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ABSTRACT: Nonstationarity due to climate variation and anthropogenic disturbances has altered high flow regimes. However, 

the extent of change has not been evaluated for undisturbed versus disturbed watersheds. This article aimed to determine how 

partitioning watersheds into undisturbed and disturbed categories can improve the performance of probability distributions for flood 

analysis throughout the United States. We utilized peak flow information for 26 reference (undisturbed) and 78 nonreference (dis-

turbed) watersheds with drainage areas ranging from 135 to 42,367 km2 and record lengths of 100 to 140 years. Results indicated 

that flood quantile estimates of the Log Pearson Type III (LP3) distribution were likely being overestimated for return periods of 2 

to 10 years, while flood estimates of 50 years and higher might be underestimated. In contrast, the Generalized Extreme Value 

(GEV) distribution outperformed LP3 in estimating floods with return periods of 50 years or more. These findings enhance flood 

frequency analysis and forecasting under nonstationary conditions. 

Keywords: Nonstationary Climate; Flood Frequency Analysis; Reference vs. Nonreference Sites; Log Pearson Type III (LP3); 

Generalized Extreme Value (GEV); Annual Maximum Flood 
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1. Introduction 

Globally, total flood-related financial damages are projected to increase to $52 billion by 2050, up from $6 billion 

in 2005 [1]. The total property damage and loss of life due to the 2014 flooding events across the United States were 

estimated to be almost $3 billion, accounting for 36% of the overall average during the 30-year period from 1984 to 

2013 [2]. A flood risk assessment study for Los Angeles, California indicated that a projected 100-year flood could 

potentially affect a median of 425,000 people and result in a median economic loss of $56 billion [3]. 

Beyond the likelihood of experiencing a flood of a certain magnitude and duration, the extent of financial loss also 

depends on societal reactions to the event and the levels of societal vulnerability [4]. The 21st century increases in US 

flood damage may be attributed to rising societal vulnerability in addition to increases in precipitation and streamflow 

[5–9]. Since flood risk is a product of flood hazard, exposure, and societal vulnerability, measures such as providing 

more reliable flood quantiles estimate can improve societal resilience and decrease flood risk [4]. 

Reliable flood forecasting requires acknowledging nonstationarity in climate as well as nonstationarity due to 

anthropogenic disturbances such as land use/cover change, water withdrawal, river regulation, and reservoir 

construction [10–14]. To facilitate understanding of the influence of nonstationarity on flood forecasting, it is vital to 

study both undisturbed and disturbed watersheds [15,16]. Disturbed watersheds have experienced anthropogenic 

disturbances during the flood record period, while undisturbed watersheds have no or minimum disturbances [17]. 

Studying reference streamflow gauging stations at undisturbed watersheds along with nonreference stations at disturbed 

watersheds will improve regional flood frequency analysis and forecasting since the distinction in physiographic 

characteristics can affect flood quantile estimates [18–21]. 



Hydroecology and Engineering 2024, 1, 10002 2 of 17 

 

Several studies on flood analysis across the US have used peak flow data, taking into account differences between 

reference and nonreference streamflow gauges due to factors such as urbanization or damming, but they did not clearly 

separate gauges into distinct clusters (e.g., [12,22–24]). 

In this study, we considered two clusters of 26 reference and 78 nonreference sites with peak flow records of at 

least 100 years and no missing data across the contiguous US. We compared the differences between flood quantile 

estimates at reference sites with those at nonreference sites. We utilized two statistical distributions, Log Pearson Type 

III (LP3) and Generalized Extreme Value (GEV), to estimate flood quantiles. These robust, resistant, and efficient 

distributions have been tested extensively (e.g., [24–40]. 

This article aims to: (1) investigate whether the choice of LP3 or GEV distribution is limited by a site being 

reference or nonreference, and (2) determine the impact of partitioning sites into reference and nonreference on 

estimating the shape parameters of LP3 and GEV distributions. These objectives were studied throughout the contiguous 

US using the most recent peak flow data to reassess the design flood information. The results can help engineers and 

water managers better prepared for changes in flood frequency and magnitude in nonstationary conditions and improve 

infrastructure design and reservoir management. 

