ
𝜽෡̇଴௜ = −𝛾𝝓଴𝑒௫௜ − 𝛽𝝓଴𝑒௩௜ + 𝛾𝝓଴𝑤௜,                        

𝜽෡̇௜ = 𝛾𝝓௜𝑒௫௜ + 𝛽𝝓௜𝑒௩௜ − 𝛾𝝓௜𝑤௜,         𝑖 = 1, … , 𝑁 
 (12)

By application of the (7) and (9) to the system (1) and (2), the closed-loop system can be written as  

ቐ
𝒙෥̇ = 𝒗෥,                                                    

𝒗෥̇ = −𝛼𝑯𝒙෥ − 𝛼𝒘 + 𝜱଴
்𝜣෩଴ − 𝜱்𝜣෩,

�̇� = 𝑏𝑯𝒗෥ − 𝑎𝒘                                   

 (13)

With the adaptive laws 

ቊ
𝜣෩̇଴ = −𝛾𝜱଴𝑯𝒙෥ − 𝛽𝜱଴𝑯𝒗෥ + 𝛾𝜱଴𝒘,

𝜣෩̇ = 𝛾𝜱𝑯𝒙෥ + 𝛽𝜱𝑯𝒗෥ − 𝛾𝜱𝒘             
 (14)

where 𝒙෥ = 𝑐𝑜𝑙{𝑥෤ଵ, … , 𝑥෤ே}, 𝒗෥ = 𝑐𝑜𝑙{𝑣෤ଵ, … , 𝑣෤ே}, 𝒘 = 𝑐𝑜𝑙{𝑤ଵ, … , 𝑤ே}, 𝜣෩଴ = 𝑐𝑜𝑙൛𝜽෩଴ଵ, … , 𝜽෩଴ேൟ, 𝜣෩ = 𝑐𝑜𝑙൛𝜽෩ଵ, … , 𝜽෩ேൟ, 
𝜱଴ = 𝑰ே ⊗ 𝝓଴(𝑡), 𝜱 = 𝒅𝒊𝒂𝒈{𝝓ଵ, … , 𝝓ே} and also 𝜽෩଴௜ = 𝜽෡଴௜ − 𝜽଴, 𝜽෩௜ = 𝜽෡௜ − 𝜽௜. 

The following theorem presents a sufficient condition for the stability of the closed-loop system (13) and (14).  
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Theorem 1. (PDAC Method): It is supposed that in the leader-following system (1) and (2), 𝐺 is undirected in �̅� 
the leader has directed paths to all followers, and the basic functions 𝝓଴ and 𝝓௜ are uniformly bounded. Then, the 
leader-following consensus under (9) and (11) is achieved if the following conditions are satisfied 

⎩
⎪
⎨

⎪
⎧ 𝑏 > 1, 𝑎 >

𝛾

𝛽
𝑏,                                                                             

𝛼 > 𝑚𝑎𝑥 ൞
1 + 𝑏

𝜆௠௜௡
൬

𝛾

𝛽
൰

ଶ

,
𝑎ଶ ൬

𝛾
𝛽

൰

4(𝑏 − 1) ൬
𝑎
𝑏

−
𝛾
𝛽

൰ 𝜆௠௜௡

 ൢ,   𝜆௠௜௡ = 𝜆௠௜௡(𝑯)
 (15)

Proof. If 𝒛 = [𝒙෥் 𝒗෥் 𝒘்]், the following Lyapunov function can be introduced 

𝑉൫𝒙෥, 𝒗෥, 𝒘, 𝜣෩଴, 𝜣෩൯ = 𝛼𝛽𝒙෥்𝑯ଶ𝒙෥ + 2𝛾𝒙෥்𝑯𝒗෥ + 𝛽𝒗෥்𝑯𝒗෥ − 2𝛾𝒗෥்𝒘 +
𝛼𝛽

𝑏
𝒘்𝒘 + 𝜣෩଴

்𝜣෩଴ + 𝜣෩்𝜣෩       

                           = 𝒛்

⎣
⎢
⎢
⎡
𝛼𝛽𝑯ଶ 𝛾𝑯 𝟎ே×ே

𝛾𝑯 𝛽𝑯 −𝛾𝑰ே

𝟎ே×ே −𝛾𝑰ே

𝛼𝛽

𝑏
𝑰ே⎦

⎥
⎥
⎤

ᇣᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇥ
𝑷

𝒛 + 𝜣෩଴
்𝜣෩଴ + 𝜣෩்𝜣෩                                                

 (16)

The function 𝑉 is a positive definite function if and only if the matrix 𝑷 is a positive definite matrix. By 

application of Lemma 2, the matrix 𝑷  is a positive definite matrix if and only if ൤
𝛼𝛽𝑯ଶ 𝛾𝑯

𝛾𝑯 𝛽𝑯
൨ −

௕

ఈఉ
൤
𝟎ே×ே

−𝛾𝑰ே
൨ [𝟎ே×ே −𝛾𝑰ே] ≻ 0  and 

ఈఉ

௕
𝑰ே ≻ 0 . And also, ൤

𝛼𝛽𝑯ଶ 𝛾𝑯
𝛾𝑯 𝛽𝑯

൨ −
௕

ఈఉ
൤
𝟎ே×ே

−𝛾𝑰ே
൨ [𝟎ே×ே −𝛾𝑰ே] =

൥
𝛼𝛽𝑯ଶ 𝛾𝑯

𝛾𝑯 𝛽𝑯 −
௕

ఈఉ
𝛾ଶ𝑰ே

൩ ≻ 0 if and only if 𝛽𝑯 −
(ଵା௕)

ఈఉ
𝛾ଶ𝑰ே ≻ 0 and 𝛼𝛽𝑯ଶ ≻ 0. Since the graph 𝐺 is undirected 

and in �̅� the leader has directed paths to all followers; we can get from Lemma 1 that the matrix 𝑯 is a symmetric 

positive definite matrix and also 𝛼, 𝛽, 𝑏 > 0, which leads to 
ఈఉ

௕
𝑰ே ≻ 0, 𝛼𝛽𝑯ଶ ≻ 0. Also, from Lemma 1, it is known 

that 𝑯 ≻ 𝜆௠௜௡𝑰ே; then, if 𝛼 >
ଵା௕

ఒ೘೔೙
ቀ

ఊ

ఉ
ቁ

ଶ
 it is concluded that 𝛽𝑯 −

(ଵା௕)

