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ABSTRACT: Urban energy models (UEMs) simulate energy use at the urban scale and are used to inform urban planning, policy 
development, infrastructure development, and digital twin monitoring and forecasting. Recent technological improvements have 
spurred interest in large, multi-domain UEMs, which analyse multiple interconnected parts of these energy systems, such as 
geography, transport, and buildings. Reviews have focussed on single domains or aspects of UEM data. However, multi-domain 
UEMs require detailed multi-domain data inputs to provide accurate results. This paper provides a comprehensive review of data 
requirements and a repository of data-specific information for researchers, including data formats, sources, acquisition methods, 
bridging methods, and challenges. The review was conducted using academic search engines and the authors’ direct research 
experience. Domains are characterised by Climate, Geographic, Building, Transportation, Demographics, Energy Networks and 
Consumption, and Distributed Energy Resources. Additionally, challenges common to multiple sectors are identified, and methods 
for addressing these are proposed. The paper concludes with a series of recommendations drawing from the general and sector-
specific challenges. Overall, a large amount of data exists, but their use by urban energy modellers is limited due to lack of 
coordination and standardisation, and concerns over privacy and commercial interests. Coordinated public effort is required to 
overcome these limitations and improve the results of UEMs in the future. 
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1. Introduction 

Urban energy modelling (UEM) involves simulating energy use at the urban scale, from the neighbourhood to the 
city level. For example, one type of UEM is urban building energy models (UBEMs), which represent buildings at the 
district scale [1] and are used to simulate heating and air-conditioning loads to inform the design of urban power and 
energy networks, such as district heating schemes, as well as to investigate energy efficiency scenarios, such as the 
aggregate impact of retrofitting insulation [2]. Other UEMs include domains such as local climate, buildings, 
transportation, and energy networks and resources. UEMs, in general have applications including urban planning [3], 
policy development [4], infrastructure development [5], and digital twin monitoring and forecasting [6]. In each of these 
applications, UEM can inform the improvement of energy efficiency, resilience, and sustainability by simulating various 
scenarios, such as integrating solar PV at the district scale [7]. 

Modelling approaches can be categorised as bottom-up or top-down [8]. Bottom-up, or ‘physics-based,’ models 
capture the physical characteristics of urban elements. This modelling approach can simulate changes in the urban 
environment and thus provide more insight than top-down, or ‘data-driven’, approaches [9], as changes to the physical 
system can be tested by modifying values, such as increasing the share of rooftop area to solar PV. However, bottom-
up and top-down models require detailed data inputs for accurate modelling. 

Given the wide range of UEM domains and applications and the detailed data requirements of both bottom-up and 
top-down models, it is important for urban energy modellers to understand the available data formats, sources, bridging 
methods, acquisition methods, and limitations, such as granularity and accessibility. 



Clean Energy and Sustainability 2024, 2, 10016 2 of 20 

 

Several reviews of UEM data have been conducted. Herrera et al. [10] review the methods of weather data creation 
for building simulation, including a critical analysis of each methodology and a discussion of challenges for weather 
data, such as climate change and the urban heat island (UHI) effect. Software tools for the generation of future weather 
files are reviewed and critically analysed by Moazami et al. [11], who conclude care should be taken when selecting 
and using tools for the generation of future weather data, as weather predictions can vary depending on the prediction 
method. The effects of green and blue infrastructure (GBI) on temperature moderation in urban environments are 
reviewed by Bartesaghi-Koc et al. [12], and the modelling techniques and data requirements for simulating the effects 
of urban GBI are systematically reviewed by Liu et al. [13], who highlights the complexity and diversity of input data 
for modelling GBI and suggest improvements in data availability and accessibility. Advances in light detection and 
ranging (LiDAR) systems and the use of LiDAR data for generation of digital elevation models are reviewed by Liu 
[14], with a specific focus on data filters, interpolation methods, resolution, and data reduction. 

Gunduz et al. [15] summarise research in indoor modelling and mapping, a key component of UEMs requiring 
accurate thermal models or tracking of people and objects within buildings. The results of in-situ insulation tests are 
reviewed by O’Hegarty et al. [16], including a discussion of over- or under- performing insulation relative to standards 
and reported values. Modelling approaches for building occupant behaviour are reviewed and categorised by Happle et 
al. [17], and the application of these modelling approaches to UEMs is discussed. Fuentes et al. [18] review research in 
domestic hot water (DHW) consumption and the impacts of factors such as climate and seasonality on DHW use, 
focusing on tools for generating DHW consumption profiles for UEM applications. 

Understanding distributed energy resources (DERs) is important for energy researchers and modellers, as discussed 
by Rathore et al. [19] in their review of several types of solar photovoltaic (PV) cells and their applications. Small-scale 
wind turbines, an increasingly common type of DER, are reviewed by Tummala et al. [20], who compare different kinds 
of turbines and highlight the effects of factors such as positioning and aero-acoustic performance. An analytical review 
of wind turbines and wind resource evaluations in urban environments is conducted by Tasneem et al. [21], which 
discusses the importance of precise wind mapping and accurate wind data. Energy storage is another common type of 
DER, as discussed by Rahman et al. [22] in their review of energy storage technologies, which provides a summary of 
costs and emissions data of available storage technologies. 

Additionally, a number of reviews of UEM in general have been conducted. Oraiopoulos and Howard [23] present 
the results of a systematic analysis of UEMs with their results validated against measured data highlighting the 
importance of accurate, relevant input data for model accuracy. Dahlström et al. [24] review advancements in and 
challenges of urban energy modelling. Goy et al. [25] review the impacts of different types of input data in UBEMs and 
present the results of a case study to rank the impact of input parameters on space heating demand. A 
comprehensive review of approaches, methods, and tools for UEM is conducted by Ali et al. [26], which identifies 
challenges and promising techniques. Johari et al. [27] provide a critical review of the field of UEM, including a 
discussion of possibilities, challenges, and potential future improvements. While they highlight the importance of 
increasing the accessibility and availability of data for UEMs, their review does not specifically review data 
requirements and challenges. 

To date, data reviews focus on a narrow set of modelling data, often limited to a single domain. Research interests 
in specific domains of UEM often drive this specificity. For example, researchers quantifying the UHI effect are most 
concerned with local weather and external building geometries [28]. In contrast, researchers interested in accurately 
modelling building energy consumption and Indoor Environmental Quality (IEQ) are most concerned with interior 
building layouts and occupant behaviour [29]. 