2. Materials and Methods 

2.1. Data 

Peak flow information was obtained from the US Geological Survey’s (USGS) Surface-Water Data for the Nation 

(https://nwis.waterdata.usgs.gov/usa/nwis/peak). The USGS Hydro-Climatic Data Network (HCDN) 

(https://on.doi.gov/2wHG9z8) was utilized to screen and select among streamflow gauging stations with minimal or no 

anthropogenic disturbances, known as reference sites [41,42]. Among 9067 USGS gauging stations in the contiguous 

US [17], we chose 26 reference and 78 nonreference sites with more than 100 years of peak flow information to avoid 

the uncertainty associated with short-length records (Figure 1). Additionally, the 18 water-resources regions of the 

contiguous US (2-digit Hydrologic Unit) are identified on Figure 1. More characteristics of the study sites are presented 

in the appendix (Table S1). 

 

Figure 1. The spatial distribution of 26 reference and 78 nonreference study sites with more than 100 years of peak flow 

observations across the contiguous United States. The names and boundaries of HUC02 regions were identified [43]. 
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2.2. Methods 

In this study, we used the LP3 (with product moment parameter estimation) and GEV (with linear moment 

parameter estimation) distributions, which have been extensively used to estimate flood quantiles throughout the 

contiguous US. These two distributions are among the most popular and well-accepted statistical distributions 

recommended for flood frequency analysis [15,22,29,35,44]. The product moment estimation of the LP3 parameters is 

based on three data moments: mean, variance, and skewness. The product moment estimation utilizes higher powers of 

deviation from the mean; therefore, it is highly sensitive to rare or extreme high flood values [26]. 

The product moment estimation of distribution parameters for highly skewed flood flow information can be 

replaced by linear moment approximation, also known as the L-moment method [45]. The GEV analysis with L-moment 

approximation for distribution parameters has been globally applied for both at-site and regional flood frequency 

analysis [35,46–49]. The GEV produces less biased flood quantile estimations compared to LP3 [50]. The formulation 

of LP3 and GEV distributions is detailed in the following section. The authors developed a computational code in R to 

estimate flood quantiles using the formulations presented for LP3 and GEV distributions. 

2.2.1. The LP3 Distribution with Product Moment Parameter Estimation 

The LP3 distribution has the following Probability Density Function (PDF) [50]: 
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where X  is the natural logarithm of the observed peak flow data, i.e., ( )X n Q= . 

The Cumulative Distribution Functions (CDF) for LP3 distribution can be calculated by integrating the PDF from 

“0” to “x”. However, the integral of the PDF does not have a simple closed-form solution; thus, for practical purposes, 

the CDF of LP3 distribution is often computed numerically [50]. 

At first, the mean ( ˆ
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X , second moment), and skewness ( ˆ
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With the estimated moments, the LP3 distribution parameters of shape ( ), scale ( ), and location ( ) can be 

calculated through the following equations [50]: 
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The shape, scale, and location parameters are employed to find the mean, variance, and skewness (the moments of 

distribution, shown by subscript Q) of the LP3 distribution [50]: 

1
Q e



 




 
=  

− 
 (8) 

2

2 2

2 1
Q e

 

  


 

    
= −    

− −     

 (9) 

3 2 3

3

3 2Q Q

Q

Q

E Q E Q 




   − +   =  where 
r rE Q e

r



 



 
  =    − 

 (10) 

The moments of distribution were utilized to estimate the peak flow quantiles [51]: 
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The Wilson-Hilferty formula provides an acceptable estimate for the frequency factor ( )P QK   where 

0.01 0.99P   and 2   [50,51]. If the return period is considered as T , then 1 1/P T= − . Depending on P, 

PZ  which is the Pth quantile of the standard normal distribution with mean and variance equal to zero and one, 

respectively, can be estimated by [52]: 
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In order to visually check the goodness-of-fit for LP3, the empirical probability function was used based on the 

Blom formula [53]: 
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where i  is the rank of the observations in which 1i =  goes with the greatest observation. The probability of 

occurrence was calculated as: 

1i iP q= −  (15) 

If LP3 is suitable for flood frequency analysis, then the plot of 
ˆ

ˆ
i X

i

X

X
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−
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line [22]. 

