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ABSTRACT: In the manufacturing process, in addition to the properties of material itself, the quality of a product is directly related 

to the cutting process. Cutting force and cutting heat are two crucial factors in cutting processing. Researchers can analyze various 

signals during cutting process, such as cutting force signal, vibration signal, temperature signal, etc., which can regulate force and 

temperature, optimize the cutting process, and improve product quality. Therefore, it is very important to pay attention to various 

signals in cutting process. Meanwhile, good-quality signal data sets will greatly reduce time, resource and labor costs for subsequent 

use or analysis of researchers. Therefore, how to collect high-quality signals effectively and accurately is the first step. At present, 

researchers prefer to use various sensors to collect signals. With the advancement of science and technology, intelligent tool holder 

appears in researchers’ vision. It integrates multiple systems such as sensors, data collection, data transmission, and power supply 

on the tool holder. It replaces traditional wired sensors, and it is highly interactive with CNC machine tools. This paper will carry 

out a systematic review and prospect from three aspects: the structural design of the intelligent tool holder, the signal monitoring 

technology of the intelligent tool holder, and the tool condition monitoring of the intelligent tool holder. 

Keywords: Intelligent tool holder; Signal monitoring; Tool condition monitoring; Signal processing algorithm 
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1. Introduction 

Cutting processing refers to a processing method that uses cutting tools to remove excess material layers on the 

workpiece so that the workpiece obtains the specified geometric shape, size and surface quality. This process is usually 

coupled with multiple mechanisms such as force and thermal [1,2]. Time-varying factors during the machining process, 

sudden changes in the direction of cutting force [3], tool vibration [4], tool wear and damage [5] and other factors will 

significantly affect the surface integrity of the material, causing the workpiece to fail to meet qualified standards. Most of 

the influencing factors in the cutting process are directly related to the cutting tools. Therefore, the cutting tool, as the 

most active factor in the cutting process, must receive great attention. 

With the deep integration of informatization and industrialization, automated processing has become a development 

trend in the manufacturing field. Therefore, tool condition monitoring (TCM) technology has attracted the attention of 

many scholars because it helps identify abnormal conditions such as tool wear and surface roughness in machining. It is 

an important technical guarantee for realizing manufacturing automation and even unmanned manufacturing [5,6]. 

According to research reports, downtime and economic waste during cutting process are partly attributed to cutting tool 

failure, so the research and application of TCM technology is crucial [7,8]. 

With the research for decades, TCM technology has formed a relatively complete research system [9]. The Figure 

1 shows two main methods of TCM technology [10]: direct monitoring and indirect monitoring. In the direct monitoring 

method, the output variable is directly measured on the surface of the workpiece. It mainly obtains data through machine 

vision or digital image processing technology [11], such as flank wear width in one dimensional (VB) [12–14], wear 

area in two dimensional [15,16] and wear volume in three dimensional [17] (Figure 1a–c). The main advantage of the 
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direct monitoring method is that there is no interaction between the measurement system and the measured surface and 

does not affect the stiffness of the system. The main disadvantage is that the measurement system is affected by factors 

such as cutting fluid, chip, and light conditions, resulting in a low predictability of the online monitoring process. At 

the same time, a large amount of computing resources is required to process the data generated by the industrial camera 

[18]. For the direct monitoring method, in-depth research can be conducted in the future on how to observe the cutting 

tool, the machined surface, and image processing technology clearly and accurately. 

 

Figure 1. Schematic diagram of tool condition monitoring technology [10]. 

In contrast to direct monitoring methods, indirect TCM technology mainly includes three stages: signal acquisition, 

feature extraction and selection, and tool status recognition [19]. Signal acquisition is the first step in the TCM system. 

How to collect cutting process parameter information quickly, reliably, and accurately has been receiving widespread 

attention from scholars. Designing and developing sensing devices that meet application requirements is a necessary 

condition for realizing intelligent monitoring of the cutting process. It is one of the key technologies to realize intelligent 

manufacturing. In response to the various signal measurement needs during the cutting process, various technical 

solutions and measurement methods have been proposed one after another, and the corresponding types of sensors and 

detection devices are also diverse [20]. Many researchers use different sensors to analyze force signals [21–23], 

vibration signals [24–26], acoustic emission information [27–29], acoustic signals [30] and current signals [31,32] 

during the machining process. Signals are collected, then analyzed through various intelligent algorithms, and artificial 

intelligence models are used to make decisions to effectively control the cutting process (Figure 1d). The accurate 

selection of sensors and the reasonable design of detection devices will ensure the collection of high-quality data and 

lay a good foundation for subsequent feature extraction and selection and tool status identification. 

The feature extraction and selection stage use various methods to extract important features that are closely related 

to cutting tool from the collected initial signals. The time domain analysis method extracts feature closely related to the 
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tool from the time series of the signal. It has low computational cost and is easy to understand [33]. The frequency 

domain analysis method uses fast Fourier transform to convert the signal from the time domain to the frequency domain, 

which will extract the tool status information from the frequency structure and harmonic components of the signal [34]. 

The time-frequency analysis as a powerful tool to analyze non-stationary signals during the machining process. It can 

simultaneously analyze signal information in the time domain and frequency domain, and can accurately describe the 

changes in frequency domain information over time. The most used time-frequency analysis algorithms include short-

time Fourier transform [35], wavelet transform [36] and empirical mode decomposition [37]. In the tool identification 

stage, neural networks, fuzzy clustering, hidden Markov models, support vector machines and other methods will be 

used to make decisions on tool status [34,38,39]. 

Regarding TCM tasks, research areas mainly focus on three major categories: tool wear state recognition [40–43], 

VB monitoring [44–48], and tool remaining useful life prediction (RUL) [49–52]. In the past few decades, many 

researchers have conducted extensive research on TCM technology on basic principles, key technologies and industrial 

applications, and have achieved considerable academic results. For example, Byrne et al. [53] provided a seminal 

overview of TCM systems in industrial applications. Dutta et al. [18] and Kurada et al. [54] described the direct 

monitoring method, one of the mainstream methods of TCM technology, in terms of machine vision and digital image 

processing technology respectively. Teti et al. [55] described the latest research on TCM technology, and introduced 

multi-sensor fusion technology and applications. Meanwhile, Teti et al. [56] discussed the processing monitoring key 

technologies under Industry 4.0. With the development of artificial intelligence and deep learning, researchers use 

various algorithms and models for feature extraction, classification and tool status decision-making. At the same time, 

they conduct a lot of research with the goal of high-quality data processing and high model performance [57–59]. 

Looking at the published literature, most researchers have conducted a lot of research on the second and third 

stages of TCM technology, that is, signal processing and state identification, and less research on how to adopt high-

quality signals. High-quality signal data can more accurately reflect the real cutting process, providing a strong 

guarantee for subsequent feature extraction and status identification. From the initial single-sensor collection and multi-

sensor fusion collection to the current wireless sensor collection and intelligent toolholder collection, these technologies 

have ensured the collection of high-quality data.  

This article launches a systematic discussion around the keyword “intelligent tool holder”. Section 2 explains the 

structural design of intelligent tool holder for different physical signal monitoring. The processing status monitoring 

technology based on intelligent tool holder is elaborated in Section 3, including data monitoring of cutting force signals, 

cutting vibration signals, cutting temperature signals, etc. Section 4 will discuss the application of intelligent tool holder 

in tool status monitoring and surface topography prediction. Conclusions and prospects are given in Section 5. 

2. Structural Design of Intelligent Tool Holder 

At present, the concept of intelligent tool holder is not clearly defined. In this article, when the traditional tool holder 

has the function of sensing cutting process parameter information, it is called an intelligent tool holder. At present, the 

used widely sensors in the cutting process are wired and fixed. For example, if the sensor is pasted directly on the 

workbench, workpiece, fixture, and spindle shell, the signal is transmitted to the PC collection card through the data cable. 

However, this type of installation method has many disadvantages, restricting the size and shape of the workpiece, 

additional workflow, signal attenuation, etc., which causes huge hinders to signal monitoring. To solve this problem, sensor 

integration technology has begun to enter the field of vision of researchers. Many scholars have begun to integrate the 

sensor on the machine spindle or tool holder. Compared with changing the machine tool structure, it is easier to change 

the tool holder structure and it can be used between different machine tools. The intelligent tool holder is a function 

enhancement and design improvement of the standard tool holder. When the standard tool holder structure is modified, 

the rigidity of the tool holder will decrease. Therefore, two aspects need to be considered when modifying the standard 

tool holder structure. On the one hand, the modified tool holder cannot affect the normal operation of CNC machine tool, 

and the degree of influence on the cutting process needs to be minimized. On the other hand, the sensitivity and stiffness 

of structure are always in conflict, so the two indicators need to be balanced when tool holder structure is designed. 

2.1. Intelligent Tool Holder Structure Suitable for Cutting Force and Torque 

Cutting force is one of the basic signals that reflects cutting process information. It is related to tool wear assessment 

[60], chatter prediction [19], chip shape classification [61], tool parameters [62], process parameter optimization [55], etc. 

are closely related, so accurate collection of cutting forces is extremely important. The benchtop dynamometer is one of 
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the most used methods for measuring cutting force, and its sensing structure is usually designed as an octagonal ring or 

triangular ring structure. However, when using a benchtop dynamometer, the workpiece must be mounted on the 

dynamometer, which is usually destructive in nature, so this force dynamometer cannot be widely used in production lines. 

To solve the problems of large size and destructive installation of desktop force testers, many researchers focus on the 

sensors and use various force sensors to collect cutting force signals, such as resistive sensors, piezoelectric sensors, 

capacitive sensors, etc. The sensor installation locations are mainly concentrated on the workpiece, spindle, workbench, 

and fixture. 

2.1.1. Sensor-integrated Spindle 

Albrecht et al. [63] placed a capacitive sensor at the outer end of the spindle to indirectly measure the cutting force 

by measuring the change in the gap between the sensor and the spindle, while Martin et al. [64] designed a device 

consisting of eight pressure sensors. A force ring dynamometer composed of electrical sensors is integrated on the 

machine tool spindle for measuring three-dimensional cutting forces and fault diagnosis during the machining process. 

These methods will not only lead to changes in the spindle structure, but also lead to inaccuracies in cutting force signal 

monitoring due to factors such as processing noise and spindle vibration, and poor promotion in production lines. 

2.1.2. Sensor-integrated Tool Holder 

Therefore, to improve this disadvantage, researchers have turned their attention to the tool holder, they used sensor 

technology and signal transmission technology to design intelligent tools/tool holder with the function of sensing 

parameter information in cutting process. A cutting force-sensing intelligent turning tool based on resistance strain 

gauges was developed [65]. In this reference, Zhao et al. installed the turning tool in a mutually perpendicular octagonal 

ring spring sleeve (see Figure 2a), and pasted the resistive strain gauge on the surface of the octagonal ring elastic sleeve 

(see Figure 2b), three-dimensional cutting force during turning can be calculated. The static calibration and impact 

modal test results show that the developed intelligent turning tool has excellent accuracy and good natural frequencies, 

namely, 1147 Hz, 1122 Hz, and 2025 Hz. Since the first-order natural frequency of the designed device should be at 

least 3–4 times greater than the excitation force frequency [66], the intelligent turning tool can perform cutting under 

continuous high-speed cutting conditions where the spindle speed does not exceed 17,205 r/min. 