ఈఉ
𝛾ଶ𝑰ே ≻ 0, which consequently results 

𝑷 ≻ 0 and 𝑉 is a positive definite function. 
Now, by time differentiation of 𝑉 along (13), (14), 

 

(17)

By simplifying (17) and giving a pretty form to it, 

�̇�൫𝒙෥, 𝒗෥, 𝒘, 𝜣෩଴, 𝜣෩൯ = −2𝛼𝛾𝒙෥்𝑯ଶ𝒙෥ − 2(𝑏 − 1)𝛾𝒗෥்𝑯𝒗෥ + 2𝑎𝛾𝒗෥்𝒘 − 2 ൬
𝑎𝛼𝛽

𝑏
− 𝛼𝛾൰ 𝒘்𝒘 

 = −𝒛்

⎣
⎢
⎢
⎡
2𝛼𝛾𝑯ଶ 𝟎ே×ே 𝟎ே×ே

𝟎ே×ே 2(𝑏 − 1)𝛾𝑯 −𝑎𝛾𝑰ே

𝟎ே×ே −𝑎𝛾𝑰ே 2 ൬
𝑎𝛼𝛽

𝑏
− 𝛼𝛾൰ 𝑰ே⎦

⎥
⎥
⎤

ᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥ
𝑸

𝒛 
 (18)

The matrix 𝑸 is a positive definite matrix if and only if ቈ
2(𝑏 − 1)𝛾𝑯 −𝑎𝛾𝑰ே

−𝑎𝛾𝑰ே 2 ቀ
௔ఈఉ

௕
− 𝛼𝛾ቁ 𝑰ே

቉ ≻ 0 and 2𝛼𝛾𝑯ଶ ≻

0. By application of the Lemma 2, ቈ
2(𝑏 − 1)𝛾𝑯 −𝑎𝛾𝑰ே

−𝑎𝛾𝑰ே 2 ቀ
௔ఈఉ

௕
− 𝛼𝛾ቁ 𝑰ே

቉ ≻ 0 if and only if 2(𝑏 − 1)𝛾𝑯 ≻ 0 and 



Drones and Autonomous Vehicles 2024, 1, 10014 7 of 24 

 

2(𝑏 − 1)𝛾𝑯 −
௔మఊమ

ଶఈఉቀ
ೌ

್
ି

ം

ഁ
ቁ

𝑰ே ≻ 0 . If condition (15) is satisfied, then the results 2(𝑏 − 1)𝛾𝑯 −
௔మఊమ

ଶఈఉቀ
ೌ

್
ି

ം

ഁ
ቁ

𝑰ே ≻ 0 , 

2(𝑏 − 1)𝛾𝑯 ≻ 0 are concluded. Hence, the matrix 𝑸 is a positive definite matrix and �̇� is negative semi-definite. 
The function 𝑉 is a positive quantity, so it is lower bound. Also �̇� is negative semi-definite. Since �̇� is 

negative semi-definite, it is concluded that 𝒛, 𝜣෩଴, 𝜣෩  are bounded. Thus, from (13), (14) and uniformly boundedness 
condition of the basis functions 𝝓଴ and 𝝓௜, �̇� is bounded. By taking the derivative of �̇� in (18) along (13), (14), 
the �̈�  is assessed to be bounded. Now, by resorting to the Barbalat’s Lemma [20] that lim

௧→ஶ
�̇�(𝑡) = 0 , the 

consequence lim
௧→ஶ

𝒛(𝑡) = 0 is achieved. □ 

Specific Example 1. Consider a multi-agent system with one leader and follower. Assume that 𝑢଴(𝑡) = 1.0 and 
𝑓ଵ(𝑡) = 1.0. Also assume that 𝑎ଵ଴ = 1.0 then 

𝑒௫ଵ = 𝑥෤ଵ (19)

By selecting the basis function 𝜙଴ = 1.0 and 𝜙ଵ = 1.0, Adaptive laws based on Equation (11) can be written 
as given 

ቊ
�̇�଴ଵ = −𝛾𝑥෤ଵ + 𝛾𝑤ଵ,              

�̇�ଵ = 𝛾𝑥෤ଵ − 𝛾𝑤ଵ,                   
 (20)

and from Equation (10), 𝜃෠଴ଵ and 𝜃෠ଵ can be written as 

ቊ
𝜃෠଴ଵ = 𝜓଴ଵ − 𝛽𝑥෤ଵ,   

𝜃෠ଵ = 𝜓ଵ + 𝛽𝑥෤ଵ        
 (21)

Differentiating from the above equation gives the following set of differential equations 

ቊ
𝜃෨̇଴ଵ = −𝛾𝑥෤ଵ − 𝛽𝑣෤ଵ + 𝛾𝑤ଵ,    

𝜃෨̇ଵ = 𝛾𝑥෤ଵ + 𝛽𝑣෤ଵ − 𝛾𝑤ଵ          
 (22)

Finally, the closed-loop system is given as follows 

ቐ

𝑥෤̇ଵ = 𝑣෤ଵ,                                                   

𝑣෤̇ଵ = −𝛼𝑥෤ଵ − 𝛼𝑤ଵ + 𝜃෨଴ଵ − 𝜃෨ଵ,          
�̇�ଵ = 𝑏𝑣෤ଵ − 𝑎𝑤ଵ                                   

 (23)

By defining 𝜔 = 𝜃෨଴ଵ − 𝜃෨ଵ and selecting 𝑎 = 1, 𝑏 = 2, 𝛼 = 2, 𝛽 = 3, 𝛾 = 1 such that the (15) satisfied, the (22) 
and (23) can be written as  

൦

𝑥෤̇ଵ

𝑣෤̇ଵ

�̇�ଵ

�̇�

൪ = ቎

 0     1
−2    0

  0 0
−2 1

   0  2
 −2 −6

−1 0
  2 0

቏

ᇣᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇥ
𝚵

቎

𝑥෤ଵ

𝑣෤ଵ
𝑤ଵ

𝜔

቏ (24)

The stability of the system (24) depends on the eigenvalues of the matrix 𝚵. The eigenvalues of the matrix 𝚵 are 
𝜆 = −0.2445 ± 3.3938𝑖, −0.2555 ± 0.3278𝑖 which implies the exponential stability of (24). 

