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ABSTRACT: The rising cost and scarcity of human labor pose challenges in security patrolling tasks, such as facility security. 

Drones offer a promising solution to replace human patrols. This paper proposes two methods for finding the minimum number of 

drones required for efficient surveillance routing: an ILP-based method and a greedy method. We evaluate these methods through 

experiments, comparing the minimum number of required drones and algorithm runtime. The findings indicate that the ILP-based 

method consistently yields the same or a lower number of drones needed for surveillance compared to the greedy method, with a 

73.3% success rate in achieving better results. However, the greedy method consistently finishes within one second, whereas the 

ILP-based method sometimes significantly increases when dealing with 14 more locations. As a case study, we apply the greedy 

method to identify the minimum drone surveillance route for the Osaka-Ibaraki Campus of Ritsumeikan University. 
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1. Introduction 

Security guards are entrusted with the critical task of patrolling facilities, both internally and externally, and 

promptly reporting any suspicious activity. These duties are physically and mentally demanding, and can on occasion 

be hazardous. Furthermore, security guards frequently work night shifts and extended hours. As a consequence of these 

factors, the security industry is grappling with a labor shortage. Additionally, the industry faces the challenge of rising 

labor costs [1]. For instance, Ritsumeikan University spends a staggering 120 million yen annually on security alone 

[2]. Drones present a promising solution to address these issues. Drones offer several advantages over traditional human 

patrols. Firstly, their integrated cameras allow for real-time monitoring, enabling immediate detection of anomalies [3]. 

Secondly, they provide access to hazardous or difficult-to-reach areas [4]. Additionally, initiatives to utilize drones for 

security patrols are gaining traction in Japan, as evidenced by demonstration tests conducted by ALSOK [5]. One key 

challenge associated with drone deployment is their limited battery capacity, restricting their flight duration [6]. 

Consequently, efficient surveillance routes must be pre-determined, considering the maximum flight time. 

The Drone Arc Routing Problem (DARP), an extension of the Arc Routing Problem (ARP), is a common approach 

to optimizing drone patrol routes [7]. Unlike the node routing problem that focuses on services performed node, ARP 

focuses on services performed along network edges [8]. 

Previous studies have explored various aspects of drone-based security patrols. In [9], a Vehicle-Drone Arc 

Routing Problem (VD-ARP) was introduced, combining vehicles and drones for urban traffic patrols, aiming to 

minimize total patrol time while considering drone flight time. However, this approach faces limitations due to the high 

cost of vehicles and their unsuitability for indoor facility patrols. Another study [10] addressed facility patrolling and 

guarding using drones, proposing a method to minimize the number of drones with flexible drone starting points. 

However, this method suffers from NP-hardness, making it unsuitable for large-sized problems. 
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This paper presents an extension of the method proposed in [10] that addresses its limitations. 

The contributions of this paper are threefold: (1) We first define the problem of determining surveillance routes with 

a minimum number of drones; (2) We formulate the problem as an integer linear program (ILP), enabling the exploration 

of optimal solutions; (3) We develop a heuristic algorithm to efficiently solve large-scale instances of the problem. We 

then compare the performance of our heuristic with the ILP-based approach through comprehensive experimental results. 

The structure of this paper is as follows: Section 2 describes the literature review. Section 3 describes the ILP-

based method and the greedy method. Section 4 describes the experimental methods, results, and discussion. Section 5 

describes the overall summary and future work. 

2. Related Work 

2.1. Arc Routing Problem 

The research on the arc routing problem (ARP) has a history dating back to the 18th century with the famous “seven 

bridges” problem posed by Swiss mathematician Leonhard Euler. The field of modern ARP research gained significant 

momentum in the 1960s when Chinese mathematician Meigu Guan introduced the “Chinese Postman Problem” (CPP) [8]. 

Guan [11] addressed the optimization of mail carrier routes. Here, mail carriers are assigned a set of street segments, and 

the goal is to find the shortest walking distance that allows them to visit all assigned segments and return to the post office. 

Another key variant of ARP is the “Rural Postman Problem” (RPP), which focuses on optimizing mail delivery routes that 

only utilize a portion of the road network [8]. Branch-and-bound algorithms were employed to tackle the classical RPP, 

as demonstrated in [12]. Furthermore, [13] explored the use of large-sized neighborhood search algorithms to solve RPPs 

with time windows. Since the 1980s, the field of ARP research has seen significant growth. Researchers have explored 

various extensions and new problem formulations to model real-world applications more accurately and optimize diverse 

objectives beyond just route length. These extensions include Periodic Arc Routing Problems (PARPs) [14,15], ARPs 

with profits [16,17], and Location Arc Routing Problems (LARPs) [18,19]. 