Cutting force measurement in the milling process is more complex than that in turning. In addition to structural 

stiffness, more factors need to be considered when designing the tool holder structure, such as sensor installation 

location, circuit design, etc. Muhammad Rizal et al. [67] designed, manufactured, and tested a new strain gauge-based 

rotary force measurement intelligent toolholder. The force-sensing structure in the reference was designed as a symmetrical 

four-arm beam type (see Figure 2c), 24 strain gauges were placed on force-sensing structure and cutting force channels in 

each direction adopt a Wheatstone bridge (sed Figure 2d). The maximum spindle speed allowed is 5000 rpm. At the same 

time, an inductive telemetry transmitter unit was integrated into the tool holder to transmit cutting force signals via wireless 

telemetry technology. The device is suitable for rotating spindle, such as milling and drilling. 

In addition to integrated strain sensors, piezoelectric sensors [68,69], capacitive sensors [70], PVDF piezoelectric 

films [71] and surface acoustic wave resonators [72] have also attracted the attention of researchers and integrated them 

into tool holder, design a qualified tool holder structure according to the standard, and then measure the cutting force 

during the machining process. 
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Figure 2. Different types of tool holder structures for cutting force/torque detection [65–67]. 

2.2. Intelligent Tool Holder Structure Suitable for Vibration 

Vibration signals during machining also contain rich useful information that can reflect cutting status, and can be 

used for research on tool status identification [73], machining quality prediction [74], and chatter prevention and 

suppression [75]. In the same way as cutting force measurement, researchers also use sensors to detect vibration signals. 

Sensors used for vibration signal measurement are mainly divided into displacement type, velocity type and acceleration 

type according to the different physical quantities being monitored. Sensors are selected according to the vibration 

signals of different working conditions. 

2.2.1. Wired Sensing System 

Wired sensors are widely used in industry due to their ease of use and the absence of additional tooling. Wired 

sensors are usually installed on the side wall of the machine tool spindle, the workpiece, and the workbench. However, 

the sensors installed on the spindle and workbench are far away from the cutting area, and the vibration signal is easily 

attenuated during the transmission process, and due to noise factors and spindle vibration factors lead to low accuracy 

and poor precision of the vibration signals collected. The way the sensor is installed on the workpiece will have a certain 

impact on the cutting process. In order to solve the problem of vibration signal attenuation, some researchers have 

proposed an indirect measurement method. Liu et al. [76] measured vibration signal by placing an acceleration sensor 

on tool holder, and then calculated the tool tip vibration indirectly based on the vibration transfer function. However, 

this method does not eliminate the influence of rotating axis, and the wired sensing will still have a certain impact on 

the cutting process. 

2.2.2. Wireless Sensing System 

To further reduce the intrusion of wired sensors into the cutting process, some researchers have designed a wireless 

sensing system for vibration signal measurement. Chung et al. [77] designed a self-generated cutting vibration 

measurement system based on electromagnetic induction. They placed magnets on the circumference of the tool holder 

and arranged an induction coil device outside. During the cutting process, the coil will induce current, and then provide 

electrical energy to three MEMS accelerometers to achieve vibration signal detection. However, the power consumption 

of the entire system is 223.35 mW, and the spindle speed needs to be above 1650 rpm for the sensing system to work 

normally. The vibration sampling frequency of each axis is only 150 Hz, which is difficult to meet the needs of normal 

use and has poor generalization. In recent years, some researchers have embedded sensors into the tool holder, and the 

installation position coincides with the axial direction of the tool holder to eliminate the influence of the tool holder’s 

rotation axis, and have integrated the wireless transmission module and power supply system into the tool holder. Using 

wireless telemetry technology for signal transmission, a series of wireless vibration measurement intelligent tool holder 

have been developed [78–81] with excellent results. 

2.3. Intelligent Tool Holder Structure Suitable for Temperature 

During the cutting process, in addition to cutting force and cutting vibration, cutting temperature cannot be ignored. 

Cutting temperature is closely related to the quality of workpiece. The increase in cutting temperature will lead to 

increased tool wear and reduce tool life, making it difficult to guarantee the quality of the workpiece. The main sources 

of cutting temperature are the three major deformation areas. Based on this principle, using relevant sensors to measure 

cutting temperature in real time is of great significance to improving tool life and surface quality of workpieces. 

Different from cutting force and cutting vibration measurement, the researchers integrated thermocouples near the 

cutting area to ensure the accuracy of cutting temperature measurement. For turning tools, some researchers integrate 

thin-film thermocouples on the rake face of the tool to detect the cutting temperature during the machining process. 

However, this method can only measure the average temperature of the rake face of the tool and cannot obtain the 

transient temperature field of the tool [82]. To improve the accuracy of cutting temperature acquisition, Cui et al. [83] 

and Huang et al. [84] integrated thin film thermocouples into the tool flank surface and near the tool cutting edge, 

respectively, to measure the cutting process. dynamic cutting temperature, and all use wireless telemetry technology to 

transmit temperature information. The cutting temperature measurement method in milling is like that in turning. The 

researchers integrated the temperature sensor close to the cutting area to improve the accuracy of temperature detection. 
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At the same time, the data acquisition module and wireless transmission module were integrated into the tool holder to 

develop an intelligent tool holder with wireless temperature measurement [85,86]. 

3. Signal Monitoring Technology Based on Intelligent Tool Holder 

3.1. Cutting Force Signal Monitoring Technology 

With the increasing demand for cutting force detection and the development of sensor technology, cutting force 

detection technology has been constantly developing, and various types of cutting force detection equipment are also 

emerging. At present, cutting force detection technologies mainly include resistance strain type, piezoelectric type, 

capacitive type, surface acoustic wave type, etc. Therefore, many academic and industrial researchers have proposed 

various methods for measuring cutting forces. 

3.1.1. Resistance Strain Gauge Detection Technology 

Resistance strain cutting force detection technology mainly uses the resistance strain effect of metal or 

semiconductor strain gauges. When the elastic unit produces strain under the action of force, the size of the resistance 

strain gauge pasted on it changes, which in turn causes the resistance value to change. Through appropriate design 

bridge circuit converts resistance changes into changing voltage signals to achieve force characterization. MIT 

pioneered the use of resistive strain gauges in force measurement in the 1950s; Professor Yuan’s team at Harbin Institute 

of Technology conducted research on a series of strain gauge cutting force measurement tools in the 1960s. Süleyman 

et al. [87] developed a strain gauge dynamometer. The author used the octagonal ring structure as an elastic unit, which 

can measure cutting forces and torques in three directions at the same time. The maximum range of measurable cutting 

force of this equipment is 5000 N, and the sensitivity of the system is ±5 N. The force dynamometer was statically and 

dynamically calibrated, and a series of tests were conducted. The test results showed that the linearity of the cutting 

force in the three directions were 1.3%, 1.4%, and 1.2% respectively; the interference degree between the three 

directions was 0.6~1.7%; The natural frequencies are 1200 Hz, 1050 Hz and 1500 Hz, respectively. Then based on this 

octagonal ring structure, the author developed an integrated cutting force measurement tool system for turning. The 

maximum force measuring range of the force measuring instrument is 3500 N, and the system sensitivity is ±5 N. The 

force dynamometer was statically and dynamically calibrated, and a series of tests were conducted. The test results 

showed that the linearity of the cutting force in the three directions were 1.3%, 1.4%, and 1.2% respectively; the 

interference degree ranged from 0.5% to 0.92%. Although the force measuring device is relatively large and uses a 

wired method for signal transmission, it fully embodies the idea of integrating the force measuring device and the tool, 

providing a research basis for the subsequent development of more integrated intelligent tool holder [88]. To further 

reduce the size of the integrated tool system, Zhao You et al. [65] proposed an integrated cutting force measurement 

tool. The turning tool was installed in a mutually perpendicular octagonal ring spring sleeve, and a resistor was pasted 

on the surface of the octagonal ring elastic sleeve. Type strain gauge to realize the measurement of three-dimensional 

cutting force during the turning process. The author conducted static calibration and impact modal tests on the developed 

intelligent tool. The results show that the developed sensor has excellent accuracy (0.38~0.83%) and good natural 

frequency, and can meet the requirements of high-precision and high-cutting conditions. Suprock et al. [89] integrated 

force sensors, torque sensors, temperature sensors, and signal acquisition and transmission modules on the tool holder, 

and developed an intelligent tool holder system for multi-signal parameter collection. The system collects high-

resolution end milling data during the cutting process without disrupting the machining process. Muhammad Rizal et 

al. [90] designed an integrated multi-sensor intelligent toolholder system for the milling process. The system can 

simultaneously measure six channels of processing signals, including spindle torque, tool axial vibration, and tool tip 

temperature. and three-dimensional cutting forces, all signals were transmitted to the data recording system via an 

inductive wireless transmitter unit integrated in the tool holder. 

In addition to using the resistive strain effect of strain gauges to design force measuring instruments, some 

researchers have also tried to develop force detection instruments based on the piezoresistive effect. The piezoresistive 

effect refers to the phenomenon that the resistivity of semiconductor materials and metal foil strain gauges change under 

the action of external force, resulting in a change in resistance value. The stress is converted into a voltage output by 

designing a bridge circuit. Compared with the resistance strain effect sensor, the piezoresistive sensor has higher 

sensitivity. However, usually, the piezoresistive coefficient of semiconductor materials is more sensitive to temperature. 

Generally, a temperature compensation scheme needs to be designed to achieve high-precision force measurement. 

Zhao et al. [91] developed a force measuring toolholder based on semiconductor strain gauges, and its sensing unit is 
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an octagonal ring structure. For comparison, the authors developed a metal foil strain gauge cutting force sensor based 

on the same sensitive unit structure. The static calibration test results show that the sensitivity of the semiconductor 

volume strain gauge force measuring tool holder is 16 times higher than that of the traditional metal foil strain gauge. 

On this basis, the author used the tool holder body as an elastic sensitive element, integrated semiconductor strain 

gauges on the tool holder, and proposed a cutting force self-sensing intelligent tool. The test results show that the static 

accuracy in the direction of the main cutting force Fc is 1.799% and the lateral cross-interference is 2.610%. The static 

accuracy in the direction of the feed force Ff is 1.628% and the lateral cross-interference is 0.694%. The natural 

frequency of the intelligent tool is 1778.98 Hz, and it can accurately measure dynamic cutting force under high-speed 

cutting at the machine spindle speed of no more than 26685r/min [92]. Qin et al. developed two types of sensing tool 

holder based on piezoresistive strain gauges, which can measure torque respectively [93] and can measure axial force 

and torque simultaneously [94]. In Ref. [94], Qin et al. designed the sensing unit as a cage type, arranged semiconductor 

strain gauges in sensitive locations of the structure, and designed corresponding bridge circuits. The circuit system was 

powered by batteries, and the signals were wirelessly transmitted to the host computer. The measuring ranges of the 

designed sensing tool holder are 2000 N and 50 N·m respectively, the sensitivities are 3.87 × 10−2 mV/N and 4.40 

mV/Nm respectively, the inter-directional interference is less than 3%, and the three-way natural frequencies of the 

sensing tool holder structure are respectively 592, 632 and 1004 Hz. Zhang et al. [95] designed a new integrated 

intelligent toolholder with a unique force sensing unit, in which the measuring part (thin-walled beam) and the 

supporting part (thick-walled beam) are separated by four double grooves. In addition, to improve sensitivity, self-

compensating semiconductor strain gauges are embedded in the standard tool holder and integrated with the data 

acquisition unit. At the same time, to improve integration and achieve continuous processing, the author uses slip rings 

to provide power and data transmission with low latency. The intelligent toolholder can be assembled with different 

types of machine spindles and tool sizes. 