Remark 1. To satisfy the condition on control gain 𝛼 in Theorem 1, centralized information depending on the 
communication graph must be known in advance for the control gain design. Due to this reason, the control algorithm 
(9), (11) proposed to the multi-agent system (1), (2) is not distributed. So, in order to design a fully distributed 
consensus algorithm, the adaptive gain method introduced in [21,22] is applied. The question regarding the feasibility 
of determining the necessary eigenvalues in a distributed manner is pertinent and highlights the challenges inherent in 
decentralized control systems. In multi-agent systems, the eigenvalues of the system’s coupling matrix (often derived 
from the graph that represents the connectivity of agents) play a critical role in assessing system stability, 
convergence properties, and performance. These values may relate to the system’s ability to achieve consensus, 
formation, and control objectives. While techniques are available for distributed computation of eigenvalues, such as 
consensus algorithms or distributed iterative methods (e.g., power iteration and methods based on local coordination), 
these approaches can be computationally intensive. They may require multiple iterations to converge to an accurate 
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value. The feasibility of such methods largely depends on the graph topology and the network’s connectivity. In many 
practical scenarios, having prior knowledge of certain eigenvalues (e.g., the largest eigenvalue correlated with the 
system’s stability) can significantly simplify the design and implementation of control strategies. When these 
eigenvalues are known, controllers can be designed with specific bandwidth and robustness properties in mind. 
However, in the absence of such knowledge, algorithms that enable distributed estimation of eigenvalues can be 
employed. Additionally, approximate methods for estimating eigenvalues or using local information to infer global 
properties can sometimes be effective. Distributed algorithms can leverage neighboring agents’ relative positions and 
velocities to asymptotically converge on the desired values. While it is certainly possible to determine eigenvalues in 
a distributed manner, the effectiveness and efficiency of such an approach can vary based on specific system 
dynamics and network topology. Therefore, if prior knowledge of these eigenvalues is available, it can greatly 
enhance the control system’s design and performance. 

According to Remark 1, an adaptive control algorithm that is fully distributed is introduced. Consider the 
following control law 

𝑢௜ = −𝑐௜(𝑡)(𝑤௜ + 𝑒௫௜) + 𝝓଴
்(𝑡)𝜽෡଴௜ − 𝝓௜

்(𝑡)𝜽෡௜ ,     𝑖 = 1, … , 𝑁 (25)

where, 𝑐௜(𝑡) is the adaptive gain.  
Before giving adaptive law for 𝑐௜(𝑡), an auxiliary parameter is defined as 

𝜂௜(𝑡) = 𝑐௜(𝑡) − 𝜇𝛽𝑒௫௜𝑤௜ + 𝜇𝛽(𝑏 − 1)𝑒௫௜
ଶ ,     𝑖 = 1, … , 𝑁 (26)

where 𝜇 is a positive constant parameter. The adaptation law for 𝜂௜ is given as 

�̇�௜ = 𝜇൫𝛾𝑒௫௜
ଶ + 𝛽𝑎𝑒௫௜𝑤௜ − 𝛾𝑤௜

ଶ൯,   𝑖 = 1, … , 𝑁 (27)

The parameters 𝑎, 𝑏, 𝛽 and 𝛾 were introduced previously by (7) and (11). Similar to (12), by substituting (26) 
into (27), the following result is obtained  

�̇�௜ = 𝜇൫𝛾𝑒௫௜
ଶ + 𝛽𝑒௫௜𝑒௩௜ + 𝛽𝑒௩௜𝑤௜ − 𝛾𝑤௜

ଶ൯,   𝑖 = 1, … , 𝑁 (28)

By application of (19) to system (1), (2), the feedback form of the system is obtained as  

ቐ
𝒙෥̇ = 𝒗෥,                                                                

𝒗෥̇ = −𝑪(𝑡)𝑯𝒙෥ − 𝑪(𝑡)𝒘 + 𝜱଴
்𝜣෩଴ − 𝜱்𝜣෩,

�̇� = 𝑏𝑯𝒗෥ − 𝑎𝒘                                               

 (29)

where 𝑪(𝑡) = 𝑑𝑖𝑎𝑔{𝑐ଵ(𝑡), … , 𝑐ே(𝑡)}. 
Now, the second theorem of this study is presented.  

Theorem 2. (FDAC Method): It is supposed that in the leader-following system (1) and (2), 𝐺 is undirected in �̅� 
the leader has directed paths to all followers, and the basis functions 𝝓଴ and 𝝓௜ are uniformly bounded. Then, the 
leader-following consensus under (11), (25) and (27) is achieved if the following conditions are satisfied 

𝑏 > 1,   𝑎 >
𝛾

𝛽
𝑏 (30)

Proof. If 𝒛 = [𝒙෥் 𝒗෥் 𝒘்]், the following Lyapunov function can be introduced 

𝑉൫𝒙෥, 𝒗෥, 𝒘, 𝜣෩ ଴, 𝜣෩൯ = 𝛼𝛽𝒙෥்𝑯ଶ𝒙෥ + 2𝛾𝒙෥்𝑯𝒗෥ + 𝛽𝒗෥்𝑯𝒗෥ − 2𝛾𝒗෥்𝒘 +
𝛼𝛽

𝑏
𝒘்𝒘 + 𝜣෩଴

்𝜣෩ ଴ + 𝜣෩ ்𝜣෩ +
1

𝜇
෍(𝑐௜(𝑡) − 𝛼)ଶ

ே

௜ୀଵ

 

= 𝒛்

⎣
⎢
⎢
⎡
𝛼𝛽𝑯ଶ 𝛾𝑯 𝟎ே×ே

𝛾𝑯 𝛽𝑯 −𝛾𝑰ே

𝟎ே×ே −𝛾𝑰ே

𝛼𝛽

𝑏
𝑰ே⎦

⎥
⎥
⎤

𝒛 + 𝜣෩ ଴
்𝜣෩଴ + 𝜣෩்𝜣෩ +

1

𝜇
෍(𝑐௜(𝑡) − 𝛼)ଶ

ே

௜ୀଵ

                                           

 (31)
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where, in the proposed Lyapunov function, the parameter 𝛼 is constant which should be determined. The parameter 