However, practical UEM applications are naturally multi-domain, given the functional requirements for urban 
planning and infrastructure development are multi-domain. For example, power network planners are interested in the 
impact of weather pattern changes on heating and cooling loads and the impact of distributed energy resources (DERs) 
like solar PV. This practical need for multi-domain UEM is reflected in the growing body of recently developed multi-
domain tools for UEM [30]. Additionally, linking domains in UEMs offers the potential for greater accuracy, given that 
the physical systems they represent are linked by themselves. For example, building heating and cooling causes heat-
flux into and out of the surrounding local climate and, at the same time ,the local climate affects building heating and 
cooling loads. Thus, coupling building energy models and local climate models can increase the accuracy of both. 

Overall, given the practical needs and opportunities for increased accuracy with multi-domain UEMs, a 
comprehensive multi-domain review of data for UEMs is required. However, to date, no such review exists. 

This work provides a comprehensive review of multi-domain UEM data, with domains categorized as Climate, 
Geographic, Building, Transportation, Demographics, Energy Networks and Consumption, and Distributed Energy 
Resources, as shown in Figure 1. Data formats, sources, acquisition methods, bridging methods, and challenges for each 
domain are identified. Additionally, key overall challenges for UEM data are explored, key considerations and practical 
implications are summarised, and recommendations are provided for multi-domain UEM data. 



Clean Energy and Sustainability 2024, 2, 10016 3 of 20 

 

 

Figure 1. Overview and categorisation of data requirements for urban energy models. 

The literature review for this work was conducted using several academic search engines, including Google 
Scholar, Scopus, and Consensus, an AI-powered academic search platform. These tools were chosen to ensure 
comprehensive coverage of relevant studies across multiple domains. Some references were selected according to the 
authors’ direct research experience, providing further depth and context to the data sources used to develop multi-
domain urban energy models. 

This work is structured as follows. Section 2 prefaces the work with a review of general data challenges across all 
domains of UEM. Section 3 provides a data review of each UEM domain: Climate, Geographic, Building, Transportation, 
Demographic, Energy Network, and Distributed Energy Resources. Section 4 identifies key considerations, practical 
implications, and recommendations for UEM data and data research. Section 5 concludes the review. 

2. Data Challenges 

Several general challenges exist for researchers seeking to obtain sufficient, and sufficiently accurate data for UEM. 
Many of these challenges stem from inconsistencies in data availability, and variations in data quality between regions, 
which pose particular challenges for constructing large-scale UEMs [1]. While different modelling applications have 
different data requirements, challenges for urban energy modelling data typically fall into four key areas [25]: (i) data 
availability; (ii) data accessibility; (iii) data quality; and (iv) data impact. 

2.1. Data Availability 

Data required for some urban energy models can be difficult to collect [23]. For example, many models require 
information about building energy systems, ranging from simple residential open fires to complex commercial heating, 
ventilation, and air conditioning (HVAC) systems. These data are difficult to collect, particularly in the residential 
sector, so information about building energy systems is typically estimated based on factors such as the year in which 
the building was constructed [31]. Other examples include building occupancy and energy consumption data, which 
can also be difficult to collect. Building occupancy and, to a lesser extent, energy consumption can be assumed to follow 
standard profiles [32,33] or can arise as the result of simple behavioural rules [34]. However, while these methods offer 
means of estimating the required data, they may lead to inaccuracies, particularly if the estimates are based on 
information from other regions. 

Additionally, data availability varies between different regions [26]. Thus, even easily collected data can be 
unavailable in some regions [23]. Data collection methods can also vary. For example, different surveying techniques 
can lead to different measurements of building footprint [35]. Thus, datasets collected using different methods can be 
incompatible due to differing assumptions. Furthermore, even where data are available, data granularity can be 
insufficient for constructing accurate energy models [25], meaning low-granularity data are often interpolated for 
sufficient resolution, which can limit model accuracy. 
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2.2. Data Accessibility 

Limited accessibility means that even if data are collected, they may not be publicly available. Cities in most 
economically developed countries have large databases with energy-related information, but these are often unavailable 
for use by modellers [36]. Accessibility can be restricted because data are proprietary, in unsuitable formats, dispersed 
across multiple databases, and/or due to confidentiality/privacy concerns [25]. 

2.3. Data Quality 

Even if they are collected and publicly available, data can be of variable quality. Data quality can be limited by 
variability in collection methods, as standardised collection techniques do not exist for many kinds of data required for 
UEMs [37,38]. Thus, obtaining data from different databases, as is often required due to limited availability/accessibility, 
can limit data quality due to inconsistencies in the collection methods [36]. Additionally, data quality can be limited 
due to infrequent collection, as dynamic sectors, such as the building sector, can change rapidly, limiting temporal 
validity. For example, the lack of consideration for building refurbishments, which are often not reflected in publicly 
available building databases, can lead to overestimations in heating demand by up to 180% [39]. 

2.4. Data Impact 

The impact on modelling outcome varies between different types of input data [23]. Consequently, the importance 
of availability/accessibility can also vary between different types of data. For example, building construction 
characteristics typically have a larger impact on model outcomes than building geometry. Still, data on the former tend 
to be less accessible than data on the latter [25]. 

2.5. Addressing Data Challenges 

Because of these challenges, improving data availability, accessibility, and quality is considered a priority 
[25,40,41]. Specifically, researchers agree that the collection of energy-related data should be increased and made publicly 
available [42–44], which could be best achieved by making these data available via an online public platform [25]. 

However, while such changes would increase data availability and accessibility, data quality and impact should 
not be overlooked. Thus, priority should be given to collecting high-impact data, such as building construction 
characteristics, first, and to ensuring that data collection methods are accurately reported.Standardised data collection 
methods should also be adopted where possible to avoid inconsistency between different databases. 