3.1.2. Piezoelectric Detection Technology 

Piezoelectric cutting force detection instruments are made based on the piezoelectric effect of materials. The 

piezoelectric effect means that when materials such as quartz crystals and piezoelectric ceramics are subjected to 

external forces, the material will be deformed, and its internal polarization will occur. At the same time, positive and 

negative charges are generated on the two opposite surfaces of crystal, the charge density is proportional to the surface. 

Based on the piezoelectric effect, using wafers with different cutting angles, and rationally designing the layout scheme, 

multi-directional forces can be detected simultaneously. Piezoelectric cutting force detection technology is a direct force 

measurement technology. Xiao [68] proposed a three-dimensional cutting force-sensing intelligent cutting tool. The 

author integrated four piezoelectric ceramic sensors into the front end of the tool holder with a cavity sensing area, and 

analyzed charge distribution, magnitude, and relationship with force of the piezoelectric ceramics. The mapping 

relationship between the piezoelectric ceramic output charge and the three-dimensional cutting force was established. 

Finally, through the cutting test, the correctness of the cutting force decoupling was verified, and the three-dimensional 

cutting force online measurement was realized. The developed intelligent cutting tool has a simple and compact 

structure, a high degree of integration, and strong promotion ability. Totis et al. [69] proposed a new type of three-axis 

cutting force measuring instrument for turning, which is specially designed for CNC with indexable heads for milling 

and turning. The author modified the tool holder structure and installed a Kistler 9251A three-way force sensor on the 

front end of the tool holder, so that the cutting tool can be easily replaced without disassembling the force sensor. 

However, this method changes the original components of the machine tool, and the supporting measurement system is 

expensive and has poor promotion performance. Chen et al. [96] developed an intelligent toolholder composed of a 

piezoelectric ceramic force sensor and a flexible hinge, which can be integrated with a fast tool servo for three-way 

cutting force measurement in micro/nano cutting. The cutting test results show that the intelligent toolholder has a force 

measurement resolution of 0.1 mN, 0.05 mN, and 0.1 mN in the X, Y, and Z directions, and can sensitively detect tiny 

chatter with an amplitude of 20 nm. In addition, the piezoelectric effect of the piezoelectric film can also be used to 

measure cutting force, and the piezoelectric film has the characteristics of small size, high sensitivity, and easy 

integration. Ma et al. conducted several studies on PVDF piezoelectric films. The authors integrated PVDF piezoelectric 

films on tools and tool holder, and developed an intelligent toolholder that can measure cutting force [97] and torque 

[71]. Chen et al. [98] integrated a piezoelectric film sensor into the tool holder and designed an intelligent turning tool 

that can measure cutting force and feed force in real time. Cutting test results showed that the tool can measure the 
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cutting force during machining in the range of 10 N with a resolution of 0.1 N, and has great potential in ultra-precision 

and micro-cutting. 

3.1.3. Other Detection Technologies 

Inductive and capacitive force measurement solutions mostly design sensitive elastic units first, and then use 

inductive or capacitive sensors to measure the slight deformation of the elastic structure to characterize the cutting force 

in each direction. Albrecht et al. [63] developed a cutting force measurement system based on capacitive displacement 

sensor. The author integrated the capacitive displacement sensor at the outer end of the spindle and measured the cutting 

force indirectly by measuring the change in the gap between the sensor and the spindle. The impact of the sensor 

arrangement on force measurement was also analyzed. Since it is an indirect measurement method, it needs to be 

recalibrated and tested when using different machine tools, so the generalization is poor. Kim et al. [70] adopted a 

similar scheme and used cylindrical capacitive sensors to measure cutting force. Surface Acoustic Wave (SAW) is a 

type of elastic wave that propagates along the surface of materials. The surface acoustic wave resonator (SAWR) will 

produce strain after being stressed, which will cause the SAWR frequency to change. Xie et al. [99] designed, built, and 

tested an integrated intelligent toolholder system based on capacitive sensors, which is capable of simultaneously 

measuring three-dimensional cutting forces and torques in a wireless environment. The author modified the standard 

commercial tool holder structure to make it a force sensing element with a simple structure and easy to process. All 

sensors and other electronics, such as data acquisition, signal transmission unit, wireless power supply unit, are 

integrated into the tool holder as an overall system. The magnitude of the force can be obtained by measuring the 

resonant frequency offset. Stoney et al. [72,100] developed a cutting force measurement tool based on the SAW 

principle. The author installed the SWAR strain sensor on the upper surface of the tool to measure dynamic cutting 

forces. Test results showed that the device has high sensitivity and linear response to external loads. Wang et al. [101] 

installed surface acoustic wave strain sensors on the top and side of the tool holder respectively, and proposed a turning 

force measuring tool holder based on SAW strain sensors. However, compared with the Kistler dynamometer, the main 

cutting force and feed force measurement hysteresis rates of the developed intelligent tool holder are 7.3% and 4.7% 

respectively; and the interval interference degrees are 20.3% and 13.2% respectively, which are at a relatively high 

value. And because SARW itself has no energy amplification, the signal-to-noise ratio of the echo signal is extremely 

low and attenuates quickly. Due to the limitations of the reader and SARW transmission, the designed toolbar sampling 

frequency is only 150 Hz. Tognazzi et al. [102] made longitudinal grooves in the non-standard part of the commercial 

tool holder and installed a wired inductive sensor in the groove, then, a torque-measuring toolholder was designed. 

However, the stiffness of the modified tool holder decreases and the deflection increases. 

Table 1 showed the cutting force monitoring solution based on intelligent tool holder summarized by the author of 

this article in chronological order. Among them, Dini et al. [103] integrated a commercial torque sensor into the 

modified tool holder and designed a low-cost torque measuring tool holder. The torque signal is transmitted through 

wireless telemetry technology to predict tool wear status. The device is non-invasive, has high sensitivity and good 

mechanical properties. However, the torsional stiffness and bending stiffness of the modified tool holder are reduced 

by 92% and 59% respectively compared with the standard tool holder, the generalization is poor. Toits et al. [104] 

developed a novel type of rotating dynamometer by integrating a commercial Kistler 9251A three-axis force sensor on 

each cutter tooth. In addition, the cutting inserts are interchangeable and adjustable, and the equipment is highly 

compatible thanks to the modular system design. However, this design option is more expensive. Wu et al. [105] designed 

an intelligent toolholder system that integrates sensors, data acquisition modules, data transmission modules, and power 

modules into the toolholder. To improve the sensitivity of the detection system, the author opened an annular groove on a 

standard commercial tool holder, and then placed the force sensor and torque sensor in the center of the annular groove to 

sense the deformation in the corresponding direction. Compared with standard commercial tool holder, the sensitivity of 

the modified intelligent tool holder system is increased by 28.05%. Figure 3 shows the intelligent tool holder application 

for cutting force monitoring. 

To sum up, many researchers have conducted in-depth research in the field of cutting force detection technology 

based on intelligent tool holder. By using various sensors such as resistive, capacitive, piezoelectric, and surface 

acoustic waves, scholars have formed some research results with engineering application prospects, but they are still 

far from a perfect level. Further research is still needed in terms of mechanical structure design, integrated circuit 

optimization, application scenario configuration, etc. 
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Figure 3. Applications for cutting force monitoring from references [63,65–72,87–91,94–99,101–105]. 
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Table 1. Intelligent tool holder for cutting force monitoring. 

Year Researcher Application Sensor Transmission 

2011 Totis [69] 

Turning 

Triaxial force sensor Kistler 9251A Wired 

2012–2014 
Stoney [72,100] 

Wang [101] 
SAW sensor Wireless 

2014 Chen [98] Piezoelectric film sensor Wired 

2015 Zhao [65] Strain gauge Wired 

2015 Xiao [68] Piezoelectric ceramic sensor Wired 

2016 Zhao [91,92] Semi-conductive strain gauge Wired 

2021 Chen [96] Piezoelectric ceramic sensor Wireless 

2005 Tognazzi [102]  Inductive sensor Wired 

2005 
Albrecht [63] 

Kim [70] 
 Capacitance displacement sensor Wired 

2006 Dini [103] 

Milling 

Montronix AccuTorqueTM Wireless 

2009 Suprock [89] Force, torque, Temp. Bluetooth 

2010 Totis [104] Triaxial force sensor Kistler 9251A Wireless 

2012,2014 Ma [71,97] PVDF sensor Wireless 

2016 Qin [93] Piezoresistive MEMS strain gauge Wireless 

2017 Rizal [90] Strain gauge, torque, Temp. Wireless 

2017 Qin [94] Semiconductor MEMS strain gauge Wireless 

2018 Wu [96] Strain gauge, torque sensor Wi-Fi 

2022 Zhang [95] Semiconductor strain gages Wireless 

2023 Schuster [106]  Strain gauge Wireless 

2014 Riza [67] 
Milling, Drilling 

Strain gauge Wireless 

2017 Xie [99] Inductive sensor Wi-Fi 

3.2. Vibration Signal Monitoring Technology 

Cutting is a dynamic process, and the vibration signals it generates contain rich useful information that can reflect 

the cutting status. The traditional vibration signal detection method is to stick a wired acceleration sensor on the 

workpiece or spindle. This installation method will seriously attenuate the vibration signal because the sensor is far 

away from the workpiece-tool processing area. At the same time, it is easily affected by the noise of machine tools, 

resulting in large errors in the detected vibration signals. With the development of wireless telemetry technology, many 

scholars have begun to integrate acceleration sensors into the tool holder to shorten the distance to the signal generation 

area, thereby reducing problems such as vibration signal attenuation and noise interference. 