PARPs refer to a problem where service needs to be repeated at each edge for some period of time (e.g., days) on 

a time horizon (e.g., weeks or months). The objective is to design efficient routes for each service period within the 

horizon, ensuring all service requirements are met while minimizing the total cost. In [14], the authors consider the 

problem of road maintenance and network monitoring. Each road segment has a specific monitoring requirement based 

on traffic volume. The paper proposes a mathematical model and a heuristic algorithm to determine flight routes that 

fulfill the required frequency of passing each road. 

Unlike regular ARPs, ARPs with profits focus on maximizing gains by strategically selecting only the most 

“valuable” edges to service. Profits increase with the value of serviced edges, but neglecting them incurs penalties. [16] 

explores a scenario where a single company vehicle services a network of edges, with the option to outsource servicing 

for some edges. The paper proposes a refined tabu search algorithm combined with an ILP model. This hybrid approach 

aims to minimize the total cost, which includes the sum of services performed by both the in-house vehicle and 

outsourced services represented as penalty costs. 

LARPs extended traditional ARPs by incorporating facility location decisions. In addition to finding the optimal 

flight route for a vehicle, LARPs also determine the ideal location for a facility, such as a vehicle depot. This problem 

can be optimized for various objectives, including minimizing the total cost or the length of the longest route or 

maximizing the total benefit from servicing each edge. Additionally, factors like fixed costs for vehicles and facility 

setup, as well as facility capacity, can be considered. For example, [18] explores the problem of using electric vehicles 

for waste collection, where service needs to be provided at each edge. The paper proposes various optimization methods, 

including ILP models, genetic algorithms, and grey wolf optimizers, to determine the optimal locations for charging 

stations, dynamic charging arcs, and waste collection centers, along with the most efficient routes for the vehicles. 

Recent research has focused on the Drone Arc Routing Problem (DARP), an extension of ARP for drone applications. 

2.2. Drone Arc Routing Problem 

With the widespread use of drones, traditional research on ARP has expanded. The extension of ARP to the drone 

problem is called DARP, first introduced in [7]. DARP focuses on optimizing drone-based services (e.g., imaging, 

inspections, surveillance) delivered to edges within a network (e.g., pipelines, roads, railways). In DARP scenarios, 

drones operate with limited flight times due to battery constraints. 

DARP research encompasses various applications, including patrolling tasks [9,10,20–24] and inspections [25,26]. 
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Traffic monitoring through drone patrols has been a well-researched area within DARP regard of patrol. Studies 

like [9,20–24] propose a coordinated vehicle and drone for urban traffic patrol scenarios. This combined approach helps 

address the inherent battery limitations of drones. [20] employs mixed integer linear programming and a branch-and-

cut algorithm for efficient problem-solving. [21] investigate a two-tier cooperative routing approach for a single ground 

vehicle and a single drone. [22] proposes an algorithm for coordinating one vehicle and multiple drones during wide-

area inspections. [9] utilizes a large neighborhood search algorithm to tackle the problem. [23] introduces a hybrid 

optimization algorithm that combines randomized variable neighborhood descent search and simulated annealing. [24] 

explores two-stage heuristic solution approaches for this scenario. 

While research on combined vehicle-drone patrols is abundant, challenges remain. Vehicles can be expensive and 

unsuitable for indoor environments like facilities. To address these limitations, [10] proposes a stand-alone drone 

solution for facility surveillance patrols. This method focuses on minimizing the number of drones. However, [10] faces 

limitations when handling large-sized problems. To overcome this, we propose a greedy method as an extension, 

specifically designed to tackle large-sized facility patrols. 

3. Proposed Methods 

3.1. Problem Definition 

This paper addresses the problem of finding the minimum number of drones required for efficient surveillance 

routing. We assume that: 

• Drones must return to their departing point within their maximum flight time. 

• A single, fixed departing point (point “0”) exists. 

• Every aisle must be passed by at least one drone. 