3. Data in Urban Energy Modelling 

3.1. Climate Data 

Weather drives building energy consumption and renewable energy generation. Weather datasets include external 
air temperature; humidity; wind speed and direction; pressure; precipitation; surface albedo; solar radiation and its 
components, including direct and diffuse radiation; and sky illuminance and its components [45]. Location and time are 
recorded with latitude, longitude, elevation, and local time stamps. Data are compiled at sub-hourly to hourly time-
steps, and statistical information. Such as maximums, minimums, averages, and frequency distributions, are also often 
reported [10]. Weather data are collected at weather stations, which are typically in remote locations away from the 
influence of micro-climatic effects [46]. 

Weather datasets may consist of the historical weather conditions for a specific year, as with actual meteorological 
year (AMY) data, or typical data, as with typical meteorological year (TMY) data [10]. TMY weather conditions are 
annual weather datasets representative of historical years, derived from historical data, and constructed by statistical 
methods [47]. 

Recorded weather data’s temporal and spatial resolution limits their applicability and accuracy for UEMs. 
Typically, data from the closest weather station are used, which may not accurately represent the weather at the location 
of interest. However, weather generators producing “synthetic” weather data have been developed to overcome these 
limitations [10]. “Meteonorm” [48] generates stochastic TMY at time intervals as low as one minute and has been used 
for building simulation [49]. “LARS-WG” [50] is a stochastic weather generator that can downscale the spatial 
resolution of weather data [51] and generate data for locations between weather stations. In some cases where only low-
resolution data are available, the highest-resolution dataset is used [52]. 

The urban heat island (UHI) effect is a phenomenon where towns and cities experience higher temperatures than 
surrounding areas due to differences in vegetation, surface albedo, increased heat retention, reduced airflow due to built-
up intensity, and/or anthropogenic heat emissions [53]. Additionally, interactions between buildings in the urban 
environment include shading between adjacent buildings, longwave radiant heat exchange, and solar reflection [54]. 
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Consequently, the urban form has an impact on building conditioning loads. Tools have been developed to capture the 
urban microclimate due to the UHI and the interactions between buildings, including ENVI-met [13,55] and Urban 
Weather Generator (UWG) [56,57]. 

Anthropogenic climate change means weather changes can occur within the lifetimes of current buildings and 
infrastructure, so climate change must be considered by urban energy modellers. Climate models are used to predict 
future weather patterns, which in turn are used to simulate buildings and predict future energy performance [58]. The 
Intergovernmental Panel on Climate Change (IPCC) produces climate models for multiple scenarios. The models 
include Global Circulation Models (GCM) and finer-resolution Regional Climate Models (RCM) [59]. However, their 
finest resolution is a 25km-by-25km surface grid [10]. Tools are available to generate representative localised weather 
data from these climate models [11], including “CCWorldWeatherGen” [60] and “WeatherShift” [61]. 

3.2. Geographic Data 

The urban environment contains natural and human-made features that can impact the energy performance of 
buildings and the effectiveness of renewable resources. Natural features include terrain elevation, parks, trees, and 
bodies of water. Human-made features include transportation infrastructure, such as roads and buildings. Many natural 
and human-made elements participate in microclimatic effects, affect wind-flow, and produce shading, thus affecting 
energy performance. Failure to consider the effects of geographic elements, such as terrain, can limit model accuracy. 
For example, some UBEMs assume lang surfaces are flat rather than modelling the effects of changing elevation, 
leading to inaccurate results [62,63]. Thus, the effects of terrain and other geographic data are important elements for 
consideration in UEMs. 

3.2.1. Terrain and Elevation 

Two types of Digital Elevation Models (DEM) exist: Digital Surface Models (DSM), which include natural and 
human-made features; and Digital Terrain Models (DTM), which exclude human-made features and provide the 
elevation of bare land. Elevation models are created from contour lines, topographic maps, global positioning system 
measurements, photogrammetry techniques, radar interferometry, stereo satellite images, and laser scanning, with 
vertical measurement accuracies varying according to the method used [64]. Satellite techniques can produce DEM 
spanning the globe, with vertical accuracies of 1.5-6 metre root-mean-square error (RMSE). In contrast, airborne laser 
scanning techniques, also known as light detection and ranging (LiDAR), require localised measurement and have lower 
vertical accuracies of approximately 0.15 metre RMSE [14,64]. 

A number of satellite-derived DEMs are freely available, which have been used to map urban structures [62,65,66], 
including the Shuttle Radar Topography Mission (SRTM) elevation data, captured in the year 2000 with a 30-metre 
surface mesh [67]; Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), which has a 30-
metre surface mesh and was released in 2009 [68]; Advanced Land Observing Satellite (ALOS) World 3D surface 
model, which has a 30-metre surface mesh and is based on observations between 2006 and 2011 [69]; and the Global 
Multi-resolution Terrain Elevation Dataset of 2010 (GMTED2010) [70]. 

In addition to lower-accuracy satellite-derived DEM, higher-resolution LiDAR-derived DEM have also been 
produced. However, the availability of these higher-resolution data is limited. Furthermore, given its higher resolution 
of measurement, LiDAR has been used to determine building ages [71], facades [72], and building geometries [73]. 
“OpenTopography” is an initiative to support data sharing and access to high-resolution topography [74]. Highly 
accurate LiDAR datasets have been shared on this platform, including for large tracts of New Zealand, collected 
between 2010 and 2022 [75]. 

Dataset age presents a barrier to the applicability of elevation datasets, particularly for extracting building features. 
Where building features are extracted, the building must have been built before the dataset was collected, which limits 
the use of such techniques for recently constructed buildings. Additionally, dataset accuracy presents another barrier. 
Although satellite-derived datasets are freely available and provide global coverage, they have low accuracy for building 
purposes and can produce significant errors when used to extract building dimensions. [62]. 

3.2.2. Natural & Human-Made Features 

Built infrastructure, roading and buildings, and Green and Blue Infrastructure (GBI), which describes vegetation 
and bodies of water, affect the local microclimate due to heat retention, changes to albedo, evapotranspiration, solar 
shading, and wind flow modification. GBI has been used to modulate local climate to increase comfort and decrease 
energy consumption [13] and have been incorporated into UEM simulations as energy efficiency interventions [76,77]. 

Local climate zone (LCZ) is a standard for characterising urban areas for local climate analysis, which is divided 
into 10 urban zones and 7 natural zones. Zones include categories for compact and open high-rise, mid-rise, and low-
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rise buildings, pathed areas, bush cover, and water [78]. Subclassification, “levels”, quantifies further details, such as 
tree morphology and soil type [78]. These zones have specific attributes relating to their impact on the local climate. 