Suprock et al. [107] developed two intelligent tool holder that measure vibration through wireless transmission 

technology. The first to integrate an acceleration sensor behind the blade of a blade-type tool holder, with the ability to 

pick up radial vibrations. However, not all tools can integrate sensors behind the teeth, so the author integrated the sensor 

on the central axis of the tool holder, and then connected it to the tool holder integrated with the signal acquisition and 

transmission module, and developed a second wireless vibration measurement device. The intelligent tool holder can 

measure axial vibration. The second avoids the impact of temperature rise on the sensor. Both intelligent tool holder is 

based on Bluetooth for signal transmission. Matsuda et al. [108] installed MEMS acceleration sensors and thermocouples 

on the milling tool holder to measure three-dimensional cutting vibration and tool tip temperature. The signals were 

transmitted through wireless telemetry technology, but the transmission frequency was only 30 Hz, which was difficult to 

meet the requirements. Bleicher et al. [79] integrated the acceleration sensor and wireless transmission system on the tool 

holder to detect dynamic instability or process faults of the tool near the cutting area to avoid chatter. Based on this research, 

the author integrated the MEMS acceleration sensor, wireless Bluetooth transmission system, and battery on the tool holder 

to develop an intelligent tool holder system that can monitor the tool status and adaptive adjustment in real time. And a 

new method for determining single-edge fracture of multi-tooth milling cutters is proposed. The use of this system will 

reduce tool costs and allow each tool to be used until the end of its life [109]. Guo et al. [80] modified the standard tool 

holder structure and integrated the industrial-grade three-axis acceleration sensor, data acquisition module, and wireless 

communication module on the tool holder, and developed a rotating wireless vibration measurement system. The first-

order natural frequencies of the modified tool holder in the X and Y directions are 2313 Hz and 2325 Hz. Compared with 

the standard tool holder, it has decreased by 3.35% and 3.37%, and the change is small, which can ensure that the dynamic 

performance requirements of various milling processes for the tool holder are met. Thereafter, the author used the 

intelligent toolholder system for tool status detection and singularity analysis during the milling process [110]. Zhang et 
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al. [81] developed an intelligent toolholder for milling tool wear monitoring during milling. Modal test and circuit system 

test results show that the intelligent tool holder has a dynamic natural frequency of up to 1 kHz. To study the vibration 

characteristics of the intelligent tool holder, the author conducted milling experiments and compared the acceleration 

signals measured by the intelligent tool holder with the acceleration signals installed on the spindle, workpiece, and 

workbench. The result showed that the signal detected by the intelligent tool holder is the most sensitive to vibration and 

has the smallest attenuation. Frequency domain signals were the richest and has strong anti-interference ability against 

noise. Figure 4 shows the intelligent tool holder application for vibration monitoring. 

To sum up, the research results of intelligent tool holder in the field of vibration signal monitoring are less 

compared with cutting force signal monitoring. Researchers prefer to integrate the sensor directly on the tool holder. At 

present, the structural performance and promotion of intelligent tool holder for vibration signal collection need to be 

improved. How to maximize the structural stiffness and dynamic characteristics of the tool holder to meet the needs of 

engineering applications while modifying the original tool holder structure, and how to develop an intelligent tool holder 

with a wider range of uses need to be further studied. 

 
Figure 4. Applications for vibration monitoring from references [78–81,107–110]. 

3.3. Temperature Signal Monitoring Technology 

Cutting temperature is one of the important factors affecting processing quality. Cutting temperature is mainly 

caused by the friction between the tool and the workpiece and the elastic-plastic deformation of the cutting layer. The 

increase in cutting temperature will lead to increased tool wear and reduced tool life, making it difficult to guarantee 

the quality of the processed materials. The use of cutting temperature online measurement technology can measure 

cutting temperature changes in real time, which is of great significance for improving tool life and improving workpiece 

surface quality. 

Wright et al. [85] bonded a resistive temperature sensor to the back of the milling insert and connected it to a wireless 

platform embedded in the tool holder through a compensation wire to realize signal transmission. The wireless platform 

is powered by an internal lithium battery, the wireless transmitter circuit and sensor circuit adopt integrated technology. 

The temperature sensor system transmits signals to the CNC control unit via wireless network. This temperature sensor 

system can be used as a sensing part of an open CNC machine tool and integrated into the tool holder to optimize cutting 

parameters and ultimately monitor the temperature of the cutting process. Kerrigan et al. [86,111] embedded a K-type 

thermocouple with a diameter of 0.2 mm into a 0.6 mm carbide tool groove, 0.5 mm away from the bottom of the cutting 

edge, to create an intelligent wireless temperature measurement tool holder during CFRP milling process. However, it is 

only suitable for low temperature (<200 ℃). Coz et al. adopted a similar solution to achieve wireless measurement of 

cutting temperature during drilling and milling processes, and optimized the drilling processing parameters of Ti6Al4V 
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titanium alloy [112]. Rizal et al. [113] embedded a filament thermocouple with a diameter of 0.025 mm on the edge of the 

teeth. The signal acquisition and transmission module are integrated in the tool holder, and all wireless devices are powered 

by 5V DC transmitted by the induction ceremony. Guha et al. [114] developed a wireless temperature measurement system 

for the milling process. The author designed and constructed a signal conditioning circuit to attenuate the noise from the 

microfilm sensor array and improve the sensor’s signal-to-noise ratio. Furthermore, the authors present the average 

filtering algorithm as a software interface. To validate the wireless data acquisition system, laser heating and turning 

experiments were conducted. The test results all show that the wireless data acquisition system is the same as the wired 

data acquisition system. However, the author did not use rotating tools to conduct machining experiments and failed to 

study the reliability of the wireless data acquisition system under rotating machining. Campidelli et al. [115] used the 

embedded thermocouple method to design and develop a wireless measurement system capable of monitoring tool 

temperature, which was used to monitor tool temperature during the milling process of AISI D2 tool steel. The authors 

embedded thermocouples into through-holes created by EDM cutting teeth to improve temperature measurement accuracy. 

The author conducted milling experiments under different processing parameters, and the results showed that the proposed 

wireless temperature measurement system was extremely sensitive to changes in cutting parameters and was able to record 

higher temperature rise rates, corresponding to higher cutting speeds and feed rates. Figure 5 shows the intelligent tool 

holder application for temperature monitoring. 

In summary, the research results of intelligent tool holder in the field of cutting temperature monitoring are the 

least. Most researchers embed or bond thermocouples or thin film sensors near the cutting edge of the tool to measure 

the temperature of the cutting area. Data is collected using wired or wireless signal transmission methods. Technical 

difficulties mainly include the following aspects: 1. Thermocouple sensors have insufficient response speed to measure 

transient temperature, are not sensitive enough to temperature changes, and have insufficient measurement accuracy; 2. 

Sensors placed in the cutting area are prone to wear and damage, which affects the measurement results; 3. The products 

currently developed can meet the needs of laboratory research, but there are huge problems in realizing large-scale 

application in engineering. 

 
Figure 5. Applications for temperature monitoring from references [85,86,111,113–115]. 

4. Tool Condition Monitoring Based on Intelligent Tool Holder 

In the field of cutting processing, tools are subject to force and thermal coupling, which will gradually wear out, 

directly affecting the machining accuracy and surface integrity of the workpiece, and even seriously causing the 

workpiece to be scrapped. To maximize tool life, tool condition monitoring models are developed and utilized. Tool 

condition monitoring methods can be divided into direct methods and indirect methods according to the type of 

monitoring technology. The direct method mainly uses industrial cameras, contact detectors, lasers, optical microscopes 

or scanning electron microscope sensors for image analysis to monitor tool status [116,117]. The advantage of the direct 

method is the ability to visually observe the cutting area of the workpiece. However, due to interference from cutting 

fluid, chips, and other factors, it is difficult for the direct method to achieve online monitoring of tool status in actual 

machining. It can only be used for tool detection in the shutdown state and is difficult to apply to the manufacturing 

industry [118]. The indirect method is based on the dynamic multi-physics attributes of the cutting process, using 

various sensors to collect and analyze signals, constructing a mapping relationship model between tool status and signals 
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to indirectly implement tool status monitoring. The indirect method can achieve uninterrupted monitoring of the 

machining process without disturbing the normal cutting process, so it is favored by many researchers. Pimenov et al. 

[119] analyzed the trend of tool condition monitoring under different working conditions through an artificial 

intelligence system. Korkmaz et al. [120] summarized the sensors and signal processing methods used to monitor tool 

wear using indirect methods. Mohamed et al. [121] summarized the advantages and shortcoming of practices in 

developing wireless intelligent tool holder-embedded sensor, meanwhile, the selection of dimensionality reduction 

techniques was provided by author. Li et al. [10] conducted a systematic review of tool breakage monitoring 

technologies during machining. It can be known from these documents that cutting force signals, vibration signals, 

acoustic emission signals, sound/ultrasonic signals, etc. can be used for tool condition monitoring. Tool status 

monitoring is mainly divided into tool wear dentification, tool breakage monitoring, tool remaining service life 

prediction, and tool flank wear prediction. With the development of automation technology and deep learning 

technology, an intelligent toolholder with sensing function has attracted widespread attention from many scholars, and 

research on using it to monitor tool status has been reported one after another. This section will describe the research 

on tool status monitoring based on intelligent tool holder. 

Due to the high sampling frequency of sensors, a large amount of data can be collected in a short period of time. If 

the original data is directly used for training, the model training process will be very time-consuming. At the same time, 

the original data will contain a lot of noise due to vibration factors. Therefore, the original data needs to be processed to 

extract the most effective feature vectors that are most relevant to the tool status. The extracted feature vectors are used 

for subsequent model establishment and testing. The feature extraction stage will greatly reduce the dimensionality of the 

data and accelerate model convergence. Time domain analysis, frequency domain analysis and time-frequency domain 

analysis are the main methods of feature extraction (Table 2). After feature extraction, the data dimension is greatly reduced. 

Then, it is necessary to further select appropriate features for subsequent model training to reduce the data dimension again 

and reduce training time and computing memory. Mainstream algorithms include principal component analysis, random 

forest algorithm, Pearson coefficient, etc. Afterwards, the computer’s learning ability needs to be used to build a tool 

condition monitoring model. Many researchers use artificial intelligence to build models, mainly including machine 

learning models and deep learning models. However, most of these machine learning algorithms have gradient structures, 

and it is difficult to learn deep feature representations from cutting physical data. Moreover, machine learning algorithms 

rely on prior knowledge and require manual feature selection. These factors limit the application of machine learning 

algorithms in tool condition monitoring. As a branch of machine learning, deep learning can well overcome the limitations 

of machine learning models due to its unique information processing module and hierarchical feature learning mechanism. 

Mainstream deep learning algorithms include convolutional neural networks, recurrent neural networks, stacked 

autoencoders, and deep belief networks. 

Tool wear status monitoring models can be divided into three categories: physical models, statistical models, and 

data-driven models [122]. The physical model is based on the wear mechanism to establish a mathematical model to 

describe tool wear. The statistical model is based on prior knowledge to establish a statistical model of tool wear. Data-

driven models use various machine learning algorithms to learn rules for tool wear degradation from a variety of 

available data. Since it is difficult to accurately establish a mathematical model based on the wear mechanism under 

complex working conditions, which greatly limits its application, this section does not elaborate on the research content 

of the physical model. In terms of tool wear status identification, artificial neural network (ANN) and support vector 

machine (SVM) have been widely used [123]. In addition, Hidden Markov Models (HMM) with strict data structures 

and reliable computing performance have also attracted researchers’ attention. Table 3 shows the representative 

literature on tool wear status identification based on intelligent tool holder in recent years. 