Figure 1a shows an example problem. Each node (0, 1, 2, 3) indicates points, and each point is connected to at 

least one other point via an aisle. The time required to pass each aisle is also displayed. Figure 1b illustrates the 

minimum-drone flight route for patrolling this example problem, with a total surveillance time of 80 seconds. The 

specific route is (0)-(1)-(2)-(0)-(3)-(2)-(0). Figure 1c demonstrates the flight route for the same example problem using 

two pre-assigned drones. In this case, both drones require 40 seconds for surveillance. 

As demonstrated in Figure 1b and c, utilizing more drones can reduce surveillance time. While deploying fewer 

drones, it remains possible to complete the task within the flight time limit. Since drones are expensive, minimizing the 

number of required units is crucial. 

   

(a) (b) (c) 

Figure 1. (a) Example problem; (b) Flight route when there is only one drone; (c) Flight route when there are two drones (red and blue). 

3.2. ILP-based Exact Method 

This section describes the mathematical model proposed in [9]. We introduce additional constraints to ensure a 

fixed departing point “0”. This model can be solved by general-purpose ILP solver software. The surveillance network 

is represented by undirected graphs denoted by G = (V, E) A set of points of G is denoted as V = {0, 1 ,…, Point}, 

where “Point” is the number of points. A set of aisles of G is defined as E = {eij = (i,j)│i,j ∈ V}, where eij represents 

the aisles from points i to j. A set of drones is denoted as N = {t│1 ≤ t ≤ Num_max}, where Num_max is the maximum 

number of drones. Table 1 represents the notations for this paper. 

Table 1. Notations. 

Parameters Descriptions 

Timemax The maximum flight time of drones 

Timeij The time it takes to pass through aisle eij 

Conectij Conectij = 1 if there is an aisle between points i, j, otherwise, Conectij = 0 

Decision Variables Descriptions 

pass_counttij The number of times that drone t is being passed the edge eij 

pass_indicatetij pass_indicatetij = 1 if the drone t is being passed the edge eij, otherwise, pass_indicatetij = 0  

dronet dronet = 1 if the drone t is being used, otherwise, dronet = 0 

3 2

0 1
Departing 
point

3 2

0 1

3 2

0 1
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The objective function of this paper consists of Formula (1). This formula facilitates the minimization of the 

number of drones. 

min ∑ 𝑑𝑟𝑜𝑛𝑒𝑡

∀𝑡∈𝑁

 (1) 

In addition, the constraints that the problem should satisfy are as follows. 

Constraint (2) guarantees that every aisle between points i and j is passed by at least one drone if there is a connection 

between these points. 

𝐶𝑜𝑛𝑒𝑐𝑡𝑖𝑗 = 1 ⟹ ∑ (𝑝𝑎𝑠𝑠_𝑐𝑜𝑢𝑛𝑡𝑡𝑖𝑗 + 𝑝𝑎𝑠𝑠_𝑐𝑜𝑢𝑛𝑡𝑡𝑗𝑖)

∀𝑡∈𝑁

≥ 1, ∀(𝑖, 𝑗) ∈ 𝐸 (2) 

Constraint (3) prohibits any drone from traveling that non-existent aisle if there is no aisle connecting points i and j. 

𝐶𝑜𝑛𝑒𝑐𝑡𝑖𝑗 = 0 ⟹ ∑ (𝑝𝑎𝑠𝑠_𝑐𝑜𝑢𝑛𝑡𝑡𝑖𝑗 + 𝑝𝑎𝑠𝑠_𝑐𝑜𝑢𝑛𝑡𝑡𝑗𝑖)

∀𝑡∈𝑁

= 0, ∀(𝑖, 𝑗) ∈ 𝐸 (3) 

Constraint (4) prevents a drone from remaining stationary at the same point for the entire duration. 

∑ ∑ 𝑝𝑎𝑠𝑠_𝑐𝑜𝑢𝑛𝑡𝑡𝑖𝑖

∀𝑡∈𝑁∀𝑖∈𝑉

= 0 (4) 

Constraint (5) ensures that for each point and each drone, the number of times the drone enters the point equals the 

number of times it exits. 

∑ 𝑝𝑎𝑠𝑠_𝑐𝑜𝑢𝑛𝑡𝑡𝑖𝑗

∀𝑗∈𝑉

− ∑ 𝑝𝑎𝑠𝑠_𝑐𝑜𝑢𝑛𝑡𝑡𝑗𝑖

∀𝑗∈𝑉

= 0, ∀𝑖 ∈ 𝑉, ∀𝑡 ∈ 𝑁 (5) 

Constraint (6) indicates that the flight time of each drone is within the maximum value. 