2.2.2. The GEV Distribution with L-Moment Parameter Estimation 

GEV was introduced by Jenkinson (1995) [54]. Wallis (1980) [55] and Greis and Wood (1981) [56] further 

developed its hydrologic application using the index-flood procedure and probability-weighted moments (PWM). The 
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closed-form solution of GEV inverse function enhances its suitability for flood frequency analysis [27]. The GEV has 

the corresponding CDF [50]: 
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GEV does not require any data transformation. The X  is an ordered series of observations Q from the largest to the 
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where n is the number of observations at site k  and 0 3r = −  represents the zero-, first-, second-, and third- moment. 
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The L-moments are the functions of probability weighted moments [58]: 

�̂�1 = �̂�0 (23) 

�̂�2 = 2�̂�1 − �̂�0 (24) 

�̂�3 = 6�̂�2 − 6�̂�1 + �̂�0 (25) 

�̂�4 = 20�̂�2 − 30�̂�1 + 12�̂�1 − �̂�0 (26) 

The parameters of the GEV distribution could be estimated in terms of L-moments [50,58]: 
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where ( )1  +  is the factorial function for real and complex numbers. Having the distribution parameters computed, 

the GEV quantiles can be estimated as follows [50]: 
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where P is the cumulative probability of interest. For instance, a 100-year flood has a return period of 100 years with 

the probability of occurrence 
1
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The Cunnane’s plotting position [59], is an empirical probability function suggested for visually checking the 

goodness-of-fit for the GEV distribution [60]: 
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where i  is the rank of the observation in which 1i =  goes with the greatest observation. The probability of 

occurrence is then calculated using Equation (15). 

If the GEV distribution is an appropriate choice, then the plot of 
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should be close to 1:1 line [22]. 

3. Results and Discussion 

The results were presented in four sections for both reference and nonreference sites within HUC02 water resources 

regions of the contiguous US (Figure 1). First, we compared and contrasted the ratio of observed peak flow to estimated 

flood quantiles between reference and nonreference sites. Second, we identified regions where either GEV 

outperformed LP3 or vice versa. Third, we analyzed how partitioning sites into reference and nonreference categories 

influenced the spatial distribution of shape parameters for LP3 and GEV. Finally, we reported the results of goodness-

of-fit tests for both distributions, categorized by whether the site was classified as reference or nonreference. 

3.1. The Ratio (R) of Observed to Estimated (Obs/Est) Flood Quantiles for Reference and Nonreference Sites 

The increasing flood frequency and magnitude across the US [61,62], have raised concerns about selecting the 

appropriate flood quantile estimates [12,16,63]. To investigate how disturbances affect estimated flood quantiles using 

LP3 or GEV, we calculated the ratio of observed peak flows to the corresponding estimated quantiles at both reference 

and nonreference sites for the return periods ranging from 2 to 200 years. A ratio of “Obs/Est < 1” indicates a good fit 

between the distribution and peak flow observations (i.e., overestimating floods). Conversely, when “Obs/Est > 1” (i.e., 

underestimating floods), it may raise concerns about the LP3 or GEV distributions’ capability to accurately capture 

floods of a specific return period (Table 1). 
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Table 1. Percentage of reference (out of 26) and nonreference (out of 78) sites for the ratio (R) of observed peak flows to the 

corresponding flood quantile estimates (Obs/Est). The ratio of Obs/Est < 1 represents the overestimation of flood while flood is 

underestimated when Obs/Est > 1. 

Return Period (T, Years) 

Reference Sites Nonreference Sites 

LP3 GEV LP3 GEV 

R < 1 (R > 1) R < 1 (R > 1) R < 1 (R > 1) R < 1 (R > 1) 

2 100 (0) 65 (35) 99 (1) 53 (47) 

5 100 (0) 54 (46) 97 (3) 51 (49) 

10 69 (31) 50 (50) 62 (38) 56 (44) 

25 31 (69) 46 (54) 13 (87) 49 (51) 

50 15 (85) 46 (54) 6 (94) 51 (49) 

100 12 (88) 58 (42) 5 (95) 47 (53) 

200 0 (100) 50 (50) 1 (99) 58 (42) 

The results showed that for reference sites, the performance of the LP3 distribution in capturing observed peak 

flows improved as the return period decreased. LP3 performed particularly well in estimating low flood quantiles with 

return periods of 2 to 25 years. Conversely, for flood quantiles with return periods of 50 to 200 years, GEV outperformed 

LP3 (Table 1). Both GEV and LP3 underestimated (R > 1) observed peak flows with return periods of 50 to 200 years 

in 42–54% and 85–100% of the reference sites, respectively (Table 1). Similar patterns were observed for nonreference 

sites. LP3 performed better than GEV in estimating floods with return periods of 2 to 10 years. However, for return 

periods of 25 to 200 years, both GEV and LP3 underestimated observed peak flows in 42–53% and 87–99% of the 

nonreference sites, respectively (Table 1). 