Unlike tool wear, tool breakage occurs suddenly and randomly during cutting process, and has a serious impact on 

the workpiece processing quality and machine tool stiffness, so tool breakage status monitoring is more difficult. Once 

the tool breaks, it will greatly affect the quality of the workpiece, then the operator must replace it in time. Therefore, 

tool breakage is the most serious tool failure in machining. Tool breakage is a typical random phenomenon and may 

occur in the early stage of wear, the middle stage of wear, and the late stage of wear. When using brittle tools or 

performing intermittent machining of high-hardness materials, tool breakage is most likely to occur in the initial stage 

of tool wear evolution. In addition, as wear continues to accumulate, tool breakage is most likely to occur in the later 

stages of wear. In cutting process, many factors such as workpiece material properties, tool geometry and cutting 

stability will affect tool breakage. Therefore, to avoid tool breakage and improve workpiece processing quality, tool 

breakage status monitoring is crucial. Most researchers use sensors to monitor tool damage status, including single-

sensor monitoring and multi-sensor fusion monitoring. Considering the size, cost, installation limitations of some 
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commercial sensors, and the signal attenuation problem of wired sensors, the researchers designed an intelligent tool 

holder. The toolholder integrates sensors, high-end chips, and software systems. Like tool wear monitoring, tool 

breakage monitoring is also based on signal acquisition, feature extraction selection, and tool breakage decision-making 

and identification. In 2018, Bleicher et al. published a paper [79], in this reference, the author developed a control 

system to achieve adaptive adjustment of parameters during cutting process. The system collects data through an 

intelligent tool holder that integrates an acceleration sensor and a data wireless transmission module. It is coupled with 

the machine tool NC system and relies on the defined optimization strategy to adjust the feed speed and spindle speed 

to avoid chatter during the machining process. The author applied the system to milling and drilling processes, and the 

experimental results show that the device can effectively monitor tool breakage in milling and drilling processes. Since 

then, the organization has carried out a series of studies on tool breakage monitoring based on this device. Table 4 

shows representative products developed by this team and other researchers for tool breakage status monitoring. 

There are few related studies on flank wear prediction and tool remaining service life prediction based on intelligent 

tool holder. But from a theoretical point of view, it is the same as using traditional wired sensors. Table 5 summarizes 

the related applications of researchers based on artificial intelligence and various sensors to achieve flank wear 

prediction and tool remaining service life prediction from 2015 to 2022. 

Table 2. Characteristics of time domain, frequency domain, and time-frequency domain analysis. 
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Table 3. Representative literature on tool wear status identification based on intelligent tool holder. 

Research Application Measurement 
Acquisition 

System 
Characteristic Model 

Sample 

Feature 
Test Accuracy 

       Total 
Each wear 

states 

Xie [78] Milling Vibration 

MEMS 

capacitive 

accelerometer 

Wireless Wi-Fi 

transmission 

Low cost CHMM 

Wavelet 

packets 

features 

92.4 

93.3% 

90% 

94% 

Xie [124] Milling 
Force and 

torque 

Capacitive 

sensor 

Data wireless 

transmission 

Compatible 

tool types 

High 

sensitivity 

CHMM 

Time domain 

features 

Wavelet 

packets 

features 

Above 

90% 

92.6% 

91.2% 

93% 

Guo 

[125] 
Milling Vibration 

Piezoelectric 

acceleration 

sensor 

Wireless 

transmission 

Compatible 

tool types 
SVM 

Singularity 

features 
86.2% 

0.0% 

94.2% 

80.2% 

Yang 

[126] 
Milling Vibration 

Piezoelectric 

accelerometers 

Wireless 

transmission 

Low cost 

Simple 

structure 

Improved 

SVM 

Singularity 

features 
90.8%  

Xie [127] Milling 
Force and 

vibration 

Capacitive 

sensor 

Acceleration 

sensor 

Compatible 

tool types 
HMM 

Time domain 

features 

Wavelet 

packets 

features 

93.6% 

92.5% 

93.3% 

95% 

Table 4. Representative literature on tool breakage status identification based on intelligent tool holder. 

Research Application Measurement 
Acquisition 

System 
Characteristic Model Feature 

Bleicher 

[128] 

Milling 

Two cutting 

inserts 

Vibration 

MEMS sensor 

Wireless 

Bluetooth 

transmission 

Battery 

Low cost 

Compact 

construction 

Compact and fast 

algorithm 

Random Forest 

Time domain 

Spectral 

domain 

Ramsauer 

[109] 

Milling 

Four cutting 

inserts 

Vibration 

MEMS sensor 

Wireless 

Bluetooth 

transmission 

Battery 

Well-adapted to 

harsh machining  

environment 

Mechanical 

vibration and 

interrupted cut 

model 

Frequency 

domain 

Spectral 

distribution 

Gent 

[129] 

Milling 

18-week time 

span 

Industrial 

environment 

Vibration 

MEMS sensor 

Wireless 

Bluetooth 

transmission 

Battery 

Low cost 

Compatible tool 

types 

QZ-algorithm 
Frequency 

domain 

Öztürk 

[130] 
Tapping Vibration 

MEMS sensor 

Floating tap 

holder 

Rotating 

telemetry unit 

Wireless Wi-Fi 

transmission 

High sensitivity 

Uncertainty 

quantification 

Error compensation 

Statistical model 

Time-

frequency 

domain 
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Table 5. Literature on flank wear prediction and tool remaining service life prediction based on various sensors. 

Research Year Sensor Application Model 
Tool 

Wear 

Tool 

Life 

Letot [131] 2017 

Force sensor 

Turning Neural networks/Artificial Neural Network √ √ 

Xu [132] 2020 Milling Adaptive neuro-fuzzy inference systems √  

McParland [133] 2017 Turning Bayesian networks √  

Javed [134] 2016 Milling Ensembles √  

An [49] 2019 

Vibration sensor 

Milling 
Neural networks/Artificial Neural Network 

 √ 

Li [135] 2020  √ 

Twardowski [136] 2019 Turning √  

Zhang [137] 2016 

Milling 

Fuzzy logic √ √ 

Xie [78] 2017 Markov model √  

Guo [110] 2020 Support vector machine √  

Chen [138] 2020 Drilling Support vector machine √  

Wang [139] 2015 

Milling 

Bayesian network √ √ 

Hui [140] 2019 Ensembles √  

Liao [141] 2019 Genetic algorithms √  

Zhang [142] 2018 

AE sensor 

Turning Neural networks/Artificial Neural Network √  

Olufayo [143] 2015 Milling 

Neural networks/Artificial Neural Network 

 √ 

Caggiano [144] 2019 Turning √  

Ferreira [145] 2019 Grinding √  

Ren [29] 2015 Turning Fuzzy logic √  

Sun, [146] 2018 

Milling 

Markov model  √ 

Chen [147] 2018 Support vector machine √  

Krishnakumar [148] 2018 Decision and regression trees √  

Pandiya [149] 2018 Grinding Genetic algorithms √  

Nakai [150] 2015 

Current and power 

sensor 

Grinding 

Neural networks/Artificial Neural Network 

√  

da Silva [151] 2016 
Milling 

√ √ 

Drouillet [152] 2016 √ √ 

Corne [153] 2017 Drilling  √ 

Sahu [154] 2017 Milling Genetic algorithms √  

Zhang [144] 2018 Turning Support vector machine √  

Pimenov [155] 2018 

Milling 

Decision and regression trees 
√ √ 

Bustillo [156] 2020 √ √ 

Xu [157] 2020 Adaptive neuro-fuzzy inference systems √ √ 

Niaki [158] 2016 
Bayesian networks 

√ √ 

Akhavan [159] 2016 √ √ 

Mia [160] 2018 Temperature sensor Turning Support vector machine √  

5. Conclusions and Prospect 

This article conducted a systematic review from three aspects: structure design of tool holder, signal monitoring 

technology, and tool condition monitoring technology. The conclusions are as follows: 

(1) For cutting force, the cutting force signal is collected by modifying or redesigning the force sensing structure; For 

cutting vibration, the cutting vibration signal collected by modifying the structure near the central axis of tool 

holder to eliminate the error caused by rotation of central axis; For cutting temperature, the cutting temperature 

signal is collected by designing the structure near the tool tip to ensure the accuracy of temperature data. 

(2) Sensors used for cutting force signal acquisition include resistive, capacitive, piezoelectric, surface acoustic wave, 

etc. Among them, resistive sensors and piezoelectric sensors account for the majority. Researchers placed various 

sensors on force-sensing structures to collect force signal; Acceleration sensors are the main sensors used for 

acquisition of cutting vibration signal, and researchers prefer to integrate the sensors directly on the tool holder to 

collect vibration signal; The thermocouple is installed near the blade to collect cutting temperature signal. 

(3) Tool condition monitoring based on intelligent tool holder mainly includes tool wear status identification, tool 

breakage monitoring, tool flank wear prediction, and tool remaining service life prediction. Among them, because 

the tool wear state is a non-sudden phenomenon, researchers have studied the tool wear state identification the 

most. However, due to the phenomenon of tool breakage in the cutting process is random, so the research content 

in this area is less. Meanwhile, there is almost no research on tool flank wear prediction and tool remaining service 

life prediction based on intelligent tool holder, but from the point of view of principle, it is the same as using 

traditional wired sensors. 
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Of course, the methods of signal processing also require further research. How to reduce calculation time and labor 

costs while ensuring high-quality data. This research direction is equally important. In response to the above conclusion, 

the author makes the following prospect: 

(1) The structure of an intelligent tool holder needs to balance stiffness and sensitivity. Therefore, researchers can use 

or make materials with high stiffness and high sensitivity when designing force-sensing structures and modifying 

tool holder structure. 

(2) At present, most intelligent tool holder can only collect one kind of signal. How to develop an intelligent tool 

holder that collects multiple signals requires further research. 

(3) The cutting force signal and vibration signal monitoring solutions are relatively mature. As another key factor in 

the machining process, cutting temperature has fewer monitoring solutions at present. Moreover, the accuracy of 

cutting temperature collection is inversely proportional to the installation position of the sensor and directly 

proportional to consumption of sensor. Therefore, how to conduct real-time dynamic collection of temperature 

during the cutting process is a direction that needs continued research. 

(4) For tool condition monitoring, at present, intelligent algorithms and neural networks for feature selection, feature 

transformation, tool state recognition and decision making are built by operators, and the quality depends on 

operators. How to reduce the operator’s intervention and let the feature selection and tool state recognition be 

completely handled by TCM system is a future research direction. Meanwhile, it is equally important to combine 

the TCM system and the adaptive control (AC) system. The AC system manipulates the operating conditions by 

learning signal behaviors. This integrated approach is effective and is an inevitable trend for the future development 

of intelligent tool holder. But this approach is more complex and requires further study by researchers. 

Ethics Statement 

Not applicable. 

Informed Consent Statement 

Not applicable. 

Funding 

The work is supported by National Natural Science Foundation of China [52375454]. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial interests or personal relationships that could have 

appeared to influence the work reported in this paper. 

References 

1. Liao Z, la Monaca A, Murray J, Speidel A, Ushmaev D, Clare A, et al. Surface integrity in metal machining-Part I: 

Fundamentals of surface characteristics and formation mechanisms. Int. J. Mach. Tools Manuf. 2021, 162, 103687. 

2. La Monaca A, Murray JW, Liao Z, Speidel A, Robles-Linares JA, Axinte DA, et al. Surface integrity in metal machining-Part 

II: Functional performance. Int. J. Mach. Tools Manuf. 2021, 164, 103718. 

3. Guzeev VI, Pimenov DY. Cutting force in face milling with tool wear. Russ. Eng. Res. 2011, 31, 989–993. 

4. Zhu L, Liu C. Recent progress of chatter prediction, detection and suppression in milling. Mech. Syst. Sig. Process. 2020, 143, 106840. 

5. Pimenov DY. Experimental research of face mill wear effect to flat surface roughness. J. Frict. Wear 2014, 35, 250–254. 