∑ 𝑇𝑖𝑚𝑒𝑖𝑗 × 𝑝𝑎𝑠𝑠_𝑐𝑜𝑢𝑛𝑡𝑡𝑖𝑗

∀(𝑖,𝑗)∈𝐸

≤ 𝑇𝑖𝑚𝑒𝑚𝑎𝑥, ∀𝑡 ∈ 𝑁 (6) 

Constraints (7) and (8) show the relationship between “pass_counttij” and “pass_indicatetij”  

(𝑝𝑎𝑠𝑠_𝑐𝑜𝑢𝑛𝑡𝑡𝑖𝑗 = 0 ) ⇒ ( 𝑝𝑎𝑠𝑠_𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑒𝑡𝑖𝑗 = 0), ∀𝑡 ∈ 𝑁, ∀(𝑖, 𝑗) ∈ 𝐸 (7) 

(𝑝𝑎𝑠𝑠_𝑐𝑜𝑢𝑛𝑡𝑡𝑖𝑗 ≥ 1) ⇒ ( 𝑝𝑎𝑠𝑠_𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑒𝑡𝑖𝑗 = 1), ∀𝑡 ∈ 𝑁, ∀(𝑖, 𝑗) ∈ 𝐸 (8) 

Constraint (9) guarantees that the route will be a circuit. 

∑ 𝑝𝑎𝑠𝑠_𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑒𝑡𝑖𝑗

∀𝑗∈𝑉

− ∑ 𝑝𝑎𝑠𝑠_𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑒𝑡𝑗𝑖

∀𝑗∈𝑉

= 0, ∀𝑖 ∈ 𝑉, ∀𝑡 ∈ 𝑁 (9) 

Constraints (10) and (11) indicate that the dronet = 1 if each aisle is passed by drone t, and dronet = 0 if not. These 

constraints allow us to isolate the element of edge eij from the objective function, thereby enabling the appropriate 

determination of the minimum number of drones required. 

( ∑ 𝑝𝑎𝑠𝑠_𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑒𝑡𝑖𝑗

∀(𝑖,𝑗)∈𝐸

≥ 1) ⇒ (𝑑𝑟𝑜𝑛𝑒𝑡 = 1), ∀𝑡 ∈ 𝑁 (10) 

( ∑ 𝑝𝑎𝑠𝑠_𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑒𝑡𝑖𝑗

∀(𝑖,𝑗)∈𝐸

= 0) ⇒ (𝑑𝑟𝑜𝑛𝑒𝑡 = 0), ∀𝑡 ∈ 𝑁 (11) 

Constraint (12) guarantees that the dronet used will always depart from point “0”. 

( ∑ (𝑝𝑎𝑠𝑠_𝑐𝑜𝑢𝑛𝑡𝑡𝑖𝑗 + 𝑝𝑎𝑠𝑠_𝑐𝑜𝑢𝑛𝑡𝑡𝑗𝑖)

∀(𝑖,𝑗)∈𝐸

≥ 1) ⇒ ( ∑ 𝑝𝑎𝑠𝑠_𝑐𝑜𝑢𝑛𝑡𝑡0𝑗

∀𝑗∈𝑉

≥ 1) , ∀𝑡 ∈ 𝑁 (12) 

3.3. Greedy Method 

While the ILP-based method introduced in Section 3.2 offers an optimal solution, it can become computationally 

expensive for large-sized problems. This section presents the greedy method as an alternative approach for handling 

such scenarios. The greedy method is a well-established approach in combinatorial optimization, known for its 

simplicity and ease of implementation [27]. However, it prioritizes locally optimal choices at each step, potentially 

leading to solutions that may not be the absolute optimum for the entire problem [28]. To address large-sized problems 
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efficiently, the greedy method was chosen due to its lower computational complexity and ease of implementation, even 

though it may not always find the absolute optimal solution. 

Algorithm 1 presents the pseudo-code for the greedy method. The term “iterable” denotes a list, while “element” 

signifies its constituent parts. These terms are employed during the definitions of the “not any” and “all” functions. 

“drone_num_max” indicates the maximum number of drones. “drone_num” indicates how many drones this is. 

current_point[drone_num] indicates the point where the drone is currently located. unvisited[current_point[drone_num]] 

indicates the set of unvisited points from the point. time[current_point[drone_num]][point] shows the time it takes to pass 

from the “current_point” to the “point”. count_visited_points[drone_num][current_point[drone_num]][point] shows the 

number of times each drone has passed each aisle. fly_time[drone_num] indicates the total flight time of each drone. 

