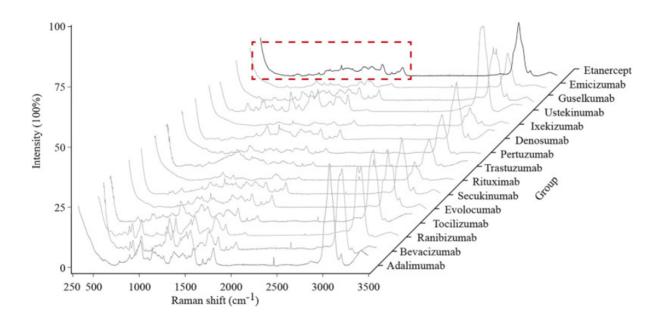

Table S1. Commonly used IR and Raman spectroscopy spectral regions for protein structure analysis *.

Spectral Region (cm ⁻¹)	Notes	Application
Amide I (~1700-1600)	Mainly CO stretching vibrations Strong signals in both IR and Raman.	Primarily used to obtain backbone structure information, hardly influenced by the nature of side chains. Reveals prevalence of α-helices, β-sheets, disordered regions and turns. Raman excels in aqueous samples due to the weak water absorption in this region.
Amide II (~1600- 1500)	Mainly a combination of NH bending and CN stretching. Weaker signals observed in Raman vs IR.	Limited secondary structure information compared to Amide I. Minimally affected by the nature of side chains.
Amide III (~1400-1200)	Mainly a combination of NH bending and CN stretching. Stronger signals observed in Raman vs IR.	Greater influence by the side chain environment compared to Amide I and Amide II regions. Provides complementary structural information.
Skeletal (~950-900)	Backbone CC stretching. Skeletal vibrations prominent in Raman.	Provides complementary information on α-helix identification.
Disulphide bond (~550-500)	SS stretch very weak in IR, strong in Raman	Information on tertiary structure and folding.
Side Chains (~1000-1600)	Aromatic residue signal weak in IR, but strong in Raman due to high polarisability.	Information on tertiary structure and folding. Raman can provide information on Tyr, Trp and Phe environment.


^{*}Top-level summary table compiled using information from [45–48,68–70].

Supplementary Figure S1

Figure S1. Amide I region of FTIR spectra of α-amylase in aqueous solutions of 0, 5, 10 and 20 mol% of ethylammonium nitrate, showing progressive changes in secondary structure. Reproduced from [44] under Creative Commons Attribution License (CC BY). Copyright © 2019 Arunkumar, Drummond and Greaves.

Supplementary Figure S2

Figure S2. Raman spectra of 15 therapeutic monoclonal antibodies, with the characteristic spectral region highlighted by a red dashed box. Reproduced from [89] under Creative Commons Attribution License (CC BY). Copyright © 2022 Ling, Zheng, Xu, Chen, Wang, Mao and Shao.