6. Zhu K, San Wong Y, Hong GS. Wavelet analysis of sensor signals for tool condition monitoring: A review and some new 

results. Int. J. Mach. Tools Manuf. 2009, 49, 537–553. 

7. Cai G, Chen X, Li B, Chen B, He Z. Operation reliability assessment for cutting tools by applying a proportional covariate 

model to condition monitoring information. Sensors 2012, 12, 12964–12987. 

8. Dou J, Jiao S, Xu C, Luo F, Tang L, Xu X. Unsupervised online prediction of tool wear values using force model coefficients 

in milling. Int. J. Adv. Manuf. Technol. 2020, 109, 1153–1166. 

9. Zhu K. Big data oriented intelligent tool condition monitoring system. In Intelligent Machining Systems: Modelling, 

Monitoring and Informatics; Springer International Publishing: Cham, Switzerland, 2021; pp. 361–381. 

10. Li X, Liu X, Yue C, Liang SY, Wang L. Systematic review on tool breakage monitoring techniques in machining operations. 

Int. J. Mach. Tools Manuf. 2022, 176, 103882. 



Intelligent and Sustainable Manufacturing 2024, 1, 10002 18 of 23 

 

11. Wang SM, Yu HJ, Liu SH, Chen DF. An on-machine and vision-based depth-error measurement method for micro machine 

tools. Int. J. Precis. Eng. Manuf. 2011, 12, 1071–1077. 

12. Kong D, Chen Y, Li N, Duan C, Lu L, Chen D. Relevance vector machine for tool wear prediction. Mech. Syst. Sig. Process. 

2019, 127, 573–594. 

13. Stavropoulos P, Papacharalampopoulos A, Vasiliadis E, Chryssolouris G. Tool wear predictability estimation in milling based 

on multi-sensorial data. Int. J. Adv. Manuf. Technol. 2016, 82, 509–521. 

14. Sun H, Zhang J, Mo R, Zhang X. In-process tool condition forecasting based on a deep learning method. Robot. Comput. 

Integr. Manuf. 2020, 64, 101924. 

15. Yu X, Lin X, Dai Y, Zhu K. Image edge detection based tool condition monitoring with morphological component analysis. 

ISA Transact. 2017, 69, 315–322. 

16. Zhu K, Yu X. The monitoring of micro milling tool wear conditions by wear area estimation. Mech. Syst. Sig. Process. 2017, 

93, 80–91. 

17. Boing D, Castro FL, Schroeter RB. Prediction of PCBN tool life in hard turning process based on the three-dimensional tool 

wear parameter. Int. J. Adv. Manuf. Technol. 2020, 106, 779–790. 

18. Dutta S, Pal SK, Mukhopadhyay S, Sen R. Application of digital image processing in tool condition monitoring: A review. 

CIRP J. Manuf. Sci. Technol. 2013, 6, 212–232. 

19. Kuljanic E, Sortino M, Totis G. Multisensor approaches for chatter detection in milling. J. Sound Vibr. 2008, 312, 672–693. 

20. Abellan-Nebot JV, Romero Subirón F. A review of machining monitoring systems based on artificial intelligence process 

models. Int. J. Adv. Manuf. Technol. 2010, 47, 237–257. 

21. Bhattacharyya P, Sengupta D, Mukhopadhyay S. Cutting force-based real-time estimation of tool wear in face milling using 

a combination of signal processing techniques. Mech. Syst. Sig. Process. 2007, 21, 2665–2683. 

22. Jamshidi M, Rimpault X, Balazinski M, Chatelain JF. Fractal analysis implementation for tool wear monitoring based on 

cutting force signals during CFRP/titanium stack machining. Int. J. Adv. Manuf. Technol. 2020, 106, 3859–3868. 

23. Wang G, Yang Y, Li Z. Force sensor based tool condition monitoring using a heterogeneous ensemble learning model. Sensors 

2014, 14, 21588–21602. 

24. Jun CH, Suh SH. Statistical tool breakage detection schemes based on vibration signals in NC milling. Int. J. Mach. Tools 

Manuf. 1999, 39, 1733–1746. 

25. Lei Z, Zhu Q, Zhou Y, Sun B, Sun W, Pan X. A GAPSO-enhanced extreme learning machine method for tool wear estimation 

in milling processes based on vibration signals. Int. J. Precis. Eng. Manuf. Green Technol. 2021, 8, 745–759. 

26. Fu Y, Zhang Y, Gao H, Mao T, Zhou H, Sun R, et al. Automatic feature constructing from vibration signals for machining 

state monitoring. J. Intell. Manuf. 2019, 30, 995–1008. 

27. Bhuiyan MSH, Choudhury IA, Dahari M, Nukman Y, Dawal SZ. Application of acoustic emission sensor to investigate the 

frequency of tool wear and plastic deformation in tool condition monitoring. Measurement 2016, 92, 208–217. 

28. Ren Q, Balazinski M, Baron L, Jemielniak K, Botez R, Achiche S. Type-2 fuzzy tool condition monitoring system based on 

acoustic emission in micromilling. Inf. Sci. 2014, 255, 121–134. 

29. Ren Q, Baron L, Balazinski M, Botez R, Bigras P. Tool wear assessment based on type-2 fuzzy uncertainty estimation on 

acoustic emission. Appl. Soft Comput. 2015, 31, 14–24. 

30. Kothuru A, Nooka SP, Liu R. Application of audible sound signals for tool wear monitoring using machine learning techniques 

in end milling. Int. J. Adv. Manuf. Technol. 2018, 95, 3797–3808. 

31. Li X. Detection of tool flute breakage in end milling using feed-motor current signatures. IEEE/ASME Trans. Mechatron. 

2001, 6, 491–498. 

32. Zhou Y, Sun W. Tool wear condition monitoring in milling process based on current sensors. IEEE Access 2020, 8, 95491–95502. 

33. Altintas Y, Yellowley I, Tlusty J. The detection of tool breakage in milling operations. J. Eng. Ind. 1988, 110, 271–277. 

34. Pan T, Zhang J, Yang L, Zhao W, Zhang H, Lu B. Tool breakage monitoring based on the feature fusion of spindle acceleration 

signal. Int. J. Adv. Manuf. Technol. 2021, 117, 2973–2986. 

35. Shao H, Shi X, Li L. Power signal separation in milling process based on wavelet transform and independent component 

analysis. Int. J. Mach. Tools Manuf. 2011, 51, 701–710. 

36. Franco-Gasca LA, Herrera-Ruiz G, Peniche-Vera R, de Jesús Romero-Troncoso R, Leal-Tafolla W. Sensorless tool failure 

monitoring system for drilling machines. Int. J. Mach. Tools Manuf. 2006, 46, 381–386. 

37. Peng Y. Empirical model decomposition based time-frequency analysis for the effective detection of tool breakage. J. Manuf. 

Sci. Eng. 2006, 128, 154–166. 

38. Baek DK, Ko TJ, Kim HS. Real time monitoring of tool breakage in a milling operation using a digital signal processor. J. 

Mater. Process. Technol. 2000, 100, 266–272. 



Intelligent and Sustainable Manufacturing 2024, 1, 10002 19 of 23 

 

39. Hsueh YW, Yang CY. Tool breakage diagnosis in face milling by support vector machine. J. Mater. Process. Technol. 2009, 

209, 145–152. 

40. Brito LC, da Silva MB, Duarte MAV. Identification of cutting tool wear condition in turning using self-organizing map trained 

with imbalanced data. J. Intell. Manuf. 2021, 32, 127–140. 

41. Kannatey-Asibu E, Yum J, Kim TH. Monitoring tool wear using classifier fusion. Mech. Syst. Sig. Process. 2017, 85, 651–661. 

42. Li G, Wang Y, He J, Hao Q, Yang H, Wei J. Tool wear state recognition based on gradient boosting decision tree and hybrid 

classification RBM. Int. J. Adv. Manuf. Technol. 2020, 110, 511–522. 

43. Painuli S, Elangovan M, Sugumaran V. Tool condition monitoring using K-star algorithm. Expert Syst. Appl. 2014, 41, 2638–

2643. 

44. He Z, Shi T, Xuan J, Li T. Research on tool wear prediction based on temperature signals and deep learning. Wear 2021, 478, 

203902. 

45. Li X, Liu X, Yue C, Liu S, Zhang B, Li R, et al. A data-driven approach for tool wear recognition and quantitative prediction 

based on radar map feature fusion. Measurement 2021, 185, 110072. 

46. Wang J, Li Y, Zhao R, Gao RX. Physics guided neural network for machining tool wear prediction. J. Manuf. Syst. 2020, 57, 

298–310. 

47. Wang J, Yan J, Li C, Gao RX, Zhao R. Deep heterogeneous GRU model for predictive analytics in intelligent manufacturing: 

Application to tool wear prediction. Comput. Ind. 2019, 111, 1–14. 

48. Xu W, Miao H, Zhao Z, Liu J, Sun C, Yan R. Multi-scale convolutional gated recurrent unit networks for tool wear prediction 

in intelligent manufacturing. Chin. J. Mech. Eng. 2021, 34, 53. 

49. An Q, Tao Z, Xu X, El Mansori M, Chen M. A data-driven model for milling tool remaining useful life prediction with 

convolutional and stacked LSTM network. Measurement 2020, 154, 107461. 

50. Liu M, Yao X, Zhang J, Chen W, Jing X, Wang K. Multi-sensor data fusion for remaining useful life prediction of machining 

tools by IABC-BPNN in dry milling operations. Sensors 2020, 20, 4657. 

51. Wu J, Su Y, Cheng Y, Shao X, Deng C, Liu C. Multi-sensor information fusion for remaining useful life prediction of 

machining tools by adaptive network based fuzzy inference system. Appl. Soft Comput. 2018, 68, 13–23. 

52. Zhou JT, Zhao X, Gao J. Tool remaining useful life prediction method based on LSTM under variable working conditions. 

Int. J. Adv. Manuf. Technol. 2019, 104, 4715–4726. 

53. Byrne G, Dornfeld D, Inasaki I, Ketteler G, König W, Teti R. Tool condition monitoring (TCM)—the status of research and 

industrial application. CIRP Ann. 1995, 44, 541–567. 

54. Kurada S, Bradley C. A review of machine vision sensors for tool condition monitoring. Comput. Ind. 1997, 34, 55–72. 

55. Teti R, Jemielniak K, O’Donnell G, Dornfeld D. Advanced monitoring of machining operations. CIRP Ann. 2010, 59, 717–739. 

56. Teti R, Mourtzis D, D’Addona DM, Caggiano A. Process monitoring of machining. CIRP Ann. 2022, 71, 529–552. 

57. Sick B. On-line and indirect tool wear monitoring in turning with artificial neural networks: a review of more than a decade 

of research. Mech. Syst. Sig. Process. 2002, 16, 487–546. 

58. Wong SY, Chuah JH, Yap HJ. Technical data-driven tool condition monitoring challenges for CNC milling: a review. Int. J. 

Adv. Manuf. Technol. 2020, 107, 4837–4857. 

59. Sayyad S, Kumar S, Bongale A, Kamat P, Patil S, Kotecha K. Data-driven remaining useful life estimation for milling process: 

sensors, algorithms, datasets, and future directions. IEEE Access 2021, 9, 110255–110286. 