Various means have been used to measure climate relevant land qualities, including remotely sensed spectral data; 
airborne LiDAR and spectral airborne-based LiDAR; low- and high- resolution satellite imagery; terrestrial laser 
scanning; aerial and terrestrial photography; and in-situ inspections [12]. The World Urban Database and Access Portal 
Tools (WUDAPT) project is a global initiative to collate and disseminate relevant climate data [79], including LCZ 
maps [80], which can be generated automatically from satellite data [81]. LCZ classifications, such as ENVI-met, are 
often used as a model input for urban climate modelling packages [82]. 

3.3. Building Data 

Building energy modelling (BEM) involves detailed physics-based modelling of buildings to understand energy 
consumption and evaluate the effects of energy interventions [83]. With advances in computing power, the related field 
of urban building energy modeling (UBEM) has emerged, involving the simulation of numerous buildings at an urban 
scale.While the two fields overlap, UBEM typically represents many buildings at a lower level of detail (LoD), while 
BEM represents fewer buildings (or one building) at a higher LoD [84]. Thus, while the two fields require similar data 
types, the impact and importance of different data can vary between BEM and UBEM. 

Both BEM and UBEM can be implemented in various software environments, including open-source applications. 
For example, EnergyPlus is an open-source building energy simulation package developed by the United States 
Department of Energy, which can model a range of building energy functions [85]. 

3.3.1. Data Formats 

Several data formats can be used to store UBEM data. Common formats include IFC and gbXML, which are 
standard for BEM; and GeoJSON, Shapefiles, and CityGML, which are more common for UBEM [63]. The Industry 
Foundation Class (IFC) [86] is used to describe building and construction data and “green building.” XML (gbXML) 
[87] is designed for sharing data between building design and simulation tools. GeoJSON [88] is a JSON-based file 
format for geospatial data, which is commonly used in mapping applications and UBEM platforms [63] and is easily 
implementable in a range of applications. The OpenStudio City Modelling Framework extends the use of the JSON 
format for UrbanOpt [89]. Shapefiles are a type of geospatial vector data format used to store and display geographic 
information, consisting of a set of files representing geographic features such as points, lines, and polygons [90]. Shapefiles 
are commonly used in GIS systems [63] and are thus well-suited to urban modelling applications, as GIS systems are 
specifically designed to handle and analyse spatial and geographic data and have well-developed resources for those tasks. 

CityGML (City Geographic Markup Language) is an open and standardised data format specifically for cities and 
landscapes, which was developed by the Open Geospatial Consortium [91]. CityGML has several features [92] suiting 
the requirements of UEMs: (i) The format has native support for city elements such as city furniture, buildings, 
transportation, vegetation, and water bodies; (ii) The format supports multi-scale modelling. For example, geometries 
may be represented in four increasing levels of detail (LOD0-3); in LOD0, buildings are represented by surface 
footprints, while in LOD3, buildings have highly detailed representations described by sets of surfaces, internal and 
external geometries, apertures, and shading devices; and (iii) the format supports the development of application domain 
extensions (ADE), sets of additional classes, attributes, and relations. 

EnergyADE is an ADE developed to allow for detailed single-building energy simulations and city-wide bottom-
up energy assessments, including data for building physics, occupant behaviour, materials, construction, and building 
energy systems [93]. EnergyADE is not intended for use with centralised energy infrastructures, such as district heating 
networks, as these are the focus of other extensions, such as the Utility Network ADE. However, the Utility Network 
ADE project appears to be stagnant, as the project is still in draft status and was last updated in 2012 [94]. 

3.3.2. Building Geometry 

Building geometry data requirements increase with increasing LoD [95]. UBEM often uses models with lower 
complexity than those in single-building BEM, reflected by the lower LoD typically used for models [63], which 
typically consists of external and assumed geometries, and single thermal zoning instead of multi-zoning [44]. For 
example, UBEMs often include approximations such as the use of single, centrally located windows on building faces, 
which are sized to meet assumed or known window-to-wall ratios (WWRs) [96]. Thus, UBEM can have lower per-
building data requirements than high-LoD BEM. 

Diverse types of building geometries exist. Building external geometry data include building footprints, height, 
orientation, floor number and height, and roof shape. Façade geometry data include the size and positioning of doors, 
windows, and shading devices. Data may be simplified, such as simplifying the size and distribution of windows to a 
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single WWR. Internal geometry data include an internal layout of partitions and the zone type. For example, zones can 
be classified as occupied/unoccupied, or according to use, such as office, bedroom, living area, and circulation area. 

While building plans and building information models (BIM) often contain all the required building information 
for UBEM, access to these data can be limited, and is typically restricted to the municipalities. Additionally, as it can 
be cumbersome and time-intensive to extract the relevant data when available, it is typically infeasible to utilise BIM 
at the urban scale. Furthermore, in the case of aged building stock, BIM may not be available, and building plans have 
a variety of formats, such as scanned drawings. Overall, while building data are often available, extracting the required 
information for urban-scale analysis is typically impractical. Conversely, automated feature extraction from BIM or 
drawings presents an opportunity to enhance the availability of building geometric data for UEM. 

Building footprints provide building orientation and overall shape and can be vertically extruded to produce a 3D 
building shell [27], a common workflow for UBEM production. Footprints can be generated from direct surveys, 
satellite imagery, aerial imagery, oblique photogrammetry, and LiDAR [63], where image recognition and extraction 
can automate footprint generation [97]. 

Google’s Open Buildings footprints [98], generated from satellite imagery using machine learning [99], and Open 
Street Maps footprints, generated by users from various sources [100,101], provide freely available building footprints, 
which have been used for UBEM [62,102,103]. Another footprint source is local municipality cadastral records, which may 
have greater accuracy than footprints derived from satellite imaging and have also been used for UBEM [104]. Some cadastral 
records are openly available [105–110]. Accurate commercial mapping services are also available [62]. In addition to 
footprint, mapping services provide urban layout data, such as the distribution and orientation of buildings, parks, and roading. 