“goal_point” indicates the goal point of the drone. 

Algorithm 1 Greedy method 

1: def not any (iterable) 

2:  for element in iterable do 

3:   if element then 

4:    return False 

5:   end if 

6:  end for 

7:  return True 

8: def all (iterable) 

9:  for element in iterable do 

10:   if not element then 

11:    return False 

12:   end if 

13:  end for 

14:  return True 

15: loop_drone_num_max: 

16: for drone_num_max  N do 

17:  loop_unvisited: 

18:  while unvisited do 

19:   for drone_num  (1,drone_num_max) do 

20:    if len(unvisited[current_point[drone_num]]) is not 0 then 

21:     min(point:time[current_point[drone_num]][point]) is next_point[drone_num] 

22:    else 

23:     
min(point:(count_visited_points[drone_num][current_point[drone_num]][point] + 

time[current_point[drone_num]][point])) is next_point[drone_num] 

24:    end if 

25:    if not any unvisited then 

26:     break loop_unvisited 

27:    end if 

28:   end for 

29:  end while 

30:  for drone_num(1,drone_num_max) do 

31   while current_point[drone_num] is not goal_point do 

32:    
min(point:(count_visited_points[drone_num][current_point[drone_num]][point] + 

time[current_point[drone_num]][point])) is next_point[drone_num] 

33:   end while 

34:  end for 

35:  if all(fly_time[drone_num]  Time_max) then 

36:   break loop_drone_num_max 

37:  else 

38:   drone_num_max = drone_num_max + 1 

39:  end if 

40: end for 
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The 1–7 lines define the “not any” function, which is used on line 25. In this paper, “not any” returns True if all 

“element” of the “iterable” are False. Lines 8–14 define the “all” function, which is used on line 35. In this paper, “all” 

returns True if all “element” of the “iterable” are True. Lines 15–40 show loops that iterate over each maximum number 

of drones. In lines 18–29, the route selection is repeated until there are no more unvisited points. Lines 20–24 

differentiate between the cases when there are and are not unvisited points from the current point. If there are unvisited 

points, the point with the shortest flight time is selected as the next point (20–21). If there are no unvisited points, the 

point with the shortest flight time among the aisles with the fewest visits is selected as the next point (22–24). Lines 

25–27 indicate that the “loop_unvisited” should be exited if there are no unvisited points. In lines 31–33, the route 

selection is repeated until the goal point is reached. In this case, the point with the shortest flight time among the aisles 

with the fewest visits is selected as the next point. In lines 35–39, the case is divided based on whether the total flight 

time of each drone exceeds the maximum value. If the total flight time of each drone does not exceed the maximum 

value, the “loop_drone_num_max” is terminated, and the route discovered at that time is determined as the flight route. 

If the maximum value is exceeded, as indicated in line 38, the maximum number of drones is increased by one, and the 

process restarts from line 15. The time complexity of the greedy method proposed in this paper is O(N3 × E × V), where 

V is the number of points, E is the number of aisles, and N is the maximum number of drones. 

4. Experiments 

4.1. Synthetic Maps 

This section describes the experimental setup used to evaluate the performance of the ILP-based and greedy 

methods and presents the results obtained. 

4.1.1. Setup 

We generate benchmark problems for evaluating our proposed methods. The dataset consists of 60 randomly 

generated undirected graphs, where drones can pass between aisles in any direction. Each problem instance varies in 

size from 10 to 15 points, with 10 problems generated for each point size. The coordinates of each point are randomly 

determined. We use incomplete graphs, where not all pairs of points are necessarily connected by an aisle. The number 

of aisles connected to each point is set to approximately 50% of the number in a complete graph. The travel time between 

any two points is set within a range of 9 to 180 seconds. We set the parameters for the drones. The maximum flight 

time of a drone is set to 1200 seconds, and we consider up to 10 drones for each problem. The ILP-based method was 

solved by IBM ILOG CPLEX Optimizer Studio 20.1.0 on an AMD Ryzen 7 PRO 4750G (8 cores, 16 threads) and 

64GB memory, and the greedy method was coded in Python 3.8.10. 

