Divergent Aging Mechanisms of Calcium Arsenic Residue under Dry-Wet and Freeze-Thaw Cycles: Toxic Metal Mobility, Multiscale Physicochemical Characterization, and Escalated Ecological Risks

Xiaolong Zhao 1,2,†, Guangli Wang 1,2,†, Ying Du 1,2, Zhiying Zhao 1,2, Menghua Ran 1,2 and Dongyun Du 1,2,*

Table S1. Major elemental composition of CAR.

Element	Ca	As	Sx	Fe	F	Si	Mg	Zn	Al	Cu	Cd
Wt (%)	24.87	2.32	20.15	1.36	3.57	0.88	1.27	2.35	0.57	0.47	0.24

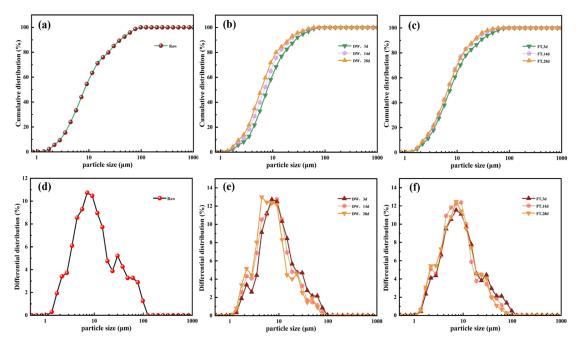
Table S2. Toxicity impact factors in the Potential Ecological Risk Index (I_{PER}) methodology.

Element	As	Zn	Cd
Toxicological response factor (T_r^i)	10	1	30

Table S3. Risk level evaluation of heavy metal pollution by E_r^i and I_{PER} .

E_r^i	Single potential ecological risk level	I_{PER}	Combined potential ecological risk level
<40	Low ecological risk	<150	Low risk
[40,80)	Moderate ecological risk	[150,300)	Moderate risk
[80,160)	High ecological risk	[300,600)	High risk
[160,320)	Considerable ecological risk	≥600	Severe risk
≥320	Extreme ecological risk		

Table S4. Potential Ecological Risk Values of CAR after DW and FT Cycles


Parameter (Grade, Contribution Rate)	Raw CAR	DW cycle 28 rounds	FT cycle28 rounds
T.	8129.50	8965.51	8535.67
E_{As}	(Extreme, 79.47%)	(Extreme, 80.14%)	(Extreme, 80.19%)
E	100.51	125.66	118.13
E_{Zn}	(Strong, 0.98%)	(Strong, 1.12%)	(Strong, 1.11%)
E .	1999.5	2091.68	2014.49
E_{Cd}	(Extreme, 19.55%)	(Extreme, 18.74%)	(Extreme, 18.7%)
$I_{ m PER}$	10229.51 (Severe Risk)	11187.85 (Severe Risk)	10668.29 (Severe Risk)

Hubei Province Engineering Research Center for Control and Treatment of Heavy Metal Pollution, College of Resources and Environmental Science, South-Central Minzu University, Wuhan 430074, China; 2022120861@mail.scuec.edu.cn (X.Z.); lgw4727@163.com (G.W.); 2022010048@mail.scuec.edu.cn (Y.D.); 1393881500@qq.com (Z.Z.); 2022110584@mail.scuec.edu.cn (M.R.)

² Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education, Wuhan 430074, China

^{*} Corresponding author. E-mail: dydu666@mail.scuec.edu.cn (D.D.)

[†] These authors contributed equally to this work.

Figure S1. Presents the impacts of DW and FT on CAR particle size distribution and cumulative curves: (a, d) raw sample; (b, e) DW; (c, f) FT.

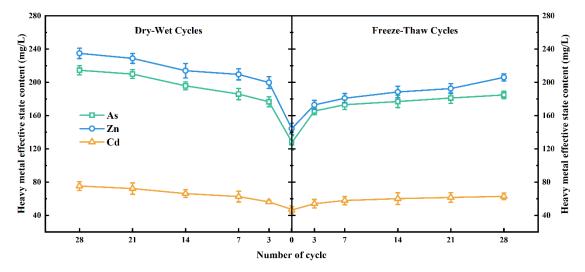
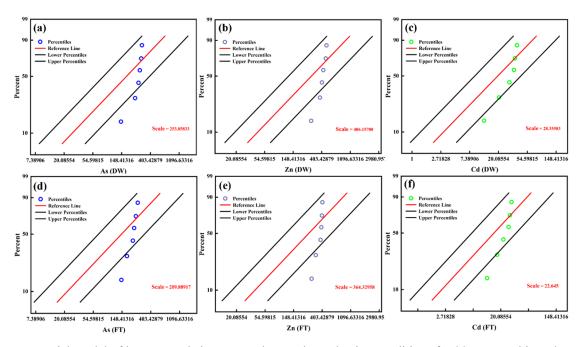



Figure S2. Variations in the concentrations of bioavailable As, Zn, and Cd in CAR after 1 to 28 cycles of DW and FT cycling.

Figure S3. Exponential model of heavy metals in CAR under accelerated aging conditions for 28 years, subjected to DW and FT cycles. DW: (a) As, (b) Zn, (c) Cd; FT: (d) As, (e) Zn, (f) Cd.