Building heights can be obtained from building plans and records [111]; obtained from Energy Performance 
Certificates [24,112], which are required for certain buildings in the European Union (EU); obtained from tax records 
[113]; or calculated by assuming floor-to-floor heights from the number of stories [114,115]. Heights can also be 
extracted from normalized Digital Surface Models (nDSM), which are created by subtracting the DSM from the DTM 
[62]. Satellite-derived DEMs typically have low accuracy [63,116], but due to higher precision, LiDAR-derived DEMs 
can calculate building heights with greater accuracy. Similarly, LiDAR data can produce detailed roof geometries [73]. 
Additional methods to obtain building heights include oblique photogrammetry from aerial photography [117] and 
shadow measurement [118]. Where building heights have already been characterised, these data may be available as 
attributes in Google and OSM datasets [98,100] or city GIS datasets [119]. 

Fenestration information is often not included in building datasets [44,63], likely due to the difficulty of obtaining 
these data. Thus, several means to determine simple WWRs include assuming from building archetypes [96], 
professional judgement [44], aerial infrared thermography [120], and manual extraction from photographs [111,121]. 
However, the simplified WWRs lack accuracy for muti-zoned models, so detailed fenestration data, such as the size 
and positioning of individual windows, are required. Methods to extract detailed fenestration data include low-
resolution aerial photographs with analytical extraction techniques [122,123], terrestrial and satellite photography and 
manual extraction [124], street-based photography and artificial intelligence extraction techniques [115], oblique aerial 
images and automated [115,122,125], LiDAR scanning of façades, and automated extraction [72]. However, many of 
these techniques are cumbersome, and thus not readily implementable in UBEMs. 

External shading devices like louvres and overhangs, can affect building energy use by reducing solar gains and 
cooling loads. No research has been found for the automatic or manual characterisation of external shading devices, 
either by remote sensing or other means. 

Modelling building interior partitions is common in traditional BEM but not in UBEM, due to the difficulty of 
collecting interior layout data at scale. However, model LoD and thermal zoning strategies do affect energy performance 
[112], so including building interior modelling will increase the accuracy of BEMs and UBEMs. Several techniques 
exist for indoor mapping, including the use of one or a mixture of laser sensors and scanners, stereo-imaging, and sonar 
[15,126]. However, these techniques are often manual time-intensive, and expensive. Crowdsourcing the task of 
harvesting internal boundaries to smart phones has been explored to overcome these limitations, and several platforms 
exist to convert smartphone data into indoor floorplans [126]. No largescale open datasets for indoor maps exist, 
however, Google Maps has added support for viewing multi-story indoor maps [127]. The dataset is small and limited 
to commercial and public spaces, which have an incentive publicise building layouts. Current datasets have limited 
applicability to the residential building stock and UBEM. Additionally, no research has been found integrating generated 
indoor maps, or derived thermal zoning, into UBEM. No large-scale open datasets for indoor maps exist. However, 
Google Maps has added support for viewing multi-story indoor maps [127]. This Google dataset is small, and limited 
to commercial and public spaces, which have an incentive to publicise building layouts. Current datasets have limited 
applicability to the residential building stock and UBEM. Additionally, no research has been found for the integration 
of indoor maps, or derived thermal zoning, into UBEMs. 
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3.3.3. Building Constructions 

Building material thermal performance data are required for accurate thermal modelling in BEM and UBEM. These 
data include material type, airtightness, and thermodynamic characteristics such as U-values. In BEM, physical 
constructions can be extracted from building plans and surveys, then U-values and other characteristics obtained from 
standard values based on the obtained data. However, this procedure can be inaccurate, as measured values can differ 
substantially from idealised assumptions [16]. Thus, where available, directly measured data are superior to those 
calculated from standard values. 

Construction data for UBEMs can be collected from energy performance certificates [104,128]; professional 
judgement based on historical standards, construction type, and building age [44,129]; and national building archetype 
databases, such as Tabula in the European Union [58,130–132]. These methods have a low accuracy, as they are 
typically not based on building measurements or direct observations, and thus can fail to account for key features, such 
as retrofitted insulation. 

Although not yet implemented into UBEM, thermal performance data may be measured directly, which has the 
potential to overcome data accuracy and accessibility limitations. U-values can be calculated from on-site data, such as 
heat flux measurements and infrared thermography [133,134]. Large-scale acquisition of thermal property data via 
aerial and UAV infrared thermography has been proposed [120,135], although the technique has low accuracy. 
Additionally, image recognition may be used to classify exterior construction material [136], which can be used to 
allocate buildings to the appropriate archetype. For this task, source images can be extracted from public repositories, 
such as Google Street View [124]. Overall, the limited accuracy and availability of building construction data are 
ongoing limitations for UBEM. 

3.3.4. Occupancy and Occupant Behavior 

Occupant behaviour includes occupancy schedules, electrical plug loads, lighting schedules, temperature set points, 
window operation, solar shading operation, and hot water usage [137]. Each of these behaviours is important for UEM 
[25], as they drive building energy demand and can affect the timing of energy consumption, so they are key to 
understanding peak energy demands in energy networks [138,139] and can contribute to the increased potential for 
energy demand response [140]. Four general approaches are used to represent occupancy and occupant behaviour in 
UEMs, including deterministic, stochastic, and agent-based methods [17,137,141]. Deterministic occupancy schedules 
are often assumed based on expert judgement and are most often used in UBEM [23]. However, where available, 
measured data from individual buildings are the most accurate [142]. 

Time use surveys (TUS) are statistical surveys collecting data on how people spend their time. These surveys have 
been conducted in multiple countries and continents. By determining where occupants are likely to be at different times 
of day, TUS and similar datasets can be used to derive occupancy and behaviour schedules for residential and 
commercial buildings [63,137]. Data from smart electricity meters have also been used to determine occupancy and 
appliance use [143]. 

Deterministic occupant behaviour profiles are provided by guidance documents from institutions such as CIBSE 
and ASHRAE [144,145] and from building standards [146]. Stochastic profiles account for variability in human activity, 
which is critical for accurately predicting peak loads in large energy networks due to load diversification. Stochastic 
profiles can be based on people, such as creating a location profile for each occupant, or spaces, such as creating an 
occupancy profile for each room [17]. Several stochastic occupancy and behaviour profiles have been developed, 
including stochastic occupancy schedules based on the American Time-Use Survey [147]; and StROBe and 
newStROBe, derived from Belgian household data [148,149]. Agent-based models (ABMs), which simulate human 
behaviour and their interactions with other agents and the environment, have been used to generate occupancy and 
behaviour profiles [150]. The use of ABMs to generate behavioural profiles is promising at the urban scale, as ABMs 
can couple transportation and building utilisation [17] and lead to more accurate urban-scale occupancy distributions. 
Additional models have been developed to generate specific occupant behaviour, such as electrical plug loads [151], 
hot water consumption [18,152], and both [153]. 