4.1.2. Results 

Table 2 presents the results obtained by solving randomly generated problems with the ILP-based and the greedy 

methods. We evaluate the number of drones which is the objective function of the ILP-based method and the algorithm 

runtime. The purpose of employing the former is to identify the minimum number of drones required to complete the 

patrolling task, while the latter is utilized to pinpoint areas where the algorithm runtime required to attain the optimal 

solution increases significantly. This information serves as a critical foundation for selecting the appropriate method 

for solving real-world problems, especially when taking into consideration the scale of the problem. 

As shown in Table 2, the ILP-based method can solve problems with 13 or fewer points within 7 seconds. However, 

for problems with 14 or more points, the algorithm runtime increases significantly. The greedy method consistently 

solves problems within 1 second, regardless of problem size. However, the minimum number of drones it finds is often 

higher compared to the ILP-based method. In this case, the greedy method found solutions with an inferior number of 

drones in 73.3% of the problems. 
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Table 2. The comparison of numerical results obtained by solving instances using the ILP-based method and the greedy method. 

Number 

of Points 

Number of 

Test Cases 

ILP-based Method Greedy Method 

Number of Drones Algorithm Runtime (s) Number of Drones Algorithm Runtime (s) 

10 1 1 0.484 2 0.0469 

 2 2 4.780 2 0.0469 

 3 1 0.232 2 0.0469 

 4 1 0.229 2 0.0625 

 5 2 0.812 4 0.1250 

 6 1 0.204 1 0.0156 

 7 1 0.480 2 0.0469 

 8 1 0.226 1 0.0313 

 9 1 0.409 2 0.0469 

 10 1 0.441 2 0.0469 

11 1 2 1.110 3 0.1250 

 2 2 0.716 3 0.1090 

 3 2 5.390 3 0.1090 

 4 2 0.684 3 0.1090 

 5 1 0.611 2 0.0625 

 6 2 0.751 2 0.0625 

 7 2 1.020 2 0.0781 

 8 2 0.569 2 0.0625 

 9 2 6.110 2 0.0781 

 10 2 0.643 4 0.1720 

12 1 2 0.915 3 0.1560 

 2 2 0.902 3 0.0781  

 3 2 0.888 2 0.0781 

 4 2 1.100 2 0.0625 

 5 2 0.873 4 0.1560 

 6 2 0.659 3 0.1560 

 7 2 0.891 3 0.1410 

 8 2 0.566 3 0.1250 

 9 2 1.120 3 0.1090 

 10 2 0.840 5 0.2810 

13 1 2 1.520 4 0.1720 

 2 2 1.860 4 0.2340 

 3 2 1.130 3 0.1720 

 4 2 1.430 2 0.0938 

 5 2 1.330 3 0.1410 

 6 2 1.080 3 0.1250 

 7 2 4.750 7 0.5000 

 8 2 1.200 3 0.1410 

 9 2 2.270 3 0.1560 

 10 2 1.280 3 0.0469 

14 1 3 7180. 5 0.3590 

 2 2 2.170 6 0.5310 

 3 2 2.990 4 0.2030 

 4 2 5.660 3 0.1410 

 5 2 9.200 6 0.4220 

 6 3 1.870 3 0.1410 

 7 2 2.030 2 0.0938 

 8 2 2.040 4 0.2340 

 9 3 6485 3 0.1560 

 10 2 2.41 6 0.4530 

15 1 3 158 5 0.3590 

 2 3 305 3 0.1560 

 3 2 5.04 4 0.2810 

 4 3 2719 3 0.1880 

 5 3 35.4 4 0.2340 

 6 3 5984 4 0.2030 

 7 3 15.9 4 0.1560 

 8 3 12752 3 0.1560 

 9 2 22.7 4 0.2500 

 10 3 88.3 4 0.2500 
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4.1.3. Discussions 

The significant increase in algorithm runtime observed for problems with 14 or more points when utilizing an ILP-

based method can be attributed to several factors. These factors include: 

• In problems involving 14 or more points, the resulting number of drones is two or three. This is because the problem 

size is close to the upper bound of what can be patrolled by two drones. Consequently, if two drones are deemed 

insufficient for patrolling the area, a complete recalculation of the problem is required. 

• When the minimum number of drones required is three, the number of candidate optimal routes becomes 

significantly larger compared to the case where two or fewer drones are required. Consequently, the time required 

to determine the optimal solution increases. 