60. Zhu D, Zhang X, Ding H. Tool wear characteristics in machining of nickel-based superalloys. Int. J. Mach. Tools Manuf. 2013, 

64, 60–77. 

61. Sun S, Brandt M, Dargusch MS. Characteristics of cutting forces and chip formation in machining of titanium alloys. Int. J. 

Mach. Tools Manuf. 2009, 49, 561–568. 

62. Ozturk E, Ozkirimli O, Gibbons T, Saibi M, Turner S. Prediction of effect of helix angle on cutting force coefficients for 

design of new tools. CIRP Ann. 2016, 65, 125–128. 

63. Albrecht A, Park SS, Altintas Y, Pritschow G. High frequency bandwidth cutting force measurement in milling using 

capacitance displacement sensors. Int. J. Mach. Tools Manuf. 2005, 45, 993–1008. 

64. Jun MB, Ozdoganlar OB, DeVor RE, Kapoor SG, Kirchheim A, Schaffner G. Evaluation of a spindle-based force sensor for 

monitoring and fault diagnosis of machining operations. Int. J. Mach. Tools Manuf. 2002, 42, 741–751. 

65. Zhao Y, Zhao Y, Liang S, Zhou G. A high performance sensor for triaxial cutting force measurement in turning. Sensors 2015, 

15, 7969–7984. 

66. Shaw MC, Cookson JO. Metal Cutting Principles; Oxford University Press: New York, NY, USA, 2005. 

67. Rizal M, Ghani JA, Nuawi MZ, Haron CHC. Development and testing of an integrated rotating dynamometer on tool holder 

for milling process. Mech. Syst. Sig. Process. 2015, 52, 559–576. 



Intelligent and Sustainable Manufacturing 2024, 1, 10002 20 of 23 

 

68. Xiao C, Ding H, Cheng K, Chen S. Design of an innovative intelligent turning tool with application to real-time cutting force 

measurement. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2015, 229, 563–568. 

69. Totis G, Sortino M. Development of a modular dynamometer for triaxial cutting force measurement in turning. Int. J. Mach. 

Tools Manuf. 2011, 51, 34–42. 

70. Kim JH, Chang HK, Han DC, Jang DY, Oh SI. Cutting force estimation by measuring spindle displacement in milling process. 

CIRP Ann. 2005, 54, 67–70. 

71. Ma L, Melkote SN, Castle JB. PVDF sensor-based monitoring of milling torque. Int. J. Adv. Manuf. Technol. 2014, 70, 1603–1614. 

72. Stoney R, O’Donnell GE, Geraghty D. Dynamic wireless passive strain measurement in CNC turning using surface acoustic 

wave sensors. Int. J. Adv. Manuf. Technol. 2013, 69, 1421–1430. 

73. Gierlak P, Burghardt A, Szybicki D, Szuster M, Muszyńska M. On-line manipulator tool condition monitoring based on 

vibration analysis. Mech. Syst. Sig. Process. 2017, 89, 14–26. 

74. Plaza EG, López PN. Surface roughness monitoring by singular spectrum analysis of vibration signals. Mech. Syst. Sig. 

Process. 2017, 84, 516–530. 

75. Chen Y, Li H, Hou L, Wang J, Bu X. An intelligent chatter detection method based on EEMD and feature selection with multi-

channel vibration signals. Measurement 2018, 127, 356–365. 

76. Liu H, Tang S, He S, Li B, Mao X, Peng F. A method of measuring tool tip vibration in turning operations. Int. J. Adv. Manuf. 

Technol. 2016, 85, 1325–1337. 

77. Chung TK, Yeh PC, Lee H, Lin CM, Tseng CY, Lo WT, et al. An attachable electromagnetic energy harvester driven wireless 

sensing system demonstrating milling-processes and cutter-wear/breakage-condition monitoring. Sensors 2016, 16, 269. 

78. Xie Z, Li J, Lu Y. An integrated wireless vibration sensing tool holder for milling tool condition monitoring. Int. J. Adv. Manuf. 

Technol. 2018, 95, 2885–2896. 

79. Bleicher F, Schörghofer P, Habersohn C. In-process control with a sensory tool holder to avoid chatter. J. Mach. Eng. 2018, 

18, 16–27. 

80. Guo K, Zhao Y, Zan Z, Sun J. Development and testing of a wireless rotating triaxial vibration measuring tool holder system 

for milling process. Measurement 2020, 163, 108034. 

81. Zhang P, Gao D, Lu Y, Ma Z, Wang X, Song X. Cutting tool wear monitoring based on a smart toolholder with embedded 

force and vibration sensors and an improved residual network. Measurement 2022, 199, 111520. 

82. Basti A, Obikawa T, Shinozuka J. Tools with built-in thin film thermocouple sensors for monitoring cutting temperature. Int. 

J. Mach. Tools Manuf. 2007, 47, 793–798. 

83. Cui Y, Zhang B, Ding W, Yan C, Liu Y. Research on the cutting tool with intelligent transient temperature measuring system. 

J. Mech. Eng. 2017, 53, 174–180. 

84. Huang S, Tao B, Li J, Fan Y, Yin Z. Estimation of the time and space-dependent heat flux distribution at the tool-chip interface 

during turning using an inverse method and thin film thermocouples measurement. Int. J. Adv. Manuf. Technol. 2018, 99, 

1531–1543. 

85. Wright PK, Dornfeld D, Hillaire RG, Ota NK. A Wireless Sensor for Tool Temperature Measurement and Its Integration 

within a Manufacturing System; Laboratory for Manufacturing and Sustainability, UC Berkeley: Berkeley, CA, USA, 2006. 

86. Kerrigan K, Thil J, Hewison R, O’Donnell GE. An integrated telemetric thermocouple sensor for process monitoring of CFRP 

milling operations. Procedia CIRP 2012, 1, 449–454. 

87. Yaldız S, Ünsaçar F, Sağlam H, Işık H. Design, development and testing of a four-component milling dynamometer for the 

measurement of cutting force and torque. Mech. Syst. Sig. Process. 2007, 21, 1499–1511. 

88. Yaldız S, Ünsaçar F. A dynamometer design for measurement the cutting forces on turning. Measurement 2006, 39, 80–89. 

89. Suprock CA, Nichols JS. A low cost wireless high bandwidth transmitter for sensor-integrated metal cutting tools and process 

monitoring. Int. J. Mechatron. Manuf. Syst. 2009, 2, 441–454. 

90. Rizal M, Ghani JA, Nuawi MZ, Haron CHC. An embedded multi-sensor system on the rotating dynamometer for real-time 

condition monitoring in milling. Int. J. Adv. Manuf. Technol. 2018, 95, 811–823. 

91. Zhao Y, Zhao Y, Wang C, Liang S, Cheng R, Qin Y, et al. Design and development of a cutting force sensor based on semi-

conductive strain gauge. Sensors Actuators A Phys. 2016, 237, 119–127. 

92. Zhao Y, Xiaohui GE, Zhao Y. Research on high precision dynamic cutting force self-perception intelligent tool. J. Mech. Eng. 

2019, 55, 178–185. 

93. Qin Y, Zhao Y, Li Y, Zhao Y, Wang P. A high performance torque sensor for milling based on a piezoresistive MEMS strain 

gauge. Sensors 2016, 16, 513. 

94. Qin Y, Zhao Y, Li Y, Zhao Y, Wang P. A novel dynamometer for monitoring milling process. Int. J. Adv. Manuf. Technol. 2017, 

92, 2535–2543. 



Intelligent and Sustainable Manufacturing 2024, 1, 10002 21 of 23 

 

95. Zhang P, Gao D, Lu Y, Wang F, Liao Z. A novel intelligent toolholder with embedded force sensors for milling operations. 

Mech. Syst. Sig. Process. 2022, 175, 109130. 

96. Chen YL, Chen F, Li Z, Zhang Y, Ju B, Lin H. Three-axial cutting force measurement in micro/nano-cutting by utilizing a 

fast tool servo with a smart tool holder. CIRP Ann. 2021, 70, 33–36. 

97. Ma L, Melkote SN, Morehouse JB, Castle JB, Fonda JW, Johnson MA. Thin-film PVDF sensor-based monitoring of cutting 

forces in peripheral end milling. J. Dyn. Sys. Meas. Control 2012, 134, 051014. 

98. Chen X, Cheng K, Wang C. Design of a smart turning tool with application to in-process cutting force measurement in 

ultraprecision and micro cutting. Manuf. Lett. 2014, 2, 112–117. 

99. Xie Z, Lu Y, Li J. Development and testing of an integrated intelligent tool holder for four-component cutting force 

measurement. Mech. Syst. Sig. Process. 2017, 93, 225–240. 

100. Stoney R, Donohoe B, Geraghty D, O’Donnell GE. The development of surface acoustic wave sensors (SAWs) for process 

monitoring. Procedia CIRP 2012, 1, 569–574. 

101. Wang C, Cheng K, Chen X, Minton T, Rakowski R. Design of an instrumented intelligent cutting tool and its implementation 

and application perspectives. Intell. Mater. Struct. 2014, 23, 035019. 

102. Tognazzi F, Porta M, Failli F, Dini G. A preliminary study on a torque sensor for tool condition monitoring in milling. In 

AMST’05 Advanced Manufacturing Systems and Technology; Springer: Vienna, Austria, 2005. 

103. Dini G, Tognazzi F. Tool condition monitoring in end milling using a torque-based sensorized toolholder. Proc. Inst. Mech. 

Eng. Part B J. Eng. Manuf. 2007, 221, 11–23. 

104. Totis G, Wirtz G, Sortino M, Veselovac D, Kuljanic E, Klocke F. Development of a dynamometer for measuring individual 

cutting edge forces in face milling. Mech. Syst. Sig. Process. 2010, 24, 1844–1857. 

105. Wu F, Li Y, Guo B, Zhang P. The design of force measuring tool holder system based on wireless transmission. IEEE Access 

2018, 6, 38556–38566. 

106. Schuster A, Rentzsch H, Ihlenfeldt S. Energy self-sufficient, multi-sensory tool holder for sensitive monitoring of milling 

processes. Procedia CIRP 2023, 117, 80–85. 

107. Suprock CA, Fussell BK, Hassan RZ, Jerard RB. A low cost wireless tool tip vibration sensor for milling. In Proceedings of 

the ASME 2008 International Manufacturing Science and Engineering Conference, Evanston, IL, USA, 7–10 October 2008; 

pp. 465–474. 

108. Matsuda R, Shindou M, Furuki T, Hirogaki T, Aoyama E. Monitoring Method of Process Temperature and Vibration of 

Rotating Machining Tool with a Wireless Communication Holder System. Mater. Sci. Forum 2016, 874, 519–524. 

109. Ramsauer C, Bleicher F. New method for determining single cutting edge breakage of a multi-tooth milling tool based on 

acceleration measurements of an instrumented tool holder. J. Mach. Eng. 2021, 21, 67–77. 

110. Guo K, Sun J. An integrated wireless vibration sensing tool holder for milling tool condition monitoring with singularity 

analysis. Measurement 2021, 174, 109038. 

111. Kerrigan K, O’Donnell GE. Temperature measurement in CFRP milling using a wireless tool-integrated process monitoring 

sensor. Int. J. Autom. Technol. 2013, 7, 742–750. 