3.3.5. Building Systems 

The correct characterisation of building systems, such as the rated capacity and efficiency of Heating Ventilation 
and Air Conditioning (HVAC) and Domestic Hot Water (DHW) systems, is important as they are a significant driver 
of building energy consumption [23]. Building energy system characteristics have been extracted from existing 
databases, such as census data, the European EPC database, and the US Building Performance database [26,96,154]. 
Most commonly, archetypes are used, where systems are assigned to buildings based on the year of construction, the 
existence of district heating systems, and professional judgement [44,119,128,155]. Building systems have also been 
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ignored where the type of analysis is focused on other aspects of the energy system [104]. While not yet deployed in 
BEM or UBEM, non-intrusive monitoring from smart power meters, is becoming increasingly ubiquitous, and signal 
processing may be used to determine installed equipment, appliance loads, ratings, use, and efficiencies [143,156–159]. 

3.4. Transportation Data 

Transport has been studied at the urban level for classical ‘four-step’ transport demand models, which include trip 
generation, trip distribution, modal split, and traffic assignments [160]; land use-transport interaction modelling; 
accessibility analysis [161,162]; transport poverty studies [163]; and transport energy requirements [164]. Including 
transportation in UEMs provides a broader and more useful energy system model [3] and can improve overall model 
accuracy by accounting for the interconnection between vehicle use and building occupancy [24]. 

A range of data sources exists for modelling urban transportation. Vehicle licensing records provide annual travel 
demand based on odometer readings and vehicle demographics, such as year, make, and model. Travel diaries and 
surveys, which record individual or household travel patterns for several days, have been used for multivariate statistical 
mode choice modelling [165]. Traffic counts, which record the vehicles passing through sampled streets, have been 
used for congestion monitoring, support analysis of travel patterns, and validation of other transport models [166,167]. 
Census data provide demographic data, including car ownership, and can include travel-specific data, such as travel 
demand, and cognitive factors, such as travel attitudes and preferences [165]. Census data benefit from large sample 
size and the inclusion of multiple factors such as region, household, and income, which improve their usefulness to 
modellers. Geographic data include land use and the spatial layout of road and transit networks, and departure and 
destination locations, such as residential areas, food, health, education, and retail facilities [168]. Geographic data are 
available from open sources, such as OpenStreetMap. The General Transit Feed Specification (GTFS) is an open 
standard for public transportation schedules and associated geographic information, such as rail and bus stops, routes, 
and timetables [169], which can support urban transport accessibility studies [170]. 

In addition to classical sources, technological developments such as the internet of things (IoT) and the advent of 
Big Data have provided several new sources of transportation data [171,172]. Global positioning system (GPS) loggers 
are now present in smart phones, wearable technologies, and many other devices, including vehicles. GPS data are used 
by services such as Google Maps and ride-sharing apps to provide information on congestion and adjust route generation. 
Similarly, social media posts are often ‘geo-tagged’, marking their position using the GPS capabilities of smart phones. 
Thus, social media data-harvesting can extract population-level travel behaviours and locations of interest but lacks 
accuracy at an individual level due to privacy restrictions [173,174]. Similarly, IoT devices, such as traffic cameras and 
smart traffic lights, can generate real-time traffic data [175,176]. Smart ticketing systems in public transport record 
travel times and entry and exit locations so they can provide detailed information on public transit use. However, these 
data are limited to the transit network and thus do not reveal passengers’ actual origins or destinations. Records of 
network connections, such as cellular and wireless networks, contain time and approximate location. They can be used 
to infer travel routes but are limited to passengers connected to these networks during their transit. 

Overall, while data-rich resources are becoming increasingly available, there are still considerable barriers to 
overcome before large-scale integration into UEMs. Specific challenges include integrating and sharing data, which can be 
challenging due to data volumes and private ownership, data ownership and privacy, and data quality and standards [171]. 

3.5. Demographic Data 

Demographic data describes the characteristics of a population and includes socio-economic data, which can 
include age, gender, ethnicity, income, employment status, household composition, and location, all of which can affect 
energy consumption [177]. For example, space heating use typically increases with income level and with age [178]. 
Thus, regions with higher household income levels and/or older populations may have higher energy consumption, so 
socio-economic data are important inputs for accurate UEMs. 

Demographic data are commonly employed in top-down UEMs [179], where regression is performed to correlate 
demographic characteristics with energy consumption patterns, and projections can be performed, such as forecasts of 
population growth. In bottom-up UEMs, demographic data are used indirectly to assign other inputs, such as space 
heating methods. 

Sources for demographic data include surveys, billing data, tax records, and census records [26,180–182]. Census 
data are typically the most common demographic data source, due to the high detail, breadth, quality, and accessibility 
of data collected. Limitations of census data are the frequency of collection, which is commonly several years, and the 
lack of specific energy-related data. Due to privacy concerns, census data are anonymised, which limits connections 
between energy and census datasets at an individual or household level, thus preventing correlations between 
demographic data and energy consumption patterns at this level. Instead, aggregate correlations are used, which can 
limit the efficacy of census data for UEM. 
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3.6. Energy Network and Consumption Data 

Energy networks can include electricity networks, distribution of gas and other fuels, and district heating schemes. 
In these networks, the placement and sizing of elements, such as distribution pipes, electricity lines, pumps, and 
electricity transformers, can vary. Thus, network-specific data are required to identify limitations, such as the capacity 
of electricity distribution transformers, and for planning and system design. 