𝛼 is selected such that 𝛼 > 𝑚𝑎𝑥 ቊ
ଵା௕

ఒ೘೔೙
ቀ

ఊ

ఉ
ቁ

ଶ
,

௔మቀ
ം

ഁ
ቁ

ସ(௕ିଵ)ቀ
ೌ

್
ି

ം

ഁ
ቁఒ೘೔೙

 ቋ. Similar to Theorem 1, it is shown that the function 𝑉 

is positive definite. 
By time differentiation of 𝑉 along (14), (28) and (29) 

�̇�൫𝒙෥, 𝒗෥, 𝒘, 𝜣෩଴, 𝜣෩൯

= 2𝛼𝛽𝒙෥்𝑯ଶ𝒗෥ + 2𝛾𝒗෥்𝑯𝒗෥ + 2𝛾𝒙෥்𝑯ൣ−𝑪(𝑡)𝑯𝒙෥ − 𝑪(𝑡)𝒘 + 𝜱଴
்𝜣෩଴ − 𝜱்𝜣෩൧

+ 2𝛽𝒗෥்𝑯ൣ−𝑪(𝑡)𝑯𝒙෥ − 𝑪(𝑡)𝒘 + 𝜱଴
்𝜣෩଴ − 𝜱்𝜣෩൧ − 2𝛾𝒗෥்[𝑏𝑯𝒗෥ − 𝑎𝒘]

− 2𝛾𝒘்ൣ−𝑪(𝑡)𝑯𝒙෥ − 𝑪(𝑡)𝒘 + 𝜱଴
்𝜣෩଴ − 𝜱்𝜣෩൧ + 2

𝛼𝛽

𝑏
𝒘்[𝑏𝑯𝒗෥ − 𝑎𝒘]

+ 2𝜣෩଴
்[−𝛾𝜱଴𝑯𝒙෥ − 𝛽𝜱଴𝑯𝒗෥ + 𝛾𝜱଴𝒘] + 2𝜣෩்[𝛾𝜱𝑯𝒙෥ + 𝛽𝜱𝑯𝒗෥ − 𝛾𝜱𝒘]

+ 2 ෍ൣ(𝑐௜(𝑡) − 𝛼)൫𝛾𝑒௫௜
ଶ + 𝛽𝑒௫௜𝑒௩௜ + 𝛽𝑒௩௜𝑤௜ − 𝛾𝑤௜

ଶ൯൧

ே

௜ୀଵ

 

(32)

By defining �̃�௜(𝑡) = 𝑐௜(𝑡) − 𝛼 and also 𝑪෩(𝑡) = 𝒅𝒊𝒂𝒈{�̃�ଵ(𝑡), … , �̃�ே(𝑡)}, and substituting into the (32) 

�̇� = −2𝛼𝛾𝒙෥்𝑯ଶ𝒙෥ − 2(𝑏 − 1)𝛾𝒗෥்𝑯𝒗෥ + 2𝑎𝛾𝒗෥்𝒘 − 2 ൬
𝑎𝛼𝛽

𝑏
− 𝛼𝛾൰ 𝒘்𝒘 + 2[−𝛾𝒙෥்𝑯 − 𝛽𝒗෥்𝑯 + 𝛾𝒘்]ൣ𝑪෩(𝑡)𝑯𝒙෥ + 𝑪෩(𝑡)𝒘൧

+ 2 ෍[�̃�௜(𝑡)(𝛾𝑒௫௜
ଶ + 𝛽𝑒௫௜𝑒௩௜ + 𝛽𝑒௩௜𝑤௜ − 𝛾𝑤௜

ଶ)]

ே

௜ୀଵ

 
(33)

If 𝒆௫ = 𝒄𝒐𝒍{𝑒௫ଵ, … , 𝑒௫ே} and 𝒆௩ = 𝒄𝒐𝒍{𝑒௩ଵ, … , 𝑒௩ே}, then by using the definition of matrix 𝑯, 𝒆௫ = 𝑯𝒙෥ and 
𝒆௩ = 𝑯𝒗෥  are obtained. Hence, the term [−𝛾𝒙෥்𝑯 − 𝛽𝒗෥்𝑯 + 𝛾𝒘்]ൣ𝑪෩(𝑡)𝑯𝒙෥ + 𝑪෩(𝑡)𝒘൧  can be written in a 
summation form which is presented as 

�̇�൫𝒙෥, 𝒗෥, 𝒘, 𝜣෩଴, 𝜣෩൯

= −2𝛼𝛾𝒙෥்𝑯ଶ𝒙෥ − 2(𝑏 − 1)𝛾𝒗෥்𝑯𝒗෥ + 2𝑎𝛾𝒗෥்𝒘 − 2 ൬
𝑎𝛼𝛽

𝑏
− 𝛼𝛾൰ 𝒘்𝒘

+ 2 ෍[(−𝛾𝑒௫௜ − 𝛽𝑒௩௜ + 𝛾𝑤௜)�̃�௜(𝑡)(𝑒௫௜ + 𝑤௜)]

ே

௜ୀଵ

+ 2 ෍ൣ�̃�௜(𝑡)൫𝛾𝑒௫௜
ଶ + 𝛽𝑒௫௜𝑒௩௜ + 𝛽𝑒௩௜𝑤௜ − 𝛾𝑤௜

ଶ൯൧

ே

௜ୀଵ

(34)

Consequently 

�̇� = −2𝛼𝛾𝒙෥்𝑯ଶ𝒙෥ − 2(𝑏 − 1)𝛾𝒗෥்𝑯𝒗෥ + 2𝑎𝛾𝒗෥்𝒘 − 2 ൬
𝑎𝛼𝛽

𝑏
− 𝛼𝛾൰ 𝒘்𝒘

= −𝒛்

⎣
⎢
⎢
⎡
2𝛼𝛾𝑯ଶ 𝟎ே×ே 𝟎ே×ே

𝟎ே×ே 2(𝑏 − 1)𝛾𝑯 −𝑎𝛾𝑰ே

𝟎ே×ே −𝑎𝛾𝑰ே 2 ൬
𝑎𝛼𝛽

𝑏
− 𝛼𝛾൰ 𝑰ே⎦

⎥
⎥
⎤

ᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥ
ொ

𝒛                           
 (35)

Similar to procedure of the Theorem 1, the following results can be obtained for the Theorem 2 according to 
which, lim

௧→ஶ
𝒛(𝑡) = 0. □ 

To clarify, both conditions specified in Theorem 2 are necessary for ensuring the positive definiteness of the 
matrix in question. Each condition addresses critical aspects of the system’s dynamics and interaction structure, 
contributing to the overall stability and convergence towards consensus. 