3.2. Regions Where LP3 Outperformed GEV or Vice Versa 

We observed no spatial pattern for floods with return periods of 2, 5, and 200 years at both reference and 

nonreference sites where LP3 failed to capture the observed peak flow (Figure 2a,c,m). LP3 performed well for floods 

with a return period of 10 years at reference sites on the West coast and nonreference sites in the Northeast (Figure 2e). 

However, LP3 estimates for return periods of 50 and 100 years matched the observed quantiles at only 10% of the study 

sites (Figure 2i,k). Wang et al. (2011) [39] also emphasized the superiority of the LP3 distribution over GEV in non-

dam-affected sites in California. Reinders and Munoz (2024) [21] also suggested fitting GEV to peak flows in colder 

and wetter climates, likely because of established high-flow regimes from year to year, while recommending the use of 

the log-normal distribution for dry regions, likely due to their flashy peak flow regimes.  

The GEV distribution showed poor performance in estimating flood quantiles for reference sites located in the 

Central US (return period of 10 years, Figure 2f), West US (return period of 25 years, Figure 2h), South and West US 

(return period of 50 years, Figure 2j), West US (return period of 100 years, Figure 2l), and Northeast US (return period 

of 200 years, Figure 2n). However, GEV accurately captured observed peak flow in the Northeast and Central US for 

floods with the return periods of 25, 50 and 100 years (Figure 2h,j,l). Additionally, GEV performed well for lower flood 

quantiles of 2 years in the Northeast (Figure 2b) and 10 years in the West US (Figure 2f). Pal et al. (2022) [64] also 

adopted the GEV distribution to estimate events with return periods of 2, 5, 10, 25, and 50 years over northeastern US 

and reported satisfactory model performance. 
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Figure 2. The spatial performance of LP3 and GEV distributions. R > 1 represents the underestimation of flood while flood was 

overestimated when R < 1. 

For nonreference sites, GEV effectively estimated flood quantiles with a return period of 200 years (Figure 2f), but 

it struggled to capture peak flows with return periods of 5, 10, and 25 years in the West US (Figure 2d,f,h). However, 

GEV performed well for smaller floods with return periods of 2 and 10 years in the West coast and Northeast, 

respectively (Figure 2b,f). Detailed results on the regional performance of LP3 and GEV are summarized in Table 2. 

Table 2. Regions that LP3 was preferred over GEV or vice versa in capturing the observed peak flow in the contiguous United 

States. “NA” refers to no specific region identifed. 

Return Period (T, Years) 

LP3 GEV 

Reference Sites Nonreference Sites Reference Sites Nonreference Sites 

R < 1 (R > 1) R < 1 (R > 1) R < 1 (R > 1) R < 1 (R > 1) 

2 US (NA) US (NA) Northeast (NA) West (NA) 

5 US (NA) US (NA) NA (NA) NA (West) 

10 West (NA) Northeast (NA) West (Central) Northeast (West) 

25 NA (West) NA (US) Northeast, Central (West) NA (West) 

50 NA (US) NA (US) Northeast (West, South) NA (NA) 

100 NA (US) NA (US) Northeast, Central (West) NA (NA) 

200 NA (NA) NA (NA) NA (Northeast) West (NA) 

3.3. Partitioning Sites into Reference and Nonreference Affected Shape Parameters 

The shape parameter (Equation (5)) plays a crucial role in accurately estimating flood quantiles with the LP3 

distribution. The LP3 shape parameter is always positive as it equals the reciprocal of skewness squared. When 

skewness is close to zero, the shape parameter becomes a very large positive number. In Equation (8), if 0  , then 

1
1





 
 

− 
. When 

1





 
 

− 
 is raised to the power of   then 1

1






 
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− 
. Consequently, the LP3 estimated 
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mean value (i.e., Q ) becomes lower than the sample mean, and the distribution may fail to capture the observed peak 

flow accurately. Therefore, studying the variability of the shape parameter across the US will help identify regions 

where LP3 may not perform successfully. 

The reference sites located in the Pacific Northwest and New England regions showed the highest shape parameters 

for LP3 (Figure 3a). For nonreference sites, the highest values of shape parameters were distributed across water 

resources regions east of Pacific Northwest, east of the Great Basin, Upper Colorado, and west of Missouri (Figure 3b). 