112. Le Coz G, Marinescu M, Devillez A, Dudzinski D, Velnom L. Measuring temperature of rotating cutting tools: Application 

to MQL drilling and dry milling of aerospace alloys. Appl. Therm. Eng. 2012, 36, 434–441. 

113. Rizal M, Ghani JA, Nuawi MZ, Haron CHC. A wireless system and embedded sensors on spindle rotating tool for condition 

monitoring. Adv. Sci. Lett. 2014, 20, 1829–1832. 

114. Guha A, Li H, Sun Z, Ma C, Werschmoeller D, Li X. Wireless acquisition of temperature data from embedded thin film 

sensors in cutting insert. J. Manuf. Processes 2012, 14, 360–365. 

115. Campidelli AF, Lima HV, Abrão AM, Maia AA. Development of a wireless system for milling temperature monitoring. Int. 

J. Adv. Manuf. Technol. 2019, 104, 1551–1560. 

116. Mikołajczyk T, Nowicki K, Kłodowski A, Pimenov DY. Neural network approach for automatic image analysis of cutting 

edge wear. Mech. Syst. Sig. Process. 2017, 88, 100–110. 

117. Mikołajczyk T, Nowicki K, Bustillo A, Pimenov DY. Predicting tool life in turning operations using neural networks and 

image processing. Mech. Syst. Sig. Process. 2018, 104, 503–513. 

118. Zhou Y, Sun B, Sun W. A tool condition monitoring method based on two-layer angle kernel extreme learning machine and 

binary differential evolution for milling. Measurement 2020, 166, 108186. 

119. Pimenov DY, Bustillo A, Wojciechowski S, Sharma VS, Gupta MK, Kuntoğlu M. Artificial intelligence systems for tool 

condition monitoring in machining: Analysis and critical review. J. Intell. Manuf. 2023, 34, 2079–2121. 

120. Korkmaz ME, Gupta MK, Li Z, Krolczyk GM, Kuntoğlu M, Binali R, et al. Indirect monitoring of machining characteristics 

via advanced sensor systems: A critical review. Int. J. Adv. Manuf. Technol. 2022, 120, 7043–7078. 



Intelligent and Sustainable Manufacturing 2024, 1, 10002 22 of 23 

 

121. Mohamed A, Hassan M, M’Saoubi R, Attia H. Tool condition monitoring for high-performance machining systems—A review. 

Sensors 2022, 22, 2206. 

122. Lei Y, Li N, Guo L, Li N, Yan T, Lin J. Machinery health prognostics: A systematic review from data acquisition to RUL 

prediction. Mech. Syst. Sig. Process. 2018, 104, 799–834. 

123. Kong D, Chen Y, Li N. Gaussian process regression for tool wear prediction. Mech. Syst. Sig. Process. 2018, 104, 556–574. 

124. Xie Z, Li J, Lu Y. Feature selection and a method to improve the performance of tool condition monitoring. Int. J. Adv. Manuf. 

Technol. 2019, 100, 3197–3206. 

125. Guo K, Yang B, Wang H, Sun J, Lu L. Singularity analysis of cutting force and vibration for tool condition monitoring in 

milling. IEEE Access 2019, 7, 134113–134124. 

126. Yang B, Guo K, Liu J, Sun J, Song G, Zhu S, et al. Vibration singularity analysis for milling tool condition monitoring. Int. J. 

Mech. Sci. 2020, 166, 105254. 

127. Xie Z, Lu Y, Chen X. A multi-sensor integrated intelligent tool holder for cutting process monitoring. Int. J. Adv. Manuf. 

Technol. 2020, 110, 853–864. 

128. Bleicher F, Ramsauer CM, Oswald R, Leder N, Schoerghofer P. Method for determining edge chipping in milling based on 

tool holder vibration measurements. CIRP Ann. 2020, 69, 101–104. 

129. Gent S, Gert O, Schörghofer P, Ramsauer CM, Bleicher F, Leder N, et al. Maintenance interval monitoring and cutting edge 

breakout detection using an instrumented tool. In Proceedings of the 2022 IEEE 27th International Conference on Emerging 

Technologies and Factory Automation (ETFA), Stuttgart, Germany, 6–9 September 2022. 

130. Öztürk T, Sarıkaya E, Weigold M. Sensor-integrated tap holder for process uncertainty detection based on tool vibration and 

axial length compensation sensors. Int. J. Adv. Manuf. Technol. 2021, 117, 1905–1914. 

131. Letot C, Serra R, Dossevi M, Dehombreux P. Cutting tools reliability and residual life prediction from degradation indicators 

in turning process: A case study involving four approaches. Int. J. Adv. Manuf. Technol. 2016, 86, 495–506. 

132. Xu L, Huang C, Li C, Wang J, Liu H, Wang X. Estimation of tool wear and optimization of cutting parameters based on novel 

ANFIS-PSO method toward intelligent machining. J. Intell. Manuf. 2021, 32, 77–90. 

133. McParland D, Baron S, O’Rourke S, Dowling D, Ahearne E, Parnell A. Prediction of tool-wear in turning of medical grade cobalt 

chromium molybdenum alloy (ASTM F75) using non-parametric Bayesian models. J. Intell. Manuf. 2019, 30, 1259–1270. 

134. Javed K, Gouriveau R, Li X, Zerhouni N. Tool wear monitoring and prognostics challenges: a comparison of connectionist 

methods toward an adaptive ensemble model. J. Intell. Manuf. 2018, 29, 1873–1890. 

135. Li H, Wang W, Li Z, Dong L, Li Q. A novel approach for predicting tool remaining useful life using limited data. Mech. Syst. 

Sig. Process. 2020, 143, 106832. 

136. Twardowski P, Wiciak-Pikuła M. Prediction of tool wear using artificial neural networks during turning of hardened steel. 

Materials 2019, 12, 3091. 

137. Zhang C, Yao X, Zhang J, Jin H. Tool condition monitoring and remaining useful life prognostic based on a wireless sensor 

in dry milling operations. Sensors 2016, 16, 795. 

138. Chen N, Hao B, Guo Y, Li L, Khan MA, He N. Research on tool wear monitoring in drilling process based on APSO-LS-

SVM approach. Int. J. Adv. Manuf. Technol. 2020, 108, 2091–2101. 

139. Wang P, Gao RX. Adaptive resampling-based particle filtering for tool life prediction. J. Manuf. Syst. 2015, 37, 528–534. 

140. Hui Y, Mei X, Jiang G, Tao T, Pei C, Ma Z. Milling tool wear state recognition by vibration signal using a stacked 

generalization ensemble model. Shock Vibr. 2019, 2019, 1–16. 

141. Liao X, Zhou G, Zhang Z, Lu J, Ma J. Tool wear state recognition based on GWO–SVM with feature selection of genetic 

algorithm. Int. J. Adv. Manuf. Technol. 2019, 104, 1051–1063. 

142. Zhang B, Shin YC. A multimodal intelligent monitoring system for turning processes. J. Manuf. Processes 2018, 35, 547–558. 

143. Olufayo O, Abou-El-Hossein K. Tool life estimation based on acoustic emission monitoring in end-milling of H13 mould-

steel. Int. J. Adv. Manuf. Technol. 2015, 81, 39–51. 

144. Caggiano A. Tool wear prediction in Ti-6Al-4V machining through multiple sensor monitoring and PCA features pattern 

recognition. Sensors 2018, 18, 823. 

145. Ferreira FI, de Aguiar PR, Lopes WN, Martins CHR, Ruzzi RDS, Bianchi EC, et al. Inferential measurement of the dresser 

width for the grinding process automation. Int. J. Adv. Manuf. Technol. 2019, 100, 3055–3066. 

146. Sun H, Cao D, Zhao Z, Kang X. A hybrid approach to cutting tool remaining useful life prediction based on the Wiener process. 

IEEE Transact. Reliab. 2018, 67, 1294–1303. 

147. Chen Y, Jin Y, Jiri G. Predicting tool wear with multi-sensor data using deep belief networks. Int. J. Adv. Manuf. Technol. 2018, 

99, 1917–1926. 



Intelligent and Sustainable Manufacturing 2024, 1, 10002 23 of 23 

 

148. Krishnakumar P, Rameshkumar K, Ramachandran KI. Acoustic emission-based tool condition classification in a precision 

high-speed machining of titanium alloy: a machine learning approach. Int. J. Comput. Intell. Appl. 2018, 17, 1850017. 

149. Pandiyan V, Caesarendra W, Tjahjowidodo T, Tan HH. In-process tool condition monitoring in compliant abrasive belt 

grinding process using support vector machine and genetic algorithm. J. Manuf. Processes 2018, 31, 199–213. 

150. Nakai ME, Aguiar PR, Guillardi H Jr, Bianchi EC, Spatti DH, D’Addona DM. Evaluation of neural models applied to the 

estimation of tool wear in the grinding of advanced ceramics. Expert Syst. Appl. 2015, 42, 7026–7035. 

151. da Silva RHL, da Silva MB, Hassui A. A probabilistic neural network applied in monitoring tool wear in the end milling 

operation via acoustic emission and cutting power signals. Mach. Sci. Technol. 2016, 20, 386–405. 

152. Drouillet C, Karandikar J, Nath C, Journeaux AC, El Mansori M, Kurfess T. Tool life predictions in milling using spindle 

power with the neural network technique. J. Manuf. Processes 2016, 22, 161–168. 

153. Corne R, Nath C, El Mansori M, Kurfess T. Study of spindle power data with neural network for predicting real-time tool 

wear/breakage during inconel drilling. J. Manuf. Syst. 2017, 43, 287–295. 

154. Sahu NK, Andhare AB. Modelling and multiobjective optimization for productivity improvement in high speed milling of Ti–

6Al–4V using RSM and GA. J. Braz. Soc. Mech. Sci. Eng. 2017, 39, 5069–5085. 

155. Pimenov DY, Bustillo A, Mikolajczyk T. Artificial intelligence for automatic prediction of required surface roughness by 

monitoring wear on face mill teeth. J. Intell. Manuf. 2018, 29, 1045–1061. 

156. Bustillo A, Reis R, Machado AR, Pimenov DY. Improving the accuracy of machine-learning models with data from machine 

test repetitions. J. Intell. Manuf. 2022, 33, 203–221. 

157. Xu L, Huang C, Li C, Wang J, Liu H, Wang X. A novel intelligent reasoning system to estimate energy consumption and 

optimize cutting parameters toward sustainable machining. J. Clean. Prod. 2020, 261, 121160. 

158. Niaki FA, Feng L, Ulutan D, Mears L. A wavelet-based data-driven modelling for tool wear assessment of difficult to machine 

materials. Int. J. Mechatron. Manuf. Syst. 2016, 9, 97–121. 

159. Akhavan Niaki F, Ulutan D, Mears L. Parameter inference under uncertainty in end-milling γ′-strengthened difficult-to-

machine alloy. J. Manuf. Sci. Eng. 2016, 138, 061014. 

160. Mia M, Khan MA, Dhar NR. Performance prediction of high-pressure coolant assisted turning of Ti-6Al-4V. Int. J. Adv. 

Manuf. Technol. 2017, 90, 1433–1445. 