The observed deterioration in the number of drones required when utilizing the greedy method compared to the 

ILP-based method can be attributed to several factors, primarily stemming from the inherent differences between the 

two approaches. These factors include: The ILP-based method considers all possible routes and selects the most efficient 

one with the minimum number of drones. In contrast, the greedy method prioritizes the shortest route at each step 

without considering the overall efficiency. 

On the other hand, the greedy algorithm is not susceptible to the increased complexity of the overall problem 

caused by an increasing number of points. This is because the greedy algorithm’s focus on local optimization remains 

consistent regardless of the problem’s size. 

The ILP-based method is well-suited for solving smaller problems due to its efficiency. However, for large-sized 

problems, the greedy method becomes a preferable choice due to its significantly faster algorithm runtime, even though 

it may not always find the absolute optimal solution. 

4.2. University Campus 

4.2.1. Setup 

As a realistic building, we assume the Osaka-Ibaraki Campus of Ritsumeikan University (OIC). The OIC is 

considered to be an important site for demonstration experiments within Ritsumeikan University, which aims to 

maximize the use of its campus as a place for open innovation. One of the defining characteristics of the OIC is its 

openness to the community. However, this very openness necessitates continuous patrolling security due to the influx 

and egress of a large number of unspecified individuals. On the other hand, cost containment is crucial due to the limited 

number of security guards and budget constraints. Our proposed method can contribute to cost reduction by facilitating 

efficient patrolling with a minimal number of drones. Figure 2 shows a map of the OIC. 

 

Figure 2. The map of the Osaka-Ibaraki Campus of Ritsumeikan University (OIC) [29]. 
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We obtained patrol routes for buildings A, B, and C in this paper. Description of buildings A, B, and C are provided 

below. 

• Building A: Classrooms, Research Labs, and Offices 

• Building B: Library, Halls, Facilities for Research and Industry-Academia Collaboration 

• Building C: Cafeteria, Classrooms, Seminar House 

The case study involved creating a graph representation of building A–C. This graph was constructed by placing 

points at 89 points throughout the buildings. Each point is connected to at least one other point by an edge, resulting in 

a total of 136 edges. As described in Section 4.1, the greedy method was chosen for this case study due to its suitability 

for handling large-sized problems compared to the ILP-based method. The maximum flight time for the drone used in 

this case study is 1200 seconds. 

4.2.2. Results 

Table 3 summarizes the minimum number of drones required to patrol building A–C, along with the flight time of 

each drone and the algorithm runtime. As shown in Table 3, four drones are necessary to patrol the A–C buildings of 

the OIC. In addition, this solution was obtained within five seconds. 

Table 3. Performance of the greedy method in the case study. 

The Minimum Number of Drones 4 

The flight time of 

1st drone 483 (seconds) 

2nd drone 761 (seconds) 

3rd drone 573 (seconds) 

4th drone 815 (seconds) 

algorithm runtime 4.45 (seconds) 

5. Conclusions 

Our paper proposes two methods for facility patrols: an ILP-based method and a greedy method. We compare their 

performance in terms of the minimum number of drones required and algorithm runtime through experiments. The 

experiments revealed that the ILP-based method effectively reduces the number of drones needed for patrolling 

compared to the greedy method. On the other hand, the ILP-based method’s algorithm runtime can significantly increase 

for problems with more than 14 points. In contrast, the greedy method consistently achieves fast algorithm runtime 

regardless of problem size. A case study using Ritsumeikan University OIC applied the greedy method to determine 

the minimum number of drones required for patrolling the facility. The findings of this study can be utilized to 

implement a flexible approach, where the ILP-based method is employed for problems with less than 13 points, and the 

greedy method is used for larger problems. This adaptive strategy can be leveraged to find drone patrol routes based on 

the problem scale. Furthermore, this strategy can help to avoid the need for an excessive number of drones, thereby 

contributing to the reduction of facility security costs. 

Due to its inherent focus on local optimality, the greedy algorithm may produce solutions that deviate significantly 

from the global optimum. However, the solution generated by the greedy algorithm can serve as a valuable initial 

solution for a genetic algorithm. Consequently, investigating the implementation of genetic algorithms presents a 

promising avenue for future research. Additionally, a comparative analysis between the genetic algorithm and other 

heuristic methods is warranted, as the extensive search space explored by genetic algorithms can lead to increased 

algorithm runtime. 

Furthermore, identifying the optimal depot locations could lead to a more efficient drone patrol route with fewer 

drones required. 
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