When considering both reference and nonreference sites together, the spatial patterns of shape parameters were 

primarily influenced by nonreference sites (Figure 3c). 

Examining the shape parameters of the LP3 distribution without distinguishing between reference and nonreference 

sites can give a misleading impression of the effectiveness of LP3 in the Pacific Northwest and New England regions. 

When considering only reference sites (Figure 3a), floods were underestimated in the Pacific Northwest and New 

England despite the high shape parameters of LP3, likely due to nonstationarity in climate. However, when both 

reference and nonreference sites were considered together, the LP3 shape parameter decreased in these regions, resulting 

in flood quantile estimates that were closer to the observed peak flows. 

 

Figure 3. The spatial pattern of shape parameter for LP3 distribution throughout the US for (a) reference sites, (b) nonreference 

sites, and (c) reference and nonreference sites together. The larger the shape parameter was, the lower the performance of LP3 
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distribution. The solid empty black circles identified regions with large shape parameters. The surface contours were interpolated 

among study sites via ordinary Krigging with spherical semivariogram model in ArcGIS. 

The GEV distribution with a positive shape parameter ( ) has a finite upper bound. When 0  in Equation (31), 

the term   1 nP



− −  will not be large enough so that the summation with   making it less likely to capture the 

observed peak flow. Conversely, a negative shape parameter corresponds to a distribution with a thicker right-hand tail 

[50,65]. A shape parameter of 1/3 implies that moments of order 3 and higher are infinite [24]. When 0   in 

Equation (31), the term   1 nP



− −  becomes a large number, and the summation with   will more effectively 

estimate the observed peak flow. 

At reference sites, the GEV shape parameter was predominantly positive in the southeast of the Pacific Northwest, 

northeast of the Great Basin, north of Upper Colorado, west of Missouri, and New England regions (Figure 4a). As 

mentioned earlier, a positive shape parameter ( 0  ) in GEV distributions increases the likelihood of underestimating 

floods. For nonreference sites, positive shape parameters were observed in the east of the Pacific Northwest, east of the 

Great Basin, Upper Colorado, Great Lakes, Ohio, and Tennessee water resources regions (Figure 4b). However, without 

distinguishing between reference and nonreference sites, the spatial pattern of the GEV shape parameter did not 

precisely align with either category (Figure 4c). 

 

Figure 4. The spatial pattern of shape parameter for GEV distribution throughout the US for (a) reference sites, (b) nonreference 

sites, and (c) reference and nonreference sites together. In regions with negative shape parameter, GEV performed better in capturing 
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the observed peak flow. The solid empty black circles identified regions with large shape parameters. The surface contours were 

interpolated among study sites via ordinary Krigging with spherical semivariogram model in ArcGIS. 

Similar to the LP3 results, combining reference and nonreference sites can lead to misleading conclusions. Regions 

C and D (Figure 4b) exhibited higher positive shape parameters compared to Region A (Figure 4a), suggesting a greater 

likelihood of underestimating flood quantiles in those regions. Region G (Figure 4c), which encompassed Regions A, 

C, and D showed shape parameters with magnitudes similar to Region A, indicating that GEV might estimate floods 

closer to observed peak flows in Region G. However, when compared to Region C and D (Figure 4b) with higher 

positive shape parameters and a higher chance of underestimating floods, it becomes clear that the combining results 

from reference and nonreference sites can potentially lead to misleading interpretations. 

3.4. Goodness-of-Fit 

The goodness-of-fit test evaluates how well a distribution fits the peak flow observations and provides insights into 

the explanatory power of the distribution [49]. It does not, however, ascertain the true population distribution. Empirical 

probabilities for LP3 and GEV distributions were estimated using the Blom’s and Cunnane’s empirical probability 

functions (Equations (14) and (32)). Following the approach suggested by Serago and Vogel (2018) [22], we conducted 

a goodness-of-fit test. The cross-correlation coefficients between observed and estimated flood quantiles, summarized 

in Table 3, ranged from 0.8157–0.9986, indicating high correlations for both reference and nonreference sites. It 

suggests that LP3 and GEV distributions can effectively estimate flood quantiles across the US. 

Table 3. The cross-correlation range of the goodness-of-fit test for the LP3 and GEV distributions. 