Condition 1 ensures that the communication topology allows for appropriate interactions among the agents, while 
Condition 2 guarantees that the leader can influence all followers effectively. The interplay between these conditions 
is essential for deriving the positive definiteness of the related matrix, which is a key step in proving the consensus 
result. If either condition were to be relaxed or violated, the positive definiteness may not hold, potentially 
jeopardizing the proof of consensus. 

Finally, the proposed algorithms can be summarized. So, in the PDAC method, the controller is given from a set 
of equations of (36). Also the block diagram of this method is shown in Figure 1. 
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⎩
⎪
⎪
⎨

⎪
⎪
⎧

�̇�଴௜ = ൫−𝛾𝝓଴ + 𝛽�̇�଴൯𝑒௫௜ + 𝛾𝝓଴𝑤௜,                                          

�̇�௜ = ൫𝛾𝝓௜ − 𝛽�̇�௜൯𝑒௫௜ − 𝛾𝝓௜𝑤௜ ,                                                 

𝜽෡଴௜ = 𝝍଴௜ − 𝛽𝝓଴𝑒௫௜,                                                                     

𝜽෡௜ = 𝝍௜ + 𝛽𝝓௜𝑒௫௜,                                                                         

𝑤௜ = 𝜗௜ + 𝑏𝑒௫௜,    �̇�௜ = −𝑎𝑤௜                                                    

𝑢௜ = −𝛼(𝑤௜ + 𝑒௫௜) + 𝝓଴
்(𝑡)𝜽෡଴௜ − 𝝓௜

்(𝑡)𝜽෡௜,      𝑖 = 1, … , 𝑁 

 (36)

 

Figure 1. The feedback representation of the PDAC method. 

Similar to PDAC method, the controller input in FDAC method is given from a set of equations of (37). Block 
diagram of this method is shown in Figure 2. 

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧

�̇�଴௜ = ൫−𝛾𝝓଴ + 𝛽�̇�଴൯𝑒௫௜ + 𝛾𝝓଴𝑤௜,                                               

�̇�௜ = ൫𝛾𝝓௜ − 𝛽�̇�௜൯𝑒௫௜ − 𝛾𝝓௜𝑤௜,                                                       

𝜽෡଴௜ = 𝝍଴௜ − 𝛽𝝓଴𝑒௫௜,                                                                           

𝜽෡௜ = 𝝍௜ + 𝛽𝝓௜𝑒௫௜,                                                                               

�̇�௜ = 𝜇൫𝛾𝑒௫௜
ଶ + 𝛽𝑎𝑒௫௜𝑤௜ − 𝛾𝑤௜

ଶ൯,                                                     

𝑐௜(𝑡) = 𝜂௜(𝑡) + 𝜇𝛽𝑒௫௜𝑤௜ − 𝜇𝛽(𝑏 − 1)𝑒௫௜
ଶ ,                                     

𝑤௜ = 𝜗௜ + 𝑏𝑒௫௜,    �̇�௜ = −𝑎𝑤௜                                                          

𝑢௜ = −𝑐௜(𝑡)(𝑤௜ + 𝑒௫௜) + 𝝓଴
்(𝑡)𝜽෡଴௜ − 𝝓௜

்(𝑡)𝜽෡௜,     𝑖 = 1, … , 𝑁 

 (37)
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Figure 2. The feedback representation of the FDAC method. 

4. Simulation Results and Discussions 

4.1. Simulation Results 

This section provides numerical simulations to show the effectiveness of proposed adaptive control algorithms. 
For numerical simulations, we consider 4 follower agents and one leader with the communication topology shown in 
Figure 3 and the matrix 𝑯 described by (38).  

𝑯 = ቎

3 −1
−1 2

0 −1
−1 0

0 −1
−1 0

3 −1
−1 2

቏ (38)

 
Figure 3. Communication topology of the illustrating example. 
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The examples included in this paper are intended to demonstrate the applicability and effectiveness of the 
proposed FDAC and PDAC systems in various scenarios. While diverse case studies are introduced, they are not 
exhaustive. Instead, they serve to illustrate the fundamental principles of the proposed approaches and their robustness 
under different conditions, including varying dynamics and communication constraints. The results obtained from 
these sample cases are consistent with the theoretical analysis presented in the paper, which establishes the stability 
and convergence properties of the FDAC and PDAC methods. The mathematical proofs and derivations provided in 
the paper underpin the generalizability of our findings, indicating that the proposed methods are not limited to the 
specific examples presented but are applicable to a broader class of distributed systems. It is acknowledged that 
additional examples would strengthen the empirical validation of our findings. The extension of analyses can be 
planned by incorporating a wider range of scenarios, including different network topologies, varying agent dynamics, 
and more complex communication patterns. This will provide further evidence of the effectiveness of the proposed 
methods in solving the distributed identification problem. While the examples serve as a foundation for the claims 
raised, the theoretical framework and stability proofs are critical components that support the conclusions that have 
been attained. It is realized that the combination of practical examples and rigorous theoretical analysis provides a 
solid basis for asserting that this study contributes to solving the identification problem in distributed systems.  

Example 1. In this example, the leader acceleration and unknown nonlinear dynamics of each follower are given as 

⎩
⎪
⎨

⎪
⎧

𝑢଴(𝑡) = 4 sin 2𝑡 + 3 cos 2𝑡 ,

𝑓ଵ(𝑡) = 2 sin 𝑡 + 2 cos 𝑡,       

𝑓ଶ(𝑡) = 2 sin 3𝑡 − 3 cos 3𝑡,   

𝑓ଷ(𝑡) = 5 sin 𝑡 − 2 cos 𝑡,       

𝑓ସ(𝑡) = sin 2𝑡 + 2 cos 2𝑡      
 

 (39)

In this example, we consider the structure of the 𝑢଴ and 𝑓௜, 𝑖 = 1, … ,4 is known, so the basis functions are 
considered as 𝝓଴ = 𝝓ସ = [sin 2𝑡 cos 2𝑡]் , 𝝓ଵ = 𝝓ଷ = [sin 𝑡 cos 𝑡]் , 𝝓ଶ = [sin 3𝑡 cos 3𝑡]் . Based on the 
PDAC method, the controller parameters assumed to be 𝑎 = 5, 𝑏 = 3, 𝛼 = 5, 𝛽 = 4, 𝛾 = 2. Figure 4 shows the 
simulation result of the controller based on the PDAC method without adaptive term compensator. Also, Figure 5 
shows the adaptive controller result based on the PDAC method. Figures 6 and 7 show the convergence of the 
estimated parameter arrays 𝜽෡଴௜ , 𝜽෡௜, 𝑖 = 1, … ,4. Figures 6 and 7 illustrate the convergence behavior of the estimated 
parameter arrays within the PDAC system over time. Each figure presents the evolution of the parameter estimates for 
different agents in the multi-agent network as they adapt to the dynamics of the environment. Initially, as depicted in 
both figures, the estimated parameters exhibit noticeable fluctuations. This behavior is expected in adaptive control 
systems, particularly in the early stages of operation when agents gather information and adjust their estimates based 
on local observations and interactions with neighboring agents. These fluctuations reflect the agents’ attempts to 
respond to various uncertainties and disturbances in the system. After approximately 15 s, a significant change occurs, 
and the estimated parameters begin to stabilize. This convergence indicates that the PDAC algorithm effectively 
integrates the leader’s and neighboring agents’ information, allowing the followers to refine their parameter estimates. 
The stabilization of the estimated parameters signifies that the agents have reached a consensus on the underlying 
system dynamics, demonstrating the robustness and effectiveness of the PDAC approach. The convergence to 
constant values in the estimated parameters underscores the adaptability of the PDAC system in achieving consensus 
among agents, even in the presence of initial uncertainties. This behavior is crucial for ensuring that the multi-agent 
system can perform effectively in dynamic environments, as it allows the agents to maintain coordinated behavior and 
achieve collective goals. These figures exemplify the successful application of the PDAC algorithm, showcasing its 
capability to facilitate the convergence of estimated parameters in a partially distributed manner, thereby enhancing 
the overall performance of the multi-agent system. 
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Figure 4. Trajectories of 𝑥௜ − 𝑥଴  and 𝑣௜ − 𝑣଴, 𝑖 = 1, … ,4,  obtained from the controller without using adaptive term 
compensator, (Black: follower agent # 1, Blue: follower agent # 2, Red: follower agent # 3, Green: follower agent agent # 4). 

 

Figure 5. Trajectories of 𝑥௜ − 𝑥଴ and 𝑣௜ − 𝑣଴, 𝑖 = 1, … ,4, based on the PDAC method , (Black: follower agent # 1, Blue: 
follower agent # 2, Red: follower agent # 3, Green: follower agent agent # 4). 
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Figure 6. Convergences of the estimated parameter arrays 𝜽෡଴௜ , 𝑖 = 1, … ,4, based on the PDAC method , (Black: follower agent # 
1, Blue: follower agent # 2, Red: follower agent # 3, Green: follower agent agent # 4). 

 
Figure 7. Convergences of the estimated parameter arrays 𝜽෡௜ , 𝑖 = 1, … ,4, based on the PDAC method, (Black: follower agent # 1, 
Blue: follower agent # 2, Red: follower agent # 3, Green: follower agent agent # 4). 

Also, Figure 8 shows the simulation results of the adaptive controller based on the FDAC method with the 
control parameters 𝑎 = 5, 𝑏 = 3, 𝜇 = 0.2, 𝛽 = 4, 𝛾 = 2. Figure 9 shows the convergences of adaptive gain, i.e., 
𝑐௜(𝑡), 𝑖 = 1, … ,4. Also, Figures 10 and 11 show the convergence of the estimated parameters 𝜽෡଴௜ , 𝜽෡௜ , 𝑖 = 1, … ,4. 
Figures 9 and 10 illustrate the dynamic performance of the FDAC system by showing the convergence characteristics 
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of the adaptive gain and the estimated parameter arrays over time. Figure 9 presents the convergence of the adaptive 
gain utilized by the FDAC algorithm. Initially, it is observed that some fluctuations in the adaptive gains as the agents 
start to adapt to the system dynamics and the influence of the leader. However, after approximately 5 s, the adaptive 
gains stabilize and converge to constant values. This rapid convergence indicates the FDAC system’s effectiveness in 
quickly adjusting the control parameters in response to the varying dynamics of the environment. The stabilization of 
the adaptive gains reflects the system’s ability to achieve an appropriate balance between responsiveness and stability, 
ensuring that agents can effectively coordinate their actions while adapting to real-time conditions. Figure 10 depicts 
the convergence of the estimated parameter arrays for the agents. Initially, the parameter estimates exhibit high 
oscillations as the agents engage in adaptive processes, reflecting the ongoing adjustments to their understanding of 
the environment. After about 30 s, these oscillations diminish, and the estimated parameters converge towards 
constant values. High oscillations during the early adaptation phase suggest that the agents are actively refining their 
estimates based on local and neighbor information. The eventual convergence to stable parameter values illustrates 
the FDAC system’s ability to facilitate cooperative learning and parameter estimation among agents, leading to 
coherent collective behavior. Together, Figures 9 and 10 demonstrate the robustness of the FDAC algorithm in 
achieving convergence in both adaptive gains and parameter estimates. The quick stabilization of adaptive gains, 
coupled with the eventual convergence of the parameter arrays, underscores the effectiveness of the fully-distributed 
approach in managing uncertainty and enabling agents to work in harmony within a multi-agent system. 

 
Figure 8. Trajectories of 𝑥௜ − 𝑥଴ and 𝑣௜ − 𝑣଴, 𝑖 = 1, … ,4, based on the FDAC method, (Black: follower agent # 1, Blue: 
follower agent # 2, Red: follower agent # 3, Green: follower agent agent # 4). 
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Figure 9. Convergence of the adaptive gain, 𝑐௜(𝑡), 𝑖 = 1, … ,4, based on the FDAC method, (Black: follower agent # 1, Blue: 
follower agent # 2, Red: follower agent # 3, Green: follower agent agent # 4). 

 

Figure 10. Convergences of the estimated parameter arrays 𝜽෡଴௜ , 𝑖 = 1, … ,4, based on the FDAC method, (Black: follower agent 
# 1, Blue: follower agent # 2, Red: follower agent # 3, Green: follower agent agent # 4). 
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Figure 11. Convergences of the estimated parameter arrays 𝜽෡௜ , 𝑖 = 1, … ,4, based on the FDAC method, (Black: follower agent # 
1, Blue: follower agent # 2, Red: follower agent # 3, Green: follower agent agent # 4). 

Example 2. In this example, the relative position measuring considered being unavailable for any agent; but each 
agent can measure its absolute position and communicate this with each other. Due to data transmitting speed 
limitations, each agent receives information from others with a time delay. Consequently, the relative position of each 
agent relative to its neighbors is given as  

 

(40)

The expression (40) can be used in proposed PDAC and FDAC algorithms. The time delay affected the closed 
loop system’s stability and tracking performance. So, this example shows numerically the effect of time delay on 
tracking performance and, thus, on the performance of relative positioning with respect to absolute positioning. 
Figures 12 and 13 show the simulation results of the PDAC and the FDAC methods with controller parameters similar 
to Example 1 and also 𝜏 = 0.50 s, respectively. 
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Figure 12. Trajectories of 𝑥௜ − 𝑥଴ and 𝑣௜ − 𝑣଴, 𝑖 = 1, … ,4, based on the PDAC method with delayed communication, (Black: 
follower agent # 1, Blue: follower agent # 2, Red: follower agent # 3, Green: follower agent agent # 4). 

 

Figure 13. Trajectories of 𝑥௜ − 𝑥଴ and 𝑣௜ − 𝑣଴, 𝑖 = 1, … ,4, based on the FDAC method with delayed communication, (Black: 
follower agent # 1, Blue: follower agent # 2, Red: follower agent # 3, Green: follower agent agent # 4). 

In the Examples 1 and 2, the structure of the 𝑢଴ and 𝑓௜, 𝑖 = 1, … ,4 is considered to be known. In the Examples 
3 and 4, the structure of the 𝑢଴ and 𝑓௜, 𝑖 = 1, … ,4 is unknown, but is assumed slow-varying. Then, it is reasonable 
to use the basis function 𝜙଴ = 𝜙௜ = 1.0 in the formulation of the proposed algorithms. 
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Example 3. (performance evaluation of the controllers for slow-varying discontinuous disturbances): In this example, 
the leader acceleration is assumed to be a square function, 𝑢଴(𝑡) = 5.0 × 𝑠𝑞𝑢𝑎𝑟𝑒(0.05𝑡) as shown in Figure 14. For 
analysis of the simplicity of controller performance, the 𝑓௜(𝑡) = 0, 𝑖 = 1, … ,4 assumed. Figure 15 shows the 
simulation results of the PDAC method with controller parameters 𝑎 = 5, 𝑏 = 2, 𝛼 = 10, 𝛽 = 4, 𝛾 = 2. Also, Figure 
16 shows the result of the FDAC method with the controller parameters 𝑎 = 5, 𝑏 = 2, 𝜇 = 0.1, 𝛽 = 4, 𝛾 = 2. 

 

Figure 14. Leader acceleration, 𝑢଴ = 5.0 × 𝑠𝑞𝑢𝑎𝑟𝑒(0.05𝑡) versus time.  

 

Figure 15. Trajectories of 𝑥௜ − 𝑥଴ and 𝑣௜ − 𝑣଴, 𝑖 = 1, … ,4, based on the PDAC method, (Black: follower agent # 1, Blue: 
follower agent # 2, Red: follower agent # 3, Green: follower agent agent # 4).  
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Figure 16. Trajectories of 𝑥௜ − 𝑥଴ and 𝑣௜ − 𝑣଴, 𝑖 = 1, … ,4, based on the FDAC method, (Black: follower agent # 1, Blue: 
follower agent # 2, Red: follower agent # 3, Green: follower agent agent # 4). 

Example 4. (performance evaluation of the controllers for fast-varying discontinuous disturbances): Similar to 
Example 3, the unknown dynamics of each follower, 𝑓௜(𝑡) assumed to be zero. Also the leader acceleration is 
considered to be 𝑢଴(𝑡) = 4.0 × 𝑠𝑎𝑤𝑡𝑜𝑜𝑡ℎ(0.1𝑡) as shown in Figure 17. Figures 18 and 19 show the simulation 
results of the PDAC and the FDAC methods with the controller parameters which are similar to Example 3. 

 

Figure 17. Leader acceleration, 𝑢଴(𝑡) = 4.0 × 𝑠𝑎𝑤𝑡𝑜𝑜𝑡ℎ(0.1𝑡) versus time. 



Drones and Autonomous Vehicles 2024, 1, 10014 21 of 24 

 

 

Figure 18. Trajectories of 𝑥௜ − 𝑥଴ and 𝑣௜ − 𝑣଴, 𝑖 = 1, … ,4, based on the PDAC method, (Black: follower agent # 1, Blue: 
follower agent # 2, Red: follower agent # 3, Green: follower agent agent # 4). 

 

Figure 19. Trajectories of 𝑥௜ − 𝑥଴ and 𝑣௜ − 𝑣଴, 𝑖 = 1, … ,4, based on the FDAC method, (Black: follower agent # 1, Blue: 
follower agent # 2, Red: follower agent # 3, Green: follower agent agent # 4). 

4.2. Discussions 

The present study focused on establishing the theoretical foundations underpinning the FDAC and PDAC 
methods through Lyapunov-based analysis and stability proofs. The theoretical theorems and their associated proofs 
provide a robust basis for understanding the performance of the FDAC and PDAC algorithms in the context of the 
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undirected graph communication topology. While the current theoretical analysis emphasizes the collective system 
behavior, it should be noted that a more detailed examination of individual components could further enhance the 
understanding of the dynamics involved as follows. As the proposed strategies utilize global information about the 
graph topology differently in the FDAC and PDAC methods, it can be concluded that an in-depth theoretical study on 
how these methods interact with various individual graph structures and their respective equations would be beneficial 
for strengthening the obtained results. This could involve analyzing how specific graph properties (e.g., connectivity, 
degree distributions) affect the performance of each algorithm on a granular level. According to simulations, it can be 
recognized that investigating various graph configurations, analyzing the control strategies concerning distinct types 
of inter-agent communication failures, and understanding how these factors can be integrated into the theoretical 
framework lead to a more comprehensive understanding. The numerical simulations conducted in this study involve a 
scenario with four follower agents and one leader governed by a defined communication topology represented by the 
matrix H. The aim is to evaluate the effectiveness of the FDAC and PDAC methods in facilitating consensus among 
agents with second-order dynamics, under varying conditions. In the Example 1, both the leader’s acceleration and the 
unknown nonlinear dynamics of each follower agent are predetermined. For this simulation, it was assumed that the 
structure of the control input 𝑢଴  and the follower dynamics are known, allowing utilizing basis functions 
appropriately. Figure 4 illustrates the simulation results of the PDAC method implemented without an adaptive term 
compensator. This setup demonstrates the initial performance of the followers in tracking the leader’s acceleration, 
highlighting the steady-state behavior after some transient response. Figure 5 shows the results when the adaptive 
controller is employed based on the PDAC method. The incorporation of the adaptive compensator significantly 
enhances the convergence behavior, as the follower agents can adjust their control efforts to account for discrepancies 
in the leader’s acceleration. Figures 6 and 7 display the convergence of the estimated parameter arrays, showcasing 
how quickly and accurately the follower agents are able to adapt their parameters to match the leader’s dynamics over 
time. Figure 8 presents the simulation results for the adaptive controller based on the FDAC method, where all 
controller parameters are assumed to be known. This visualization underscores the decentralized approach and its 
ability to maintain consensus among agents. Figure 9 depicts the convergence of the adaptive gain for the FDAC 
method, emphasizing the method’s robustness in adjusting gains in real-time. Figures 10 and 11 highlight the 
convergence of the estimated parameters, further supporting the effectiveness of the FDAC in achieving the desired 
control objectives. In the Example 2, it was explored a more complex scenario where none of the followers can 
directly measure their relative positions. Instead, each agent can only measure its absolute position and communicate 
this information with its neighbors. Due to limitations in data transmission speeds, time delays are introduced, causing 
each agent to receive information from others with a known delay τ = 0.50 s. These time delays’ implications on 
stability and tracking performance are rigorously analyzed. Figures 12 and 13 display the simulation results for the 
PDAC and FDAC methods under this framework, illustrating how delays influence the system’s response and overall 
effectiveness in maintaining a coordinated state. For Examples 3 and 4, it was assumed that the structures of 𝑢଴ and 
the follower dynamics are unknown, but we posit they are slow-varying. This allows us to apply the basis functions 
effectively to approximate the dynamics. In Example 3, the leader’s acceleration is modeled as a square function, with 
the follower dynamics assumed zero for simplifying the analysis. Figure 15 exhibits the simulation results for the 
PDAC method under these assumptions, showcasing its performance against the leader’s trajectory. FDAC in 
Unknown Conditions: Similarly, Figure 16 displays the results for the FDAC method, reaffirming its capability to 
perform effectively even when the agent dynamics are subject to uncertainty. Figures 18 and 19 delve deeper into the 
results of Examples 3 and 4, comparing the performance metrics of both control strategies. The findings indicate that 
the FDAC method consistently exhibits superior tracking performance compared to the PDAC method. The 
comparative analysis between FDAC and PDAC reveals critical insights: 

Decentralization: The FDAC method’s decentralized nature allows for a more flexible and robust response to 
disturbances and uncertainties, as it does not rely on global information. 
Adaptive Gain Determination: The FDAC method employs an adaptive mechanism for controller gain determination, 
thus optimizing the control responses in real-time. In contrast, the PDAC method utilizes a fixed gain configuration, 
which can limit performance in dynamically changing environments. 

The simulation results affirm that both methods provide viable solutions for leader-follower consensus. However, 
the FDAC method demonstrates a marked advantage in adaptability and robustness, particularly in scenarios 
involving unknown dynamics and communication delays. 
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According to the results obtained from the Examples 3 and 4, the FDAC method shows better tracking 
performance relative to the PDAC method. In summary, the main reasons for justification of this claim are:  

 FDAC is completely decentralized, while PDAC is not. 
 Adaptively determination of the controller gain in the FDAC method while in the PDAC method, the controller 

gain is chosen primitively. 

5. Conclusions 

The objective of this study was to solve the problem of distributed leader-follower consensus of a group of 
agents with the second-order dynamics under the undirected graph communication topology. When the leader’s 
acceleration is not communicated to each follower, and the follower agents have some unknown dynamics in their 
intrinsic structure, implementing the proposed method practically results in delayed and faulty network control. To 
address this problem, a linear regression model is assumed for the leader’s acceleration and the agents’ unknown 
dynamics. Using this model, Lyapunov-based adaptive control algorithms are developed to manage the network of 
agents despite communication loss and modeling uncertainties. The presented study describes two multi-agent control 
strategies called FDAC and PDAC systems. In the first method, the followers do not have any a priori information 
about the communication graph, while in the second method, some information about the eigenvalues of the 
communication graph is available. Illustrative simulations were conducted to show the merits and efficiencies of the 
proposed algorithms relative to the case in which enough communication between leader and followers is available. 

Future Studies  

The future research associated with the present article can be summarized as follows: 

 Future research could explore the leader-follower consensus problem in systems with higher-order dynamics, 
which may introduce additional complexities in control design and stability analysis. 

 Investigating the effects of external noise and disturbances on the leader-follower consensus system would be 
crucial. Developing robust control strategies that maintain consensus under such conditions could enhance the 
practical applicability of the proposed methods. 

 Future studies could aim to develop algorithms that allow for decentralized information gathering regarding the 
communication graph, enabling followers to adapt more dynamically to changes in the network topology. 

 Examining the scalability of both FDAC and PDAC methods in larger multi-agent systems could provide 
insights into the limitations and performance trade-offs of the proposed algorithms as the number of agents 
increases. 

 Implementing the proposed algorithms in real-world multi-agent systems, such as autonomous vehicles or 
robotic networks, would validate their performance and adaptability in practice, highlighting any practical 
challenges. 

 Investigating the dynamics of multi-leader systems where multiple leaders influence their respective follower 
groups could broaden the applicability of the consensus algorithms, allowing for more complex coordination 
tasks. 

 Analyzing the impact of time-varying communication topologies on consensus convergence could yield more 
flexibility and robustness in dynamic environments. 
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