Consumption data in these energy networks are required to tune and validate bottom-up energy models, and are 
the primary input for top-down, data-driven models [26]. Energy consumption data can be collected at any level: 
dwelling, building, district, region, or nation. These data are typically collected by meters, such as electricity meters at 
the building or district level. Lower-level energy consumption data are the least aggregated and thus the most useful for 
high-granularity UEMs considering individual buildings or districts. However, access to dwelling- and building- level 
data is limited due to privacy concerns, so access typically requires the consent of each consumer [183]. Additionally, 
because meters are typically owned by energy retail companies, the data are usually proprietary, requiring the owner’s 
cooperation for access. For example, electricity consumption data are plentiful in New Zealand due to the nationwide 
roll-out of smart electricity meters [184], but these data are owned by the electricity retail companies and are typically 
unavailable for energy modelling. To address this limited accessibility, some studies in New Zealand have collected 
non-proprietary, anonymised electricity consumption data from small numbers of consumers [184]. However, while 
these studies can help to address data privacy and ownership concerns, their small sample sizes raise concerns about 
representativeness. Additionally, small-scale studies of energy consumption can be particularly prone to issues of 
incompleteness [185], and issues can arise when combining datasets because of differences between them [186]. 

District-level consumption data can be sourced from energy distributors and are aggregated at sufficient resolution 
to overcome privacy concerns [104]. However, these data are proprietary, so access requires the distributor’s 
participation. As distributors are not typically incentivised to participate in data-sharing, access to these data is often 
limited [44]. For similar reasons, access to energy network system design, such as network layouts and system capacities, 
is often limited [34]. However, high-level data are sometimes available directly from distributors, such as PowerCo in 
New Zealand, who provide an interactive map of their medium-voltage electricity network for planning purposes [187]. 

High-level energy consumption data are usually more openly accessible than lower-level data. At the state or 
national level, data reporting is often mandated, making energy network and consumption data frequently publicly 
accessible. For example, in New Zealand, the Electricity Authority reports electricity power flow and location-specific 
electricity costs [188]. However, the high-level aggregation in these data means they may be poorly suited to models 
with higher granularity. 

Overall, high-level consumption and network data are typically more widely accessible than lower-level data, but 
their aggregation means they may be less useful for energy modellers. Conversely, low-level data are typically more 
useful but are often inaccessible because of privacy and/or commerciality concerns. Thus, improving the accessibility 
of high-granularity data, such as from individual buildings’ energy meters, would increase the quality of UEMs 
requiring these data. However, the privacy of energy consumers must be protected, so datasets should be appropriately 
anonymised and retain useful, non-identifiable information, such as the region from which the data were collected. 

3.7. Distributed Energy Resources 

Distributed energy resources, such as solar PV, micro-wind turbines, and battery technologies, are increasingly 
being integrated into electricity systems at the building and district levels. Thus, variables affecting distributed energy 
resources, such as resource potentials, weather data, technological specifications, and costs, are increasingly important 
data inputs for UEMs. In addition to the weather data sources described in Section 3.1, the World Bank’s Global Wind 
Atlas and Global Solar Atlas projects provide verified estimates of wind and solar resource potential for locations around 
the world [189,190]. Detailed resource potentials can also be estimated at the national level. OpenEI (Open Energy Info) 
provides the Open Energy Data Initiative data portal, where high-resolution resource potential data are available for 
North America [191], and Data Europa provides similar data for Europe [192]. 

Energy technology costs, related emissions, and specifications, such as PV panel efficiencies and temperature 
coefficients, power curves for micro-wind turbines, inverter conversion efficiencies, and battery efficiencies, are 
important considerations for the effective design of urban energy systems. The most relevant energy technologies at the 
urban scale are solar PV, small wind turbines, and battery technologies, as these are the most common [193]. Accurate 
technology specifications are available from manufacturers’ product datasheets. However, at early design stages, or 
when making technology- rather than product-level decisions, general figures are most useful. Generalised energy 
technology data have been produced by institutional scientific review and are generally included in the internal libraries 
of energy modelling software platforms, such as SAM and HOMER [194,195]. Solar PV technologies have various 
established and emerging cell architectures. Important solar cell parameters include cell efficiency and power 
performance with temperature. Solar PV cell types are reviewed in [19], where cell type efficiencies and temperature 
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coefficients are quantified, and qualitative data is provided on size, cost, and high-temperature performance. NREL 
provides technical reports on the module costs of commercially available and emerging Solar PV technologies [196]. 

Various terms are used for small-scale wind generation, which is the most relevant at the urban scale, including 
micro-wind, small-wind, and building-integrated wind generation. Wind electricity generation at this scale is still an 
emerging technology, and less mature than solar PV in its development and ubiquity. Due to these factors, research 
reviews are limited to reviewing the technology types [20] and the connection between the local wind resources and 
small-scale wind turbines [21]. There is an absence of data on the cost of installation and operation, and the overall 
energy costs, such as LCOE calculations, for small-scale wind, which is likely due to the limited number of installations 
and the strong dependence of these costs on installation location and local topology, making costs and energy yields far 
more variable for micro-wind than for solar PV. 

Energy storage technological options are reviewed in [22], where factors such as rated power, specific energy, 
energy efficiency, discharge time, response time, lifetime cycles, self-discharge, and relative costs are compared. The 
review highlights the high variability within technologies and provides ranges of these factors for different technologies. 
Additionally, at an institutional level, the European Union department of Energy has published a database of European 
energy storage technologies and facilities [197], which provides simplified costs and specifications. Increasingly, 
appliances with flexible electricity demand, such as hot water cylinders [198,199] and electric vehicles [34], are being 
used as distributed energy resources to provide ancillary services to the power system, such as reducing peak electricity 
demand and increasing utilisation of intermittent renewable generation. Thus, understanding this process, known as 
demand response (DR), is becoming increasingly important for urban energy modellers, as DR programs can influence 
electricity time-of-use and total energy use. The constraints and considerations of DR, including technical, economic, 
and behavioural factors affecting DR programs, are reviewed in [183]. 

In addition to the technology-specific sources described above, the United States Energy Information 
Administration produces an “Annual Energy Outlook” representing their assessment of the total system costs to develop 
and install various electricity generation technologies [200]. Additionally, financial consultancy Lazard produces annual 
reports on the levelized cost of energy (LCOE) for different generation and storage technologies [201]. 

Finally, electricity generation-related emissions are reviewed and reported by the Intergovernmental Panel on 
Climate Change (IPCC) in the “IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation,” 
which reviews Life-Cycle Analyses (LCAs) of electricity generation technologies, calculates the lifetime emissions 
attributed to each generation technology, and compares emissions with lifetime generation [202]. For combustion 
sources, such as wood or gas boilers, the IPCC publishes an “Emissions Factor Database” to catalogue emissions factors 
for a combination of fuels and combustion techniques [203]. 

In general, energy resource data have several limitations. Due to economies of scale, energy technology data are 
often available for utility-scale data but are unsuitable for smaller urban-scale applications. Energy technology data can 
also fail to account for variability, as data are typically presented with a single representative figure and, where they are 
provided, data ranges are often inordinately large and are unaccompanied by information on when these ranges apply, 
so are impractical for use by energy modellers. Thus, a large-scale repository of DER products, with manufacturers’ 
specifications and, indicative costs and typical energy yields, would be a useful and timesaving addition to urban energy 
systems design. Such a repository would allow direct comparisons between technologies and products with a high level 
of accuracy. However, no such repository currently exists. 

4. Key Considerations, Practical Implications, and Recommendations 

This section contains general summaries, takeaways from each domain, and general recommendations for 
improving multi-domain urban energy modelling data. 

Climate data 

 Climate data are well-developed and are typically available from government meteorological agencies and/or 
weather-forecasting companies. 

 Established methods exist for downscaling spatially, such as for a particular location from large-scale data, and 
temporally, and for accounting for the effects of urban heat islands. 

 Climatic changes may be apparent within the lifetimes of existing infrastructure, so future weather patterns are a 
key factor in design. Thus, urban energy models should incorporate these changes. 

Geographic data 

 A range of measurement techniques exist to determine terrain data from satellite imagery and aerial photography. 
 The most ubiquitous open-source data are satellite data, which have limited accuracy, while the most accurate and 

useful data are from LiDAR. However, the availability of LiDAR data is limited. 
 LiDAR has proven to be useful across a broad range of urban energy data requirements. Thus, increased collection 

and availability of LiDAR data represents a worthwhile investment. 
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Building data 

 Building external geometries are the most well-developed building data input, with raw data from building 
footprints, LiDAR-extracted building heights, and fenestrations achieved through oblique aerial photography. 
Floor number and height, accurate window placement and size, and solar shading geometries are important for 
building energy modelling. However, methods of accurate determination of these data are limited. 

 Conversely, interior building layouts, which are required to determine thermal zoning and accurate energy and 
comfort assessments, cannot be determined at scale using currently available methods. 

 Building construction data are typically obtained from energy performance certificates and historical standards. 
However, real values can differ from the hypothetical values obtained from these performance certificates. 
Thermography and in-situ provide real measurements of thermal properties but are limited in accuracy or 
scalability. 

 Occupant behaviour is highly variable but highly impactful for energy modelling, particularly for time-of-use 
considerations. Various overlapping methodologies exist to simulate building occupant behaviour, including 
deterministic, stochastic, and agent-based models. Stochastic methods are not necessarily accurate for any 
individual building but can produce accurate results in aggregate and are thus well-suited for urban energy models. 

 Building systems are a significant driver of building energy consumption, which can only be determined accurately 
for any individual building through performance certificates or other records. However, surveys can provide 
accurate distributions of technology utilisation. Signal processing of data from smart electricity meters can provide 
a method for remote determination of building system characteristics at scale without in-situ measurements. Still, 
these data are typically proprietary and thus not openly accessible. 

Transportation data 

 Transportation network data and public transport routes and scheduling, are well-developed, digitised, and widely 
available. 

 Vehicle ownership, travel demand, and travel distribution data are highly impactful for urban planning purposes, 
particularly with the increased adoption of electric vehicles. However, access to these data is limited. 

Demographic data 

 Demographic data are widely available at aggregate scales, such as city, state, or nation, and can thus provide 
accurate distributions for assignment in urban energy models. 

 While high-granularity demographic data are collected, privacy concerns limit the accessibility of these data. 

Energy network and consumption data 

 Aggregate energy consumption data are widely accessible in many places, as national- or state- level data are 
openly available in many countries. 

 Individual building energy metering data exist, but access is limited due to privacy and commerciality concerns. 
Increased access to these data could provide considerable benefits for the tuning and validating various energy 
models. 

Distributed energy resources 

 Many DER technologies are available, the most common of which are solar PV, micro-wind turbines, and 
residential batteries. However, technical characteristics, and thus specific performance, can vary, and integration 
of DER in energy models requires access to manufacturer datasheets. 

 To the best of the authors’ knowledge, no open data repository exists for the technical performance characteristics 
of DER equipment. 

Recommendations 

 The establishment of robust methods for predicting regional climate patterns, including their uncertainty, would 
facilitate assessment of the effects of climatic changes in urban energy models. Thus, these methods should be 
investigated. 

 LiDAR data provide the most accurate and useful terrain data for geographic terrain and determination of building 
heights, making it important for energy modelling. Thus, availability and accessibility of LiDAR data should be 
increased. 

 The interior layout of buildings contains important information for energy modelling, but no established methods 
for the determination of interior layouts currently exist. Thus, suitable methods should be investigated. 

 Overcoming privacy and commerciality concerns to increase access to anonymised energy consumption data would 
provide considerable benefit at little to no additional cost, as smart metering technology is already deployed and 
these data already exist. Thus, increasing accessibility to these data without compromising consumer privacy 
should be actively pursued. 

5. Conclusions 
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Recent technological advancements have driven rapid growth in the field of urban energy modeling (UEM), 
enabling the analysis of interconnected, multi-domain urban energy systems and requiring data inputs from various 
domains.This work provides a comprehensive review of multi-domain UEM data requirements, including data formats, 
sources, acquisition methods, bridging methods, and challenges. Data inputs are categorized into climate, geography, 
building, transportation, demographics, energy networks and consumption, and distributed energy resources. 
Additionally, several key challenges are identified, which are common to multiple domains. Although specific 
challenges can vary depending on the requirements of a given model, in general, improving the availability, accessibility, 
and quality of high-impact data should be considered a priority. Key implications and recommendations for multi-
domain UEM data are provided. Overall, substantial amounts of data exist, but their use is encumbered by a lack of 
coordination and standardisation of formats and due to privacy and commerciality concerns. Consequently, coordinated 
effort by researchers, data owners, and data collectors is required to increase access to these data, which will improve 
the results of multi-domain UEMs. 
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