 LP3 GEV 

 Reference Sites Nonreference Sites Reference Sites Nonreference Sites 

Cross-correlation 0.9728–0.9980 0.9552–0.9985 0.9110–0.9983 0.8157–0.9986 

It is important to interpret the goodness-of-fit results with caution, as the test only assesses whether LP3 or GEV 

distributions adequately fit the observed data and not necessarily the true population distribution. As discussed earlier, 

there were regions across the US where LP3 and GEV did not perform well in estimating flood quantiles. Particularly, 

critical flows, such as those with larger return periods, may not be accurately estimated by these distributions. This can 

potentially lead to incidents and failures during the operational life of hydraulic structures, such as large dams. Examples 

of the goodness-of-fit tests for LP3 and GEV distributions are presented in Figure 5. These illustrations help visualize 

how well these distributions match the observed peak flow data. 

  

(a) LP3 goodness-of-fit (b) GEV goodness-of-fit 
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(c) LP3 goodness-of-fit (d) GEV goodness-of-fit 

Figure 5. Examples of goodness-of-fit for LP3 and GEV distributions tested at reference (a,b) and nonreference (c,d) sites. Despite 

the closeness of cross-correlation values to “1”, LP3 or GEV might not be able to capture high or low flows (c,d). 

4. Summary and Conclusions 

This study aimed to understand how spatial heterogeneity influences the choice of statistical distribution for flood 

frequency analysis in undisturbed and disturbed watersheds across the US. We used LP3 and GEV distributions to 

estimate flood quantiles at 26 reference and 78 nonreference sites throughout the contiguous US, each with more than 

100 years of record. Comparing results from reference and nonreference sites provided insights into the effects of 

climate and anthropogenic factors such as land use/cover change, river regulation, irrigation, water withdrawal, and 

urbanization on flood frequency analysis. 

We compared observed peak flows to estimated quantiles for return periods ranging from 2 to 200 years. For design 

purposes, LP3 distribution provided more reliable flood quantile estimates for return periods of 2 to 10 years, whereas 

caution is advised when using LP3 estimates for return periods exceeding 50 years. Conversely, GEV performed better 

than LP3 in estimating floods with return periods of 50 years or more. The reliability of GEV estimates for return 

periods of 10 years or less varied regionally and might be more effectively substituted with LP3 estimates. Spatial 

variations in LP3 or GEV performance corroborates the findings of Reinders and Munoz (2024) [21], indicating the 

importance of considering hydroclimatic properties when selecting an appropriate distribution for flood frequency 

analysis, rather than solely relying on LP3 as a nationally suggested distribution. 

The shape parameter of the LP3 distribution exhibited spatial variability depending on whether the study site was 

a reference or nonreference site. In regions such as the Pacific Northwest, Great Basin, Upper Colorado, Missouri, and 

New England, the LP3 flood quantile estimates may not be reliable due to higher values of the shape parameters 

compared to other regions in the US. Conversely, in regions where LP3 flood quantile estimates were not reliable, the 

GEV distribution with a negative shape parameter effectively captured observed floods. Our findings emphasize the 

importance of distinguishing between reference and nonreference sites when reporting the shape parameters of both 

LP3 and GEV distributions. Accurate estimates of flood quantiles are crucial for safeguarding infrastructure throughout 

its service life, thereby minimizing potential loss of life, property damage, and infrastructure failures. 

The goodness-of-fit tests determined whether LP3 or GEV could represent the true population distribution. 

However, caution is needed when interpreting high cross-correlation values from these tests, as the performance of LP3 

and GEV distributions may differ significantly depending on whether the site is a reference or nonreference site. 

Future studies can integrate stations with less than 100 years of record and explore record extension procedures 

such as MOVE [15,66]. Instead of relying solely on GEV and LP3 distributions, frequency analysis can utilize 

alternative statistical distributions (e.g., those available in RMC BestFit v1.0 developed by USACE, available at: 

https://www.rmc.usace.army.mil/Software/RMC-BestFit/). Considering partial duration series to augment data points 

for upper tercile flows could also be explored at stream gauge stations with less than 30 years of information (e.g., 

Berton and Rahmani (2024) [67]). 

Supplementary Materials 

The following supporting information can be found at: https://www.sciepublish.com/article/pii/251, Table S1: The 

description of 26 reference and 78 nonreference study sites with more than 100 years of peak flow data across the contiguous 

United